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Abstract: Dispersed or Distributed Generations (DGs) are becoming more popular on account of socio-economic 

reasons and also to enhance performance of distribution systems. Cat Swarm Optimization (CSO) is one of the recent 

swarm-intelligence-based optimization techniques which provides local and global search simultaneously. The aim of 

this study is to introduce the application of CSO method for optimal allocation of DGs in distribution networks. The 

problem is formulated to maximize annual energy loss reduction and to maintain a better node voltage profile under 

piece-wise multi-level load profile using penalty factor approach. Modification is suggested in CSO to enhance its 

exploration and exploitation potentials. In addition, clever search is proposed to enhance overall performance of the 

optimizing tool. The proposed method is applied on the benchmark IEEE 33-bus and 69-bus system and the obtained 

results are promising. 
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INTRODUCTION 

 

Indian smart grid initiatives are an emerging part of 

the energy policy of central and state governmental 

entities that focus on capacity increase to meet the 

growing electricity demand, rural electrification and 

optimizing electrical usage through load management 

and improving operational efficiencies (El-Hawary, 

2014). To achieve these applications the penetration 

level of DGs in power system has been increasing 

during the last few years due to the significant advances 

in several generation technologies, deregulation of 

power systems, environmental impacts and construction 

issues of new transmission lines (Moravej and 

Akhlaghi, 2013). DG units are typically connected so 

that they work in parallel with the utility grid and they 

are placed depending on availability of the resources (Al 

Abri et al., 2013). The advantages associated with DG’s 

depends greatly how optimally they are being placed in 

distribution networks as inappropriate placement can 

increase system losses, associated costs and therefore, 

can have an opposite effect to what is desired. 

The optimal DG allocation problem involves the 

determination of sizing and siting of DGs to meet out 

desired objectives while satisfying several operational 

constraints. It is a mixed integer, non-linear, complex 

combinatorial optimization problem and has been solved 

efficiently  using  modern  population  based  techniques  

such as Particle Swarm Optimization (PSO) (El-
Zonkoly, 2011; Abdi and Afshar, 2013; Kayal and 
Chanda, 2013; Kansal et al., 2013), Artificial Bee 
Colony Algorithm (ABC) (Abu-Mouti and El-Hawary, 
2011), Genetic Algorithm (GA) (Celli et al., 2005; 
Shukla et al., 2010), Harmony Search Algorithm (HSA) 
(Kollu et al., 2014; Rao et al., 2013), Evolutionary 
Programming (EP) (Khatod et al., 2013) and Teaching 
Learning Based Optimization (TLBO) (Garcia and 
Mena, 2013), Cuckoo Search Algorithm (CSA) 
(Moravej and Akhlaghi, 2013), Bacterial Foraging 
Optimization (BFO) (Mohamed and Kowsalya, 2014) 
and Tabu Search (TS) (Golshan and Arefifar, 2006), etc. 
However, each of these techniques has associated with 
its own inherent disadvantage. The dependency  of  the  
PSO  algorithm  on  the  adjusting  parameters  and the  
possibility  of  trapping  in  local  optima  can  reduce  
the  efficiency and  accuracy  of  the  algorithm  at  
different  situations (Kavousi-Fard and Niknam, 2013). 
The disadvantage of GAs is the premature convergence 
to a local optimum; high processing time associated that 
make the algorithm quite slow (De Souza et al., 2004). 
Simulated Annealing (SA) provides better solution, it 
requires excessive processing time and makes little use 
of memory (Golshan and Arefifar, 2006). Moreover, 
many of these algorithms are not performing global 
exploration and local exploitation simultaneously and 
therefore it is difficult to decide the switchover between 
these two phases of the search process. 
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Cat Swarm Optimization (CSO)  is  a  new high  

performance  computational  method,  inspired from  the  

natural  behavior  of  cats (Pappula and Ghosh, 2014). It 

was introduced by Chu and Tsai in 2007. Cats have a 

strong curiosity towards moving objects and possess 

good hunting skill (Saha et al., 2013). The important 

property of CSO is that it provides local as well as 

global search capability simultaneously (Pradhan and 

Panda, 2012). It  has  been  successfully  applied  to   

solve diverse engineering optimization problems  such  

as Infinite Impulse Response (IIR)  system  

identification (Panda et al., 2011), clustering (Santosa 

and Ningrum, 2009), synthesis   of   linear   antenna   

arrays (Pappula and Ghosh, 2014), linear phase Finite 

Impulse Response (FIR) filter design (Saha et al., 2013), 

etc. However, it has not been yet attempted to solve the 

optimal DG placement problem. 

The optimal DGs allocation problem offers 

enormous search space and this increases computational 

burden of these search algorithms. To reduce this search 

space generally top few top nodes are selected as 

candidate nodes from the node priority list which is 

being obtained on the basis of certain sensitivity based 

approach (Kollu et al., 2014; Rao et al., 2013; Khatod 

et al., 2013). This approach definitely reduces the 

computational time of search algorithms, but a large 

region of search space remains unexplored. This 

guarantees sub-optimal solution, if any node of the 

optimal solution is not located in the reduced problem 

search space so obtained. 

In this study, CSO has been employed to solve the 

optimal DGs allocation problem of distribution systems. 

The proposed mathematical modeling is designed to 

maximize annual energy loss reduction while 

maintaining  better  system node voltage profile using 

penalty function approach considering piece-wise multi-

level load profile. The optimal dispatches of DGs are 

determined at each load level separately and then the 

performance of the distribution network is evaluated. 

The problem search space offered to effectively scanned 

by proposing clever search to enhance the convergence, 

accuracy and efficiency of the optimizing technique. 

The application results are compared with other swarm 

and evolutionary based algorithms. 

 

PROBLEM FORMULATION 

 
The optimal placement of DGs in distribution 

system can significantly reduce annual energy losses in 
distribution feeders and also improve its node voltage 
profile. In this work, these two objectives are considered 
and are combined into a single objective function using 
a penalty factor approach. The penalty factor is suitably 
designed to take care in the selection of that DG 
allocation which provides better voltage profile while 
maintaining all node voltages within prescribed limits. 
The system load is stochastic in nature and to deal with 

this characteristic of the distribution systems, the annual 
load duration profile of the distribution network is 
piecewise linearized into definite number of different 
load levels. The Objective Function (O.F.) is therefore 
formulated as: 
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The objective function defined by (1) is maximized 
subjected to the following system operational 
constraints (4)-(8). 
Power flow equations: 
 

( )   0g k =                                                          (4) 

 
Feeder current: 
 

,f f ratedI I≤
                                                         (5)  

 
Node compensation limit: 
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Total active power demand: 
 

,    ;DG p DP P p N∑ ≤ ∀ ∈

                            

(7)

  
 

Also, it is ensured that no candidate nodes for DG 
placement are repeated: 
  

,  , ;  ,DG a DG bN N a b N≠ ∈
                                   (8) 

 
CAT SWARM OPTIMIZATION 

 
Chu and Tsai have proposed a new optimization 

algorithm in 2007 which imitates the natural behavior 
of cats (Panda et al., 2011). Cats first move step-by-step 
very cautiously toward the prey till they realize that it is 
in their promising reach and then they attack on it with 
full energy. These two characteristics i.e., move step-
by-step and chasing with full energy are represented by 
seeking and tracing modes, respectively. The seeking 
mode corresponds to a global search process whereas 
the tracing mode corresponds to a local search process 
(Pradhan and Panda, 2012). To combine the two modes 
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into the algorithm, a Mixture Ratio (MR) is defined. In 
CSO these two modes of operations are mathematically 
modeled for solving complex optimization problems 
and can be described by seeking and tracing modes 
(Panda et al., 2011): 
 

Seeking mode: The seeking mode corresponds to a 

global search technique in the search space of the 

optimization problem. Some of the terms related to this 

mode are: 

 

• Seeking Memory Pool (SMP): It is the number of 

copies of a cat produced in seeking mode. 

• Seeking Range of selected Dimension (SRD): It 

is the maximum difference between the new and 

old values in the dimension selected for mutation. 

• Counts of Dimension to Change (CDC): It is the 

number of dimensions to be mutated. 

 

The steps involved in this mode are: 

 

• Create SMP copies of the i
th

 cat. 

• Based on CDC update the position of each copy by 

randomly adding or subtracting SRD percent the 

present position value. 

• Evaluate the fitness of all copies 

• Pick the best candidate from all copies and place it 

at the position of the i
th

 cat. 

 

Tracing mode: The tracing mode corresponds to a 

local search technique for the optimization problem. In 

this mode, the cat traces the target while spending high 

energy. The rapid chase of the cat is mathematically 

modeled as a large change in its position. Define 

position and velocity of i
th

 cat in the D-dimensional 

space as xi = (xi1, xi2,....., xiD) and vi = (vi1, vi2, ....., viD) 

where (1≤d≤D) represents the dimension. The global 

best position of the cat swarm is represented as Pg = 

(Pg1, Pg2, ....., PgD). The update equations are: 

 

vi+1,d = W vi,d +C r (Pgd-xid)                             (9) 

 

xi+1, d = xi,d+vi+1,d                                          (10) 

 

where, 

W  =  The inertia weight 

C  =  The acceleration constant 

r  =  A random number uniformly distributed in the 

 range [0, 1]. 

 

The algorithm initializes with a predefined 

population size which is being distributed randomly in 

the problem search space. However, in order to improve 

the computational efficiency of the algorithm, clever 

search is employed as described in the next section. The 

algorithm terminates when the maximum iteration 

count is achieved. 

 

Clever search: A new approach is proposed to identify 

the better nodes for DG placement and then they are 

selected cleverly while maintaining sufficient diversity 

in the population. In this approach, a small test DG 

capacity dP is installed subsequently at all nodes of the 

distribution network and the objective function is 

evaluated at each instance. The node that provide the 

maximum function value is found and that small DG 

capacity dP is then placed at this node. After the 

placement of the dP, the next most optimal candidate 

node is explored in the same manner to place next small 

DG. This process is repeated till there is an 

improvement in the fitness. In this way a node priority 

list is obtained for DG placement. The candidate nodes 

are selected from this list using Roulette Wheel 

Selection so that candidate nodes are selected according 

to their probability of priority.  This provides better 

opportunity to better nodes while keeping poor nodes in 

the problem search space. Thus, the diversity in 

population is maintained whereas the population 

quickly picks up better fitness. This improves the 

computational efficiency of the CSO. 

 

SIMULATION RESULTS 

 

The proposed method is applied on the benchmark 

IEEE 33-bus (Baran and Wu, 1989) and 69-bus (Das, 

2008) test distribution systems. The initial 

configuration, nominal line voltage and power demands 

are given in Table 1 and the detailed system data may 

be referred from the respective references. The annual 

load profile is piecewise segmented in three different 

load levels, i.e., light, nominal and peak which are 50, 

100 and 160% of the nominal system loading (Das, 

2008). The load durations are taken 2000, 5260 and 

1500 hours for light, nominal and peak load 

respectively. The values of CSO parameters selected for 

simulation are shown in Table 2. The maximum DG 

capacity at single node is taken 2 MW and it is assumed 

that the control settings are available in the steps of 

1kW. The maximum candidate sites for DG allocation 

is taken as 3. The proposed algorithm has been 

developed using MATLAB and the simulations have 

been carried on a personal computer of Intel i5, 3.2 

GHz and 4 GB RAM. After usual tradeoff a population 

size of 10 and maximum iterations of 100 is set for both 

test systems. 

 

Case study 1: 33-bus system: The best allocation of 

DGs  obtained  after  100 trials and is presented in 

Table 3. The table shows optimal DG capacities as well 

as  their  optimal  locations obtained using CSO and are  
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Table 1: Initial configuration, nominal line voltage and power 
demand 

Particulars Case study 1 Case study 2 

Sectionalizing switches 1-32 1-68 
Tie-switches 33-37 69-73 
Base configuration (open lines) 33-37 69-73 
Line voltage (kV) 12.66 12.66 
Nominal active demand (kW) 3715 3802.19 
Nominal reactive demand (kVAr) 2300 2694.6 

 
Table 2: Selected CSO parameters 

Parameter Value Parameter Value 

Population size 10 SRD 2 
Maximum iterations 100 MR 0.1 
SMP 5 W 0.4 
CDC 0.6 C 1.5 

 

compared with the recently proposed Harmony Search 
Algorithm (HSA) of Rao et al. (2013) under identical 
system and design parameters. A comparison of 
network performance after optimal DG placement is 
presented in Table 4. 

The table shows that there is a marked 
improvement in power loss reduction and voltage 
profile improvement using optimal DG placement. The 
table also compares the results obtained using CSO 
with HSA (Rao et al., 2013) under identical system and 
design parameters. The table shows better performance 
of the proposed method than HSA at each load level. It 
can also be depicted from the table that using proposed 
method, the annual energy losses are 9.21% less than 
(Rao et al., 2013). 

Case study 2: 69-bus system: This is one of the most 

popular systems available in literature. The best 

allocation of DGs obtained after 100 trials of CSO is 

presented and compared with HSA (Rao et al., 2013) in 

Table 5. A comparison results after optimal DG 

placement using CSO with HSA (Rao et al., 2013) is 

shown in Table 6. The table shows that CSO also 

performs better than HSA for this test system also. This 

is true for each load level. The table also shows that 

using CSO, the annual energy losses are 4.49% less 

than HSA (Rao et al., 2013). 

 

DISCUSSION 

 

It is noteworthy that the optimal siting and sizing 

obtained using CSO is entirely different than that 

obtained by HSA (Rao et al., 2013) and the results 

obtained using CSO are better. This is true for both case 

studies. Therefore, the proposed method has intensive 

potential to efficiently solve hard combinatorial 

optimization problems.  

The computational performance of any population 

based search technique can be judged after observing its 

solution quality of a sample of solutions obtained after 

a definite number of independent trials. The quality of 

solutions obtained after 100 trails of CSO for both case  

 

Table 3: Optimal DG allocation for case study 1 

Load level 

Optimal DG Capacity in MW (Optimal Location) 

-------------------------------------------------------------------------------------------------------------------------------

HSA (Rao et al., 2013) CSO 

Light 0.1777(17), 0.1303(18), 0.5029(33)   0.376(14), 0.537(24), 0.529(30)       
Nominal 0.5724(17), 0.1070(18), 1.0462(33) 0.756(14), 1.095(24), 1.065(30)   

Peak 0.9108(17), 0.1939(18), 1.6115(33) 1.117(14), 1.200(24), 1.633(30) 

 
Table 4: Comparison results for case study 1 

Load Level Particulars Base case HSA (Rao et al., 2013) CSO 

Light Power loss (kW) 47.06 23.29 17.330 

 Minimum voltage (p.u.) 0.9583 0.9831 0.9845 

Nominal Power loss (kW) 202.67 96.76 71.450 
 Minimum voltage (p.u.) 0.9131 0.9670 0.9685 

Peak Power loss (kW) 575.27 260.97 196.65 

 Minimum voltage (p.u.) 0.8529 0.9437 0.9420 
Annual energy loss reduction (%)  - 53.17 65.120 

 

Table 5: Optimal DG allocation for case study 2 

Load level 

Optimal DG capacity in MW (optimal location) 
---------------------------------------------------------------------------------------------------------------------------------

HSA (Rao et al., 2013) CSO 

Light 0.5857(63), 0.1280(64), 0.2579(65)  0.258 (17), 0.716 (61), 0.150 (64) 

Nominal 1.3024(63), 0.3690(64, 0.1018(65)) 0.545(17), 1.440(61), 0.329(64) 
Peak 1.9710(63), 0.8308(64), 0.1589(65) 0.869(17), 2.000(61), 0.837(64) 

 

Table 6: Comparison results for case study 2 

Load level Particulars Base case HSA (Rao et al., 2013) CSO 

Light Power loss (kW) 51.61 21.92 17.44 

 Minimum voltage (p.u.) 0.9567 0.9846 0.9898 

Nominal Power loss (kW) 225.00 86.77 71.14 
 Minimum voltage(p.u.) 0.9092 0.9677 0.9806 

Peak Power loss (kW) 652.53 230.61 187.67 

 Minimum voltage (p.u.) 0.8445 0.9478 0.9693 
Annual energy loss reduction (%)  - 62.64 69.51 
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Table 7: Solution quality of CSO 

Particulars Case study 1 Case study 2 

Best fitness 1105343.97 1341317.96 

Mean fitness 1100977.61 1336221.74 
Worst fitness 1055430.05 1316049.41 

SD 10690.4600 5004.20000 

COV 0.97000000 0.37000000 
EFB 1.04000000 0.53000000 

CPU time (s) 118.860000 373.980000 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1: Convergence characteristics of GA, PSO and CSO for 

case study 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Convergence characteristics of GA, PSO and CSO for 

case study 2 
 

studies is presented in Table 7. It can be observed from 

the table that the best, mean and worst fitness of the 100 

sampled solutions are in close proximity. The table also 

shows the Standard Deviation (SD), Coefficient of 

Variation (COV) and Error From the Best (EFB) for 

these sampled solutions. The COV and EFB are within 

permissible range and it shows that the central tendency 

of these solutions is quite narrow. The table also shows 

the average CPU time which is reasonable as it is the 

problem of planning horizon. Thus, the proposed 

method is capable to consistently generate solutions of 

good quality. 

In order to compare the convergence behavior of 

CSO with well-known metaheuristics techniques like  

GA and PSO, these algorithms are also applied to both 

test systems. The convergence characteristics of these 

algorithms are compared in Fig. 1 and 2. A common 

conclusion can be drawn from these figures that GA 

converges to suboptimal solution due to lack of 

exploitation potential. PSO is exploiting the search 

space in much better way than GA, but it usually 

trapped in local optima. However, CSO has shown 

better convergence than GA and PSO on account of 

simultaneous local and global search. In CSO, the 

individuals reach the promising region in the initial 

phase. This happens due to the combined effect of 

seeking and tracing mode that provides simultaneous 

exploration and exploitation of the search space. Thus 

CSO is capable to explore that potential solution which 

provides better savings in annual energy losses than 

other recently established technique. 

 

CONCLUSION 
 

The optimal allocation of DGs in distribution 
networks is now becoming important owing to 
economic as well as environmental reasons and also to 
enhance the level of network performance and 
customers’ satisfaction. This study addresses the 
optimal allocation of dispatchable DGs in distribution 
systems using a powerful swarm intelligence-based 
optimization technique, Cat Swarm Optimization 
(CSO). The proposed formulation for DG allocation 
effectively minimizes the annual energy losses while 
providing better node voltage profiles. The proposed 
clever search causes virtual squeezing of the search 
space though it maintains a requisite amount of 
diversity. This improves accuracy and convergence of 
the algorithm and that is at reduced computational 
burden. CSO has shown special feature that it provides 
local as well as global search simultaneously. All these 
lead to good solution quality. The application results 
show that there is a significant improvement in the 
desired objectives. The application results are also 
found to be better than other established swarm and 
evolutionary based techniques. 
 

NOMENCLATURE 

 

Ebj : Energy loss for uncompensated system at jth 
load level 

Ecj : Energy loss for compensated system at jth 
load level 

NL : Total number of load levels 
Vmax : Maximum node voltage (p.u.) 
Vmin : Minimum node voltage (p.u.) 
∆Vp : Maximum node voltage deviation at pth node 

(p.u.) 
VminS : Minimum specified node voltage (p.u.) 
Vp : Voltage at pth node (p.u.) 
If  : Feeder current (p.u.) 
If,rated : Rated feeder current (p.u.) 
PDG,min : Minimum active compensation provided by 

DGs (kW) 
PDG,max : Maximum active compensation provided by 

DGs (kW) 
PD : Nominal active power demand of the system 
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PDG :  Maximum DG capacity at one candidate node 
NDG : Candidate nodes for DG placement 
N : Set of system nodes 
λ : Node voltage deviation penalty factor 
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