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Abstract: The aim of this study is to improve the intensity prediction of hurricanes by accounting for Rapid 
Intensification (RI) events. Modern machine learning methods offer much promise for predicting meteorological 
events. One application is providing timely and accurate predictions of Tropical Cyclone (TC) behavior, which is 
crucial for saving lives and reducing damage to property. Current TC track prediction models perform much better 
than intensity (wind speed) models. This is partially due to the existence of RI events. An RI event is defined as a 
sudden change in the maximum sustained wind speed of 30 knots or greater within 24 hours. Forecasting RI events 
is so important that it has been put on the National Hurricane Center top forecast priority list. The research published 
published on usingmachinelearning methods for RI prediction is currently very limited. In this study, we investigate 
the potential of popular machine learning methods to predict RI events. The evaluated models include support vector 
machines, logistic regression, naïve-Bayes classifiers, classification and regression trees and a wide range of 
ensemble methods including boosting and stacking. We also investigate dimensionality reduction and feature 
selection and we address class imbalance using the Synthetic Minority Over-sampling Technique (SMOTE). The 
evaluation shows that some of the investigated models improve over the current operational Rapid Intensification 
Index model finally; we use RI predictions to make improved storm intensity predictions. 
 
Keywords: Ensemble learning, feature selection, feature extraction, machine learning, rapid intensification, 

SMOTE 
 

INTRODUCTION 
 

Tropical Cyclones (TCs) are a natural phenomenon 
which whichthat forms over large bodies of relatively 
warm water. TCs can intensify and reach hurricane 
strength, which causes which causes causing strong 
winds, heavy rain and flooding resultingthat result in 
loss of lifeves and significant damage whenonce it 
makes landfall. By employing systems for forecasting 
tracks and wind speeds (also called intensity) of TCs 
and establishing early warning systems, human lives can 
be saved and economic losses can be reduced. Despite 
the vast amount of research on climate observations and 
models, predicting the sustained wind speed (known as 
storm intensity) of a TC still remains a challenging 
(DeMaria et al., 2005). One issue is the existence of 
rapid intensification (RI) events, which are defined as 
sudden intensity increases of 30 knots or greater within 
24 hours (Kaplan et al., 2010b). Predicting RI events is 

important and was added to the National Hurricane 
Center’s (NHC) top forecast priority list in 2008 
(Kaplan et al., 2010a). One of the main issues with RI 
events is that they are rare and the environmental 
conditions that favor their appearance are not clearly 
understood (Kaplan et al., 2010a). In this study, we 
introduce an easy to use data set and investigate how 
well popular machine learning methods, ensemble 
methods, feature selection and class balancing methods 
perform for predicting RI events. 

The presented TC dataset is derived from the 
Statistical Hurricane Intensity Prediction Scheme 
(SHIPS) model (DeMaria et al., 2005; Kaplan et al., 
2010a, 2010b) (version 2010) and includes storms from 
1982 to 2011. The dataset includes information about 
the state of the ocean, clouds and atmosphere collected 
by satellites, ships, planes and buoys. Measurements are 
available in 6-hour time intervals (DeMaria, 2013). We 
will compare standard classifiers including support 
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vector machines (SVM), logistic regression (LR), naïve-
Bayes classifiers (NB) and Classification and 
Regression Trees (CART). To deal withaddress the 
large number of available features, we apply 
dimensionality reduction and feature selection. Class 
imbalance (rapid intensification events are relatively 
rare) is addressed by rebalancing the data with the 
Synthetic Minority Over-sampling Technique (SMOTE) 
and by using the area under the ROC curve (AUC) 
instead of accuracy. The results will be compared to the 
NHC operational Rapid Intensification Index (RII) 
model with a 30-knots RI threshold. The RII is based on 
a linear discriminate analysis function. We finally show 
that RI prediction can be used to improve intensity 
forecasts. 

 
LITERATURE REVIEW 

 
Rapid intensification: Kaplan et al. (2010b) define a 
Rapid Intensification (RI) event as a change in intensity 
(the maximum 1 min sustained wind speed at 10 meters 
above ground) of 30 knots or greater within 24 h. The 
number of RI events is small compared to the total 
number of observations. However, many major 
hurricanes in the Atlantic basin undergo RI events and 
their potential impact is large, representing a significant 
threat. They appear between June and November and 
their main causes are still not clear, which makes them 
hard to predict (Kaplan et al., 2010a). A study 
doneperformed by Wang and Zhou (2008) refines the RI 
definition as thea maximum intensity increase of at least 
5 knots in 6 h, 10 knots in 12 h and 30 knots in 24 h and 
indicates that: 
 
 Storms that undergo RI produce high forecast error 

rates. 
 Seasonal, intra-seasonal and inter-annual 

environmental changes effect the potential of RI in 
different ways-; for example, it mentioned that there 
are more RI events in El Nino years than in La Nina 
years. 

 The mean location of where the storms form differs 
from one month to another. 

 It is more likely to have RI events when the storm’s 
formation moves towards the south. 

 The decrease in northerly vertical change in wind 
speed and the increase of in low-level westerly 
horizontal change in wind spinning increases the 
potential of RI. 

 
Another study by Shay et al. (2000) shows that 

most RI events happen when the storm passes through a 
flow of deep warm water such as a Loop Current. 
Measurements of the water at different levels were 
derived from the radar altimeter placed on the 
TOPEX/Poseidon (T/P) satellite. The paper indicates 
that the measurements showed that h Hurricane Opal, 
which formed in 1995, underwent RI once it passed 

through a Loop Current. An article by Lippsett (2011) 
shows that Hurricanes Katrina and Rita are also 
examples of hurricanes that met came into contact witha 
Loop Current, that caused causing them to intensify. It 
shows that satellites could monitor these layers could be 
monitored during the winter through satellites while but 
that it is harddifficult to monitor them in summer. To 
solve the problem, they suggest employing a glider (a 
submarine vehicle), that which can be launched into the 
ocean and used to take measurements of the temperature 
of the water and send results that are then sent to a 
database. The glider can be controlled remotely and can 
stay in the ocean for months. 

There have been several efforts to predict RI. We 
will discuss the most significant RI models next. The 
Rrapid intensification index (RII) (Kaplan et al., 2010b) 
is a discriminate analysis model used to forecast RI 
events based on large-scale weather, ocean and climate 
condition predictors, which are derived from the 
Statistical Hurricane Intensity Prediction Scheme 
(SHIPS) model. RII model is an operational model used 
by NHC that predicts RI and works in real time. 
Different RI thresholds can also be defined, such as e.g., 
25, 35 and40. Different versions of the RII model 
werehave been implemented. The original version of RII 
(Kaplan and DeMaria, 2003) first calculates the average 
value (threshold) of each predictor for all RI events. 
Then, it compares the value of each predictor of the 
observed sample with its threshold and decides whether 
it satisfies the threshold or not. A total of five predictors 
were used to develop the model. A drawback to this step 
is that it does not show to whichthe level at which the 
features favor the appearance of RI (Kaplan et al., 
2010a). Finally, the probability of RI is equal to the 
percentage of cases that satisfy the thresholds. 

A revised version of the RII model was described 
by Kaplan et al. (2010a) for the Atlantic basin. Three 
predictors related to the inner-core were added to the 
five-predictor RII model. The first predictor is derived 
from GOES IR satellite images, the second predictor is 
derived from the microwave satellite images and the 
third is derived from the Global Forecast System (GFS) 
model and the Sea Surface Temperature (SST) predictor. 
GFS is global numerical weather prediction model run 
by the U.S. National Weather Service (NWS). This 
model provides predictions for aviation guidance several 
days ahead for the entire globe based on physical and 
mathematical equations that take several hours to run on 
supercomputers (Meisner, 2006). An improvement of in 
the new version is that predicted values of some 
quantities (SHRD, RHLO, POT, D200 and OHC) are 
averaged over the prediction interval, thus accounting 
for their influence on the TC. Another improvement is to 
rescale In addition, the values of the predictors are 
rescaled. The operational RII version set weights to the 
scaled predictors based on their importance in predicting 
RI. The Probability of Detection (POD) in the Atlantic 
basin for the years 2006 and 2007 was reported to be 
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between 15 and 59% and the False Alarm Ratio (FAR) 
ranged between 71 and 85% (Kaplan et al., 2010b). 

Kieper and Jiang (2012) show that a cyan ring 
appears in the 37 GHz microwave false color images 
around the TC eye when a RI event happens. It appears 
within the first 6 hours of the RI formation. This ring is 
used as an indicator of RI and is combined with the RII 
model to estimate the potential of RI. The model was 
evaluated on a dataset from 2003 to 2007 in the Atlantic 
basin. The result of the combined model shows a POD 
of 24% and a FAR of 26%. The RII model alone shows 
a POD of 77% and a FAR of 66%, whereas the ring 
alone shows a POD of 75% and a FAR of 9%. The 
combined method lessens the FAR, which is favorable 
but also reduces the POD. It is interesting to note that 
the ring performs much better alone than combined with 
RII.  

Logistic regression and naïve-Bayes were 
investigated for RI prediction in Rozoff and Kossin 
(2011). The models apply feature selection on the set of 
predictors used by the RII model. For the naïve-Bayes 
model, forward feature selection and cross validation (in 
each round, 1 year is selected for testing and the 
remaining years for training) are used. For the logistic 
regression model, a sequential feature selection method 
called step wise regression is used. The results of the 
three classifiers, logistic regression, naïve-Bayes and the 
RII model, are then combined by simply averaging the 
RI probabilities predicted by the three models. The skill 
of the combined model was examined using the Brier 
skill score defined belowin Equation 8 on Page 5. Data 
from year 1995 to 2009 waswere used. The results show 
that compared to the RII model Brier skill score, the 
combination of the models improves by 33% in the 
North Atlantic Basin and by 52% in the North Pacific 
Basin. These results are encourageing for more 
furtherinvestigation of using statistical learning 
methods. 

 
MATERIALS AND METHODS 

 
Tropical cyclone dataset: For this study, we have 
gathered a historical dataset for TCs in the AtlanticBasin 
formfrom 1982 to 2011. The dataset includes the SHIPS 
model predictors (version 2010). SHIPS is an intensity 
prediction model that predicts a storm’s maximum 
sustained wind several days ahead beforehand by 
applying multiple linear regression on the historical data 
described here. Feature weights are updated for every 
hurricane season based on their importance in the 
previous years. Therefore, an updated version of the 
SHIPS model is released to provide forecasts for each 
particular hurricane season (DeMaria et al., 2005). 
SHIPS was introduced in 1994 (National Hurricane 
Center, 2009) and is still one of the most skillful models 
used by the National Hurricane Center (NHC). The life-

cycle of each TC is represented in 6-hour time intervals 
which and includes a set of ocean and climate 
observations. Environmental satellites, radars, buoys, 
ships and aircrafts are some a few of the methods of 
collectingused to collect climate data, which are then 
processed using complex models (Rhome, 2007). For 
comparison, RI probabilities produced by the RII model 
(Kaplan et al., 2010a) are also included toin the dataset 
with a 30, 35 and 40 knotsthreshold. Once the storm hits 
land, the intensity of the storm decaysddecreases rapidly 
(Kaplan and DeMaria, 1995). Therefore, overland cases 
were removed from the dataset for this study. A 
summary of the used SHIPS predictors and their 
description is shown in Table 1 (DeMaria, 2013; Kaplan 
et al., 2010a). 

The cleaned and preprocessed dataset is made 
publicly available to researchers at: 
http://lyle.smu.edu/IDA/data/storms. 
 
Comparing different machine learning methods for 
rapid intensification detection: We compare different 
well-known classification techniques to predict RI 
events in the Atlantic basin using the dataset described 
in this study. The investigated methods include: 
 
 Support Vector machines (SVMs) (Cortes and 

Vapnik, 1995). The prediction in the SVM classifier 
is made based on a hyperplane that separates the 
classes. 

 Logistic regression (Walker and Duncan, 1967), 
which models the log of the odds ratio (logit) of a 
class label as amultiple linear regression on a set of 
covariates. 

 Naïve-Bayes (Russell and Norvig, 1995) is a simple 
model which thatpredicts the class probability 
conditional on given predictor values. It assumes 
that the predictors are conditionally independent. 

 That CART (Breiman et al., 1984) classifier 
estimates the probability using adecision tree.  

 
Compared to the methodology used by Rozoff and 

Kossin (2011), our study uses a larger dataset and 
examines more classification models and ensemble 
learning methods. We address the class imbalance 
problem using SMOTE and use for feature selection the 
ROC-based AUC score for feature selection instead of 
the normally employed accuracy, which is problematic 
for imbalanced data.  

The training set used for the learning phase contains 
that years 1982 to 2008. Years 2009 and 2010 are held 
out for testing. At this stage, the best features for each 
supervised learning method are selected and extracted 
using 5-fold cross validation. Then, the selected and 
extracted features are used for each classification model. 
 
Evaluating rapid intensification models: We add to 
the dataset a class attributes with the values “RI” and
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Table 1: Tropical cyclone set of predictors and their description for SHIPS model (version 2010) and its derived predictors (DeMaria, 2013; 
Kaplan et al., 2010a). A dot (•) marks the predictors used by the RII model 

Predictor Description 
SHIPS (version2010) 
ID The first two characters “AL” represent the Atlantic basin, the second two characters represent the sequence 

number of a TC in a certain year, and the remaining four characters represent the year when the TCh appended. 
DATE A 6-hour time interval represented as follows: “yymmdd”. The first two digits represent the year, the second 

twodigits represent the month, and the last two digits represent the day of aTC.The current UTC time interval is 
related to a given record in hours. Once a TC takes place, data points are produced. 

TIME Every 6 h starting from time t, which means that this predictor will have one of the following values: t = 0, 6, 12 
or 18 hours. 0, 6, 12, and 18 mean 12:00 AM, 6:00 AM, 12:00 PM, and 6:00 PM, respectively. 

LAT,LON Latitude in 1/10 degrees North of the center of a TC, longitude in 1/10 degrees West of the center of the TC. 
VMAX Presents TC’s maximum intensity in knots. It measures the strength of a TC, and its values are a factor of five and range 

between 15 and 160. The Saffir-Simpson scale (Schott et al., 2012) is used to categorize TCs, where the weakest 
TC is called a tropical depression, and once its maximum intensity exceeds 64 knots, it turns into a hurricane. 

PER• Previous 12-h change in VMAX (persistence). 
ADAY A Gaussian functions of the day of the  year when a current TC took place (jdate) relative to the peak day of the Atlantic 

hurricane season (day 253). Transformation: exp ((jdate−253)2/900). 
SPDX Zonal component of initial storm motion, which refers to the horizontal (East-West) direction of the persistence over the 

sea surface. An SPDX positive value represents the horizontal wind movement from West to East, and its value 
represents its wind speed in knots. 

PSLV The pressure at a level where the water flow is similar to the storm’s motions (the leading layer). 
VPER A derived predictor of V MAX ×PER. 
PC20 A channel four GOES predictor that returns the percentage of area covered by cold-cloud top brightness 

temperature ≤ −20°C. 
GSTD A derived predictor of VMAX times the standard deviation of PC 20. 
POT The estimated Maximum Potential Intensity (MPI) that is averaged over the TC’s track minus VMAX at time t = 0. 
SHDC 850 millibar (pressure level) shear magnitude with vortex removed and averaged from 0-500 km of storm center.  
T200, 
T250P 

200,250 millibar temperature averaged from 0-1000 km of storm center. 

EPOS Average thata difference between a parcel lifted from the surface and its environment averaged from 200-800 km. 
RHMD 700-500 millibar relative humidity (%) averaged from 200-800km. 
TWAT GFS model mean tangential wind speed. 
Z850 850 millibar absolute vortices. 
D200 200 millibar divergence. 
LSHDC A derived predictor of SHDC × sin (LAT). 
VSHDC A derived predictor of SHDC × VMAX. 
POT2 A derived predictor ofPOT2. 
RHCN Ocean heat content from satellite altimeter data (KJ/cm2). 
SDIR Reference direction for shear direction predictor (sdp). 
SHGC 850-200 millibarshear magnitude (kt × 10) with vortex removed and averaged from 0-500 km. 
X_AVG Where X = POT •, SHDC, T200, T250P, EPOS, RHMD, TWAT, Z850, D200 •, LSHDC, VSHDC, POT2, RHCN •, 

SDIR, or SHGC with values averaged from time t = 0 to t = 24h. 
RHLORI• 850-700mb relative humidity percentage from 200-800 km radius averaged from time t = 0 to t = 24h. 
SBTRI• Standard deviation of cold cloud-top from 50-200 radius with a GOES channel 4 brightness temperature. 
PCRI30• Percentage area of cold cloud-top from 50-200 radius with a GOES channel 4 brightness temperature ≤−30°C. 
RHCRI• Reynold heat content averaged from time t = 0 to t = 24 h. 
Derived Predictors 
PERX Previous change in VMAX where X = 6, 18, or 24 h. 
VPERX VMAX×PERX with X = 6,18, or 24 h. 
YDAYS Day of the year. 
VPC20 PC20×V MAX. 
RII Model Outcome 
RIIX RII model estimate of RI with X = 30, 35, or 40knots threshold. 

 
“NRI” which is derived from the VMAX variable. RI 
marks the duration of a 30 knots RI event initial point 
until 6 h before its completion (6, 12, 18 and 24 h prior 
to a 30 knots change in intensity). In the case that ifan 
RI event overlaps with another RI event, they will be 
considered asa single RI event that lasts for more than 
24 h. Figure 1 and Table 2 demonstrates an example of 
an RI event that lasted for 54 h. The TC dataset includes 
421 different storms that include 171 RI events. Table 3 
summarizes the total number of RI and NRI instances in  

the dataset. The table shows a strong class imbalance 
with roughly 9 times more NRI events than RI events. 
 
Performance metrics: Model predictions for a test set 
are compared with the known correct class labels 
(RI/NRI) to obtain the number of True Positives (TP), 
True Negatives (TN), False Positives (FP) and False 
Negatives (FN) as shown in the confusion matrix in 
Table 4. TP is the number of thecorrect forecasts of RI 
events, whereas FP is the number of the incorrect 
forecasts. The values in the confusion table areused 
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Fig. 1: An example of a storm that underwent RI. The red Xs 
represent an RI event that lasted for 54 hours.Theplot 
represents the maximum intensities of the storm in 6-h 
time intervals 

 
Table 2: A summary of the RI event shown in Fig. 1 from time t = 

102 to t =186. The table shows the time in 6-hour intervals 
and the actual intensity (VMAX). The numbers in bold 
represent the 24-hour intensity change during the RI event 

Time in hours VMAX ΔVMAX24 Class
102 40 -5 NRI
108 45 5 NRI
114 45 5 NRI
120 50 10 RI
126 50 10 RI
132 55 10 RI
138 65 20 RI
144 80 30 RI 
150 95 45 RI
156 110 55 RI
162 130 65 RI
168 145 65 RI
174 150 55 NRI
180 125 15 NRI
186 130 0 NRI

 
Table 3: Summary of the number of RI and NRI instances and the 

imbalance ratio 
Storms’ Instances 
NRI 7901
RI 865
Imbalance ratio 9.134

 
Table 4: Confusion matrix for a binary RI/NRI classifier 
Predicted/Actual RI NRI Total
RI TP FP P’
NRI FN TN N’
Total P N 

 
to calculate sensitivity, specificity and other 
performance measures. 

Accuracy (ACC) is used to measure the overall 
performance of a binary classifier and is measured as: 

 

ܥܥܣ ൌ
்ା்ே

்ା்ேାிାிே
   (1) 

	
However, strong class imbalance is a problem with 

accuracy, since as always predicting the majority class 
will already results in a very high accuracy. For binary 

classification models which the provide not just a class 
label but probabilities of RI, the Receiver Operating 
Characteristic (ROC) curve can be used. The ROC plots 
sensitivity versus specificity. Different thresholds on the 
predicted RI probability are chosen and then the TPs, 
TNs, FPs and FNs are calculated. Sensitivity is equal to 
the True Positive Rate (TPR), whereas specificity is one 
minus the False Positive Rate (FPR). TPRs and FPRs 
are defined as: 

 

ܴܶܲ	 ൌ 	
்

்	ା	ிே
                             (2)  

 

	ܴܲܨ ൌ
ி

ி	ା	்ே
                (3) 

 
In this study, we use the Area under the Curve 

(AUC), which is a performance measure that computes 
the area under the ROC curve to evaluate the 
performance of each model. In comparison to accuracy, 
AUC is based on rates (TPR and FPR) and therefore is 
not affected by class imbalance. 

Kaplan et al. (2010b), the performance of the RII 
model is measured using the Probability of Detection 
(POD) and false alarm ratio (FAR). POD is equivalent 
to the TPR and is the ratio of the correct forecasts of RI 
occurrences to the actual number of RI occurrences, 
while FAR is the number of incorrect forecasts of RI 
divided by the total number of RI forecasts. The greater 
the value of POD and the lower the value of FAR, the 
better the model performs. FAR is calculated as 

 

	ܴܣܨ ൌ
ி

ி	ା	்
                            (4) 

 
The Brier Skill Score (BSS) is another performance 

measure used by Kaplan et al. (2010a) to evaluate the 
skill of a model relative to climatology. A positive BSS 
is an indication of a skillful model, whereas a negative 
BSS is an indication of a model that is not. The 
climatologically probability of RI is simply defined as 
the unconditional probability of RI estimated by 

 

௧௬ܫܴܲ 	ൌ
ோூ

ோூ	ା	ேோூ
              (5) 

 
The Brier Score (BS) of a prediction is calculated 

as the squared difference of the predicted probability 
from the observed value (0 or 1)(is used) 

 

ܵܤ ൌ 	 ൜
ሺ1	 െ ,ሻଶܫܴܲ 	;ܫܴ݂݅

ሺ0	 െ ,ሻଶܫܴܲ .݁ݏ݅ݓݎ݄݁ݐ
            (6) 

 
The Brier Scores for all observations are summed 

upfor each model, resulting in BSCs for climatological 
probability and BSMfor each model’s forecasts (BSM).  
Finally, the BSS is calculated as: 
 

ܵܵܤ ൌ ቂ1 െ
ௌெ

ௌ
ቃ ൈ 100               (7) 
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There are different ways to test how well a 
predictive model performs on given data. Cross 
validation is a standard evaluation method in data 
mining (Tan et al., 2005). The data is split into k random 
folds. Then, the classifier is tested on each fold while 
being trained on the remaining folds. This guarantees 
that all data is are used at least once for testing. The 
results are then averaged. Usually, observations are 
individually assigned to folds. However, our data is are 
organized by hurricanes and observations in the same 
hurricane are related with each other. To produce useful 
results, we needit is necessary to avoid testing 
observations against models which that were able to 
learn from the future behavior of the same hurricane. 
Therefore, we use a custom assignment strategy 
whichthat assigns complete hurricanes to folds. In our 
experiments, we use 5-fold cross validation, where each 
fold contains approximately the same number of storms. 

The holdout method is another standard evaluation 
method in data mining, where a holdout sample is used 
for testing and the remaining samples are used for 
training (Tan et al., 2005). In our study, the holdout 
method is also used for evaluating the predictions of the 
different RI models using the selected and extracted 
features. The test set includes an independent year (2009 
or 2010), while the training set includes years from 1982 
up-to the test year to have all the previous year’s 
included in the learning process and to simulate a real-
time RI forecast. The test results offor 2009 and 2010 
are combined and the AUC is measured for each RI 
model. This type of evaluation is used to emulatethe a s 
real application case where all past data is are available 
at the beginning of a hurricane season to predict the RIs 
of that season. 
 
Synthetic minority over-sampling technique: SMOTE 
(Torgo, 2010) is a sampling method that over-samples 
the minority class by introducing synthetic observations 
based on k-nearest neighbors and at the same time 
under-samples the majority class based on the user’s 
preference and the number of generated samples. The 
SMOTE instance generated is a random number 
between the selected sample and its neighbor. We use 
SMOTE with SVM, LR, NB and CART to address the 
problem of class imbalance for RI events. 

Table 5 summarizes the results of the holdout 
experiments for the years 2009 and 2010 and shows the 
model performed for each experiment on the original 
data and two settings for SMOTE. SMOTE 1 increases 
the imbalance to about 1 to 4 and SMOTE 2 balances 
the dataset. By looking at tBased on the table, we can 
see that sampling does not improve LR and does not 
have an influence on NB. However, having an identical 
number of RI and NRI instances by decreasing the size 
of the NRI instances and increasing the size of the RI 
instances increases the performance of SVM and CART. 

Table 5: AUC results for basic classifiers with the SMOTE sampling 
technique. The number of RI and NRI instances is shown at 
the top of the table 

Class Original SMOTE 1 SMOTE 2 
RI 530 1060 1060 
NRI 4456 4240 1060 
Classifier Original SMOTE 1 SMOTE 2 
SVM 0.836 0.861 0.870 
LR 0.905 0.902 0.889 
NB 0.838 0.841 0.839 
CART 0.852 0.770 0.861 

 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2: AUC improvement using backward feature se- lection 

algorithm (from right to left) 
 
Feature selection methods: We test the well-known 
feature selection techniques of hill climbing (Greiner, 
1992) and backward and forward feature selection (Tan 
et al., 2005). Twelve experiments using 5-fold cross 
validation were conducted to select the best predictor 
subset out of the 53 available features. We make two 
important changes to the way standard feature selection 
is performed. First, we create folds by assigning 
complete storms rather than individual observations to 
avoid overestimating accuracy by temporal correlations 
of observations in the same storm. Second, instead of 
accuracy, we use the area under the ROC curve (AUC) 
as the selection criterion for feature selection to account 
for the class imbalance in the data set. 

The Backward Feature Selection (BFS) algorithm 
starts with the entire set of features. At each round, all 
models with a single feature removed are tested. The 
feature subset creating the model with the highest AUC 
remains for the next round. The search proceeds until 
model quality worsens and the subset of the round with 
the highest AUC is finally chosen. Figure 2 represents 
the improvement of AUC in each BFS iteration for the 
different classifiers. Note that the selection process starts 
at the right-hand-side of the plot (includes all features) 
and proceeds towards the left. 

To perform forward feature selection (FFS), the 
algorithm starts with the empty feature set. One feature 
is chosen at a time and the feature that produces the 
highest AUC is selected for the next round. In each 
remaining round, the feature which that improves the 
AUC the most is added. Figure 3 represents the 
improvement of in AUC in each FFS iteration. 
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Fig. 3: AUC improvement using forward feature selection 

algorithm 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: AUC improvement using hill climbing feature 

selection algorithm 
 

Hill climbing employs forward and backward 
selection. It starts with a random set of features it, keeps 
adding and removing features (one at a time) and selects 
the subset with the highest AUC. This process is 

iteratively repeated until the AUC stops improving. The 
result of the hill climbing algorithm is shown in Fig. 4. 

The best result achieved by each feature selection 
method is shown in Table 6. As we can see from the 
table, the Logistic Regression (LR) models outperform 
other models in spite of the feature selection algorithm 
used. The p value of the t test of every pair of the feature 
selection models is shown in Table 7.  

The p-value of the t-test of every pair of the feature 
selection models is shown in Table 7. The reported p-
values are adjusted for multiple comparisons using 
Bonferroni correction. The results show that LR models 
are significantly better than the other models (p-values 
<0.05). 

The left half of Table 8 summarizes which the 
feature that is selected (marked by an asterisk) by each 
model and feature selection method. Forward selection 
selects the smallest number of features, which is not 
surprising given the selection strategy. It is interesting to 
evaluate the importance of individual features. The 
purpose of Feature selection has the aim is to include the 
most important features into the model. Therefore, one 
way to measure feature importance is by counting how 
many models and selection methods select each 
particular feature. Ten out of twelve feature selection 
modelsselected the predictor PER18 (persistence over 
18 hours), while seven choose PER, which is also 
chosen by the RII model. PER24 was the least chosen 
predictor amongPER, PER6, PER18 and PER24. POT 
AVG, which is also an RII predictor, was chosen by six 
RI models. Table also shows that the previous changes 
in intensities are chosen frequently by different models. 
Two RII predictors called RHCN AVG and PCRI30 
have only been chosen by three and one models, 
respectively, while SBTRI has never been chosen. 

 
Table 6: Best AUC (5-fold cross validation) of each feature selection method. The standard deviation is shown in parentheses. The best three 

models are highlighted 
Classifier Hill Climbing Backward Forward 
SVM 0.894 (0.013) 0.899 (0.021) 0.826 (0.016) 
LR 0.913 (0.011) 0.912 (0.013) 0.912 (0.012) 
NB 0.903 (0.014) 0.903(0.015) 0.903 (0.013) 
CART 0.864 (0.022) 0.868(0.024) 0.880 (0.027) 

 
Table 7: P-values of every pair of feature selection models adjusted using Bonferroni. The values that are < 0.05 are highlighted. P-values < 

0.004 are rounded to 0 
 
Classifier SVM Hill 

SVM 
BFS 

SVM 
FFS 

LR 
Hill 

LR 
BFS 

LR 
FFS NB Hill 

NB 
BFS 

NB 
FFS 

CART 
Hill    

CART 
BFS 

SVM BFS 0           
SVM FFS 0 0          
LR Hill 1 0.23 0         
LR BFS 1 0.11 0 1        
LR FFS 1 0.78 0 1 0.11       
NB Hill 0.02 1 0 0 0 0      
NB BFS 0.01 1 0 0 0 0 0     
NB FFS 0.01 1 0 0 0 0 1 0.04    
CART Hill 0 0 0 0 0 0 0 0 0   
CART BFS 0 0 0 0 0 0 0 0 0 1  
CART FFS 0 0 0 0 0 0 0 0 0 0.07    1 
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Counting the number of models a feature is chosen 
for ignores the importance of the feature in each model. 
The right half of the table includes the rank of each 
feature based on feature importance reported by SVM, 
LR and CART using each feature selection method. If a 
feature is not chosen, then we use the highest rank of 

44. We exclude the naïve-Bayes model, since because 
feature importance is not available. The average rank is 
reported in the last column. The rank-based importance 
ordering is similar to the ordering by the number 
ofmodels using each feature. However, there are some 
exceptions. While PC20 is chosen by nine models, its

 
Table 8: Features selected by different models and feature selection methods (left half of table) and feature rank (lower is 

better) by model (right half of table). The dot (•) marks predictors used by the RII model 

Predictor 

Forward 
---------------------------------------------- 

Backward 
------------------------------------------------ 

Hill Climbing 
---------------------------------------------------

SVM LR NB CART SVM LR NB CART SVM LR NB CART 
PER18  * * *  * * * * * * * 
PER6 * * *  * * * *  * *  
GSTD  * *  * * * * *  * * 
D200 AVG•  * *  * * * * * * *  
PC20  * * *  * * *  * *  
POT  * *  *  * * * * *  
SDIR AVG  * *   * * *  * * * 
VSHDC   *  *  * * * * * * 
PER• * * *   * *   * *  
TWAT  * *    * * *  * * 
VPER6  *  *  *  * * *  * 
SDIR   *  *  * * *  * * 
EPOS AVG  *    *  * * * * * 
TWAT AVG  *   * *  * * *  * 
POT AVG•   * *  * * *   *  
RHCRI•   *  * * * *   *  
VSHDC AVG * *    *  *    * 
VPER18  *  * * *    *   
TIME  *   * *  *  *   
VPER    *  *  *  *  * 
T250P  *    *  *  *  * 
EPOS   *   * * *    * 
VMAX    * *    *   * 
POT2 AVG  *    *  *  *   
RHLORI•   *  *   * *    
VPER24  *    *  *  *   
VPC20    * *   * *    
YDAYS  *    *  *  *   
LSHDC  *    *  *     
SHDC AVG  *    *  *     
T200 AVG  *    *  *     
PER24    *    *    * 
SPDX     *    *   * 
PSLV     *    *   * 
SHDC      *  *    * 
T200     *    * *   
Z850     *   *    * 
D200     *   * *    
POT2      *  *    * 
RHMD AVG        * *   * 
RHCN AVG•      *  * *    
LON  *      *     
SHGC   *        *  
T250P AVG    *    *     
LAT     *   *     
ADAY        * *    
RHMD     *       * 
Z850 AVG     *    *    
LSHDC AVG      *  *     
RHCN        *     
SHGC AVG        *     
PCRI30•        *     
SBTRI•             
# of  3 23 16 10 21 28 14 43 21 19 15 22 
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Table 8: Continue 

Predictor # Selected 

Forward Rank 
--------------------------------- 

Backward Rank 
--------------------------------- 

Hill Climbing Rank 
-------------------------------------- 

Average Rank SVM NB CART SVM NB CART SVM NB CART 
PER18 10 44 2 10 44 2 43 20 1 22 20.89 
PER6 9 2 20 44 20 22 42 21 13 44 25.33 
GSTD 9 44 8 44 15 14 24 17 44 11 24.56 
D200 AVG• 9 44 18 44 16 24 36 18 14 44 28.67 
PC20 8 44 23 4 44 27 35 44 19 44 31.56 
POT 8 44 22 44 3 44 28 9 18 44 28.44 
SDIR AVG 8 44 17 44 44 21 33 44 12 7 29.56 
VSHDC 8 44 44 44 17 44 20 19 17 14 29.22 
PER• 7 3 15 44 44 5 44 44 4 44 27.44 
TWAT 7 44 1 44 44 44 3 5 44 2 25.67 
VPER6 7 44 12 8 44 15 41 44 10 21 26.56 
SDIR 7 44 44 44 6 44 19 7 44 3 28.33 
EPOS AVG 7 44 19 44 44 19 26 15 15 13 26.56 
TWAT AVG 7 44 7 44 8 13 31 1 8 5 17.89 
POT AVG• 6 44 44 5 44 28 32 44 44 44 36.56 
RHCRI• 6 44 44 44 7 6 16 44 44 44 32.56 
VSHDC AVG 5 1 16 44 44 20 15 44 44 15 27.00 
VPER18 5 44 10 6 21 10 44 44 7 44 25.56 
TIME 5 44 6 44 1 4 6 44 6 44 22.11 
VPER 5 44 44 9 44 3 40 44 2 20 27.78 
T250P 5 44 4 44 44 1 2 44 3 1 20.78 
EPOS 5 44 44 44 44 12 9 44 44 9 32.67 
VMAX 4 44 44 2 19 44 44 4 44 8 28.11 
POT2 AVG 4 44 21 44 44 23 27 44 16 44 34.11 
RHLOR 4 44 44 44 9 44 8 11 44 44 32.44 
VPER24 4 44 9 44 44 16 21 44 9 44 30.56 
VPC20 4 44 44 3 18 44 23 10 44 44 30.44 
YDAYS 4 44 5 44 44 9 12 44 5 44 27.89 
LSHDC 3 44 13 44 44 25 34 44 44 44 37.33 
SHDC AVG 3 44 14 44 44 11 14 44 44 44 33.67 
T200 AVG 3 44 11 44 44 17 29 44 44 44 35.67 
PER24 3 44 44 7 44 44 39 44 44 19 36.56 
SPDX 3 44 44 44 10 44 44 3 44 17 32.67 
PSLV 3 44 44 44 14 44 44 16 44 10 33.78 
SHDC 3 44 44 44 44 18 7 44 44 18 34.11 
T200 3 44 44 44 4 44 44 13 11 44 32.44 
Z850 3 44 44 44 12 44 5 44 44 4 31.67 
D200 3 44 44 44 2 44 25 8 44 44 33.22 
POT2 3 44 44 44 44 7 17 44 44 16 33.78 
RHMD AVG 3 44 44 44 44 44 11 12 44 6 32.56 
RHCN AVG• 3 44 44 44 44 8 4 6 44 44 31.33 
LON 2 44 3 44 44 44 18 44 44 44 36.56 
SHGC 2 44 44 44 44 44 44 44 44 44 44 
T250P AVG 2 44 44 1 44 44 1 44 44 44 34.44 
LAT 2 44 44 44 11 44 38 44 44 44 39.67 
ADAY 2 44 44 44 44 44 13 2 44 44 35.89 
RHMD 2 44 44 44 5 44 44 44 44 12 36.11 
Z850 AVG 2 44 44 44 13 44 44 14 44 44 37.22 
LSHDC AVG 2 44 44 44 44 26 37 44 44 44 41.22 
RHCN 1 44 44 44 44 44 10 44 44 44 40.22 
SHGC AVG 1 44 44 44 44 44 22 44 44 44 41.56 
PCRI30• 1 44 44 44 44 44 30 44 44 44 42 
SBTRI• 0 44 44 44 44 44 44 44 44 44 44.00 
# of  

 
average rank is higher than the other features, which 
even were chosen less often. On the other hand, TWAT 
AVG has the best average rank, but was only chosen by 
7 models. Some of these discrepancies are due to the 
fact that variables might contain redundant information 
and different models choose only one of the redundant 
variables. 
 
Feature extraction methods: Principle Components 
Analysis (PCA) (Dunteman, 1989) converts a dataset 

into a new set of un-correlated features called Principle 
Components (PCs). Depending on the rank of the 
original matrix, the number of PCs is less or equal to the 
number of the original features. Principal components 
are a linear combination of original features calculated 
using the eigenvectors of the covariance matrix. The 
principle components are ordered such that the first 
principle component explains the highest degree of 
variability in the data and the last principle component 
explains the least amount. PCA can be used for
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Table 9: Best model AUC (and standard deviation for cross validation) and the selected number of selected principal components. Highlighted 
are the three best models 

Classifier AUC #PCs AUC(normalized) #PCs 
SVM 0.865 (0.017) 25 0.875(0.030) 23 
LR 0.901(0.018) 38 0.891(0.022) 25 
NB 0.832(0.021) 5 0.866(0.017) 8 
CART 0.834(0.028) 6 0.842(0.043) 27 

 
Table 10: Best model AUC (and standard deviation for cross validation) and the selected number of selected principal components. Highlighted 

are the three best models 
Classifier Nor. SVM Nor. LR Nor. NB Nor. CART Non-nor. SVM Non-nor. LR Non-nor. NB 
Nor. LR 0       
Nor. NB 0 0      
Nor. CART 0 0 0     
Non-nor. SVM 1 0 0 0    
Non-nor. LR 0 0 0 0 0.11   
Non-nor. NB 0 0 0 0 0 0  
Non-nor. CART 0 0 0 1 0 0 0.02 

 
Table 11: P-values of every pair of the PCA models adjusted using the Bonferroni correction. Significant differences (p-values<0.05) are 

highlighted 
Classifier Nor. SVM Nor. LR Nor. NB Nor. CART Non-nor. SVM Non-nor. LR Non-nor. NB
Nor. LR 0       
Nor. NB 0 0      
Nor. CART 0 0 0     
Non-nor. SVM 1 0 0 0    
Non-nor. LR 0 0 0 0 0.11   
Non-nor. NB 0 0 0 0 0 0  
Non-nor. CART 0 0 0 1 0 0 0.02 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: AUC by number of used principal components 
 
dimensionality reduction by only using a certain number 
of the top PCs. 

We ran LR, NB, SVM and CART using the 
extracted PCs. To decide ondetermine the number of 
PCs to use, we apply k-fold cross validation while 
increasing the set of PCs. The set of PCs that produces 
the highest AUC is chosen. For our first experiment, we 
normalized the values of the features to z-scores before 
extracting the PCs (Fig. 6). For the second experiment, 
we extracted the PCs without normalization (Fig. 5). 
The best number of PCs for each model is presented in 
Table 9 and 10. It shows that the normalization has 
improvesd the performance forall but logistic regression 
(LR). It also shows that the number of selected PCs 
varies significantly from one model to another and that, 
similar to the feature selection experiments, LR 
outperforms the other classifiers. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6: AUC by number of used principal components 

(normalized features) 
 

The p-value of every pair of the feature selection 
models is shown in Table 11. The results show almost 
all differences are significant, indicating that normalized 
LR is better than all other models with the exception of 
non-normalized LR. 
 

RESULTS AND DISCUSSION 
 
For model comparison, we use observations from 

2009 and 2010 for testingto test the performance of RI 
models after applying feature selection and extraction on 
data from 1982 to 2008. We will also evaluate different 
ensemble learning techniques whichthat combine the 
results of the base classifiers investigatedso thus far. 
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Table 12: AUC scores of   SVM, LR, N B, and CAR Tusing different feature subsets (by selection method) for the 2009 and 2010 hurricane 
seasons. The RII model achieves a value of 0.743 

Classifier Hill C. BFS FFS Nor. PCs Non-nor. PCs 
SVM 0.801 0.812 0.854 0.845 0.847 
LR 0.896 0.902 0.897 0.900 0.895 
NB 0.868 0.864 0.868 0.843 0.770 
CART 0.820 0.850 0.815 0.780 0.852 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Comparison of POD and FAR for different models 
 
Test results for classification models: We evaluate 
SVM, LR, NB and CART to predict RI events in the 
Atlantic Basin using the subset of predictors produced 
by each feature selection and extraction method 
discussed above. The years 2009 and 2010 are used for 
testing and the years 1982 to 2008 are used for training. 
This testing method is used sincebecause it emulates the 
real application case where only data up to the current 
year isare available for training. Table 12 summarizes 
the test results for the 2008 and 2009 hurricane seasons. 
The table shows that LR reaches high AUC values 
compared to the other models despite of the selected 
subset used in building the model. The POD and FAR 
results of the LR models are shown in Fig. 7. The results 
closer to the top left corner with high POT and low FAR 
are better. It They also show that all models improve 
over the RI model with a 30-knots threshold. 
 
Test results for ensemble learning: A method to 
incorporate the results of multiple models is Ensemble 
Learning (EL) (Maimon and Rokach, 2005). EL is a 
technique that combines the prediction of different 
models aiming to produce a more stable and often even 
better performing aggregate model. The idea is to build 
a two-stage model. In the first stage, each classifier, 
which is called a weak learner, produces a decision that 
is more efficient than a random guess. In the second 
stage, the, results are aggregated to produce a single 
decision. Maimon and Rokach (2005) mentioned that 
there is amentionedthe disagreement about the 
rightcorrect number of classifiers used for ensemble 
learning. They pointed outnoted a paper that states that 
ten classifiers are enough to enhance the results of an 

ensemble and another paper that proves that AdaBoost 
in particular requires as large manyas 25 classifiers to 
improve its performance. We used a value between 
these of 20 classifiers for our customized ensemble 
averaging and stacking models. 

There existare several EL aggregation techniques. 
Here we examine the following techniques: averaging, 
weighted averaging, Bayesian Model Averaging 
(BMA), bagging, Random Forest (RF), boosting and 
stacking. The first stage of ensemble learning for 
averaging, weighted averaging and BMA is identical, 
where the different classifiers are run for the years 2009 
and 2010. The second stage of the ensemble learning 
combines the probabilities produced by the classifiers 
built in the first stage as follows: 

 
 Averaging (Maimon and Rokach, 2005; Galar et 

al., 2012) assumes that all models carry the same 
importance and simply averages the RI 
probabilities produced by the individual classifiers 
as: 

 

ܲ௩ ൌ
ଵାଶାା


                            (8) 

 
where, Pi, with i = 1, 2, ... , n, is the probability of RI of 
model i and n is the number of classifiers. 
 
 Weighted averaging (Maimon and Rokach, 2005) 

is similar to simple ensemble averaging except that 
each classifier has a relative weight wi associated 
with it. The weight represents the importance of the 
classifier, so a classifier with a higher weight has 
more influence on the decision of the ensemble 
averaging. It combines the models as: 

 

௪ܲ௧ௗ௩ ൌ
௪భൈଵା௪మൈଶାା௪ൈ


          (9) 

 
where, wi represents the weight and ∑ ݓ ൌ


ୀଵ

1.Rescaled accuracy measures of the models are usually 
used as weights. We used the AUC measure instead of 
accuracy since because it is not influenced by class 
imbalance. 

The AUC ranges between 0.77 and 0.90, which 
gives all models nearly equally high weights. To 
increase the influence of the highly performing models 
and decrease the less performing ones, we scale the 
weights between zero and one before averaging the 
models. 
 

݅ݓ ൌ
ିሺሻ

௫ሺሻିሺሻ
                            (10) 
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where, AUC = (AUC1, AUC1, ... , AUCn) and wi is the 
ith scaled weight. 
 
 Like the weighted averaging technique, BMA 

(Maimon and Rokach, 2005) applies weights for 
each model. The used weight used is the posterior 
probability of the model given the training data 
instead of the AUC values and is calculated using 
the Bayes’ theorem formula: 

 

݅ݓ ൌ ܲሺ݅ܯ|ܺሻ ൌ
ሺ|ெሻሺெሻ

ሺሻ
                  (11) 

 
where, Mirepresents model i and X represents the 
training data. P(X|Mi) is the conditional probability of 
the training data given the model, P(Mi) is the prior 
probability and P(X) is new evidence that has a constant 
value. 

Bagging and random forest build a set of decision 
trees to predict RI in the first stage of the ensemble 
learning method. Bagging (Maimon and Rokach, 2005) 
draws m random subsets with replacement (bootstrap 
samples) from the training set. Each subset is of size n, 
which is equal to the size of the original dataset and is 
used to train m different classifiers. RF (Breiman, 2001) 
creates m random subsets that have the same probability 
distributions of size n. The major difference between RF 
and bagging is that the RF algorithm randomly draws a 
different set of features for each decision tree, creating 
more variety between the trees.In the second stage, the 
trees are aggregated by simply averaging the 
probabilities of the RI obtained from each tree. 

Adaptive boosting (AdaBoost) (Maimon and 
Rokach, 2005) starts with a weak learner and then 
improves in subsequent training rounds, the 
performance of the model in subsequent training rounds 
by iteratively oversampling misclassified training 
instances. This procedure creates a series of models 
where each model concentrates more and more on hard-
to-classify instances. In our experiment, we performed 
30 iterations and therefore built 30 models. 

The first stage of stacking builds a set of weak 
learners. However, in contrast to other EL methods, a 
classification model is used for aggregation. The basic 
idea is that this model will learn the best waymethod of 
aggregation. To perform the first stage of our stacking 
experiment, we divided the training set from 1982 to 
2008 into 5-folds and in each round, one fold was used 
for testing and the remaining folds were used for 
training. The probabilities of RI for the five folds are 
predicted by the used base classifiers SVM, LR, NB, 
CART, RF, bagging and adaBoost. These predictions 
represent the training set that is used in the second stage 
to learn the aggregation model. SVM, LR, NB and 
CART were used as aggregation models and the 
performance was evaluated using the holdout samples of 
the years 2009 and 2010. 

Table 13: AUC measures for performing ensemble 
learning methods. Highlighted are the best 
models are highlighted 

Ensemble Learning Method AUC
Averaging 0.879
Weighted Average (WA) 0.88
Scaled WA 0.885
BMS WA 0.89
Random Forest 0.88
Bagging 0.856 
AdaBoost 0.866
Stacking SVM 0.762
Stacking LR 0.879
Stacking CART 0.862
Stacking CART 0.857

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: POD and FAR for the best performing ensemble 
learning techniques 

 
The results of the different ensemble techniques are 

shown in Table 13. The results show that simple 
averaging, weighted averaging, scaled weighted 
averaging, BMS weighted averaging and random forest 
are the best performing models. Figure 8 is a 
representation of the results of POD and FAR for the 
best performing ensemble learning methods along with 
the RII model. 
 
Weighted intensity forecast: An important application 
of using of RI predictions is to improvethe intensity 
forecasts. An effort to improve the intensity prediction 
of a hurricane was done undertaken by Kaplan et al. 
(2015) by incorporating the change in intensity forecast 
of the 24-h RII model of 25, 30, 35 and 40 knot 
thresholds with the variable intensity five-member 
consensus (IVCN) forest model. The combined model 
of IVCN and RII is called RAPID. IVCN (National 
Hurricane Center, 2009) is an ensemble of five different 
official NHC models that averages their available 
forecasts. At least two forecasts have to be present for 
the model to work. The five models are Decay-SHIPS 
(DSHP), Logistic Growth Equation Model (LGEM), 
interpolated NWS/Geophysical Fluid Dynamics 
Laboratory (GHMI), interpolated NWS/Hurricane 
Weather Research and Forecasting Model (HWFI) and 
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the navy version of the interpolated NWS/Geophysical 
Fluid Dynamics Laboratory (GFNI). If RII models 
predict an RI probability of greater than 40%, then the 
IVCN intensity prediction is increased by averaging it 
with the largest threshold value of the RII models. This 
method showed a slight improvement to the change in 
intensity forecast of the 24-h rapidly intensifying events 
(Kaplan et al., 2015). 

For simplicity, we use here instead of an ensemble, 
only we use a Multiple Linear regression (LM) model 
using all the…..For simplicity, instead of an ensemble, 
we use a multiple linear regression (LM) model using all 
the features introduced above. This model is very 
similar to the operational intensity model SHIPS. First, 
weusea method very similar to RAPID, but we average 
the highest threshold among RI30, RI35 and RI40 of RII  
that exceeds 40% with the linear regression (LM) model 
and call it LM RII. 

Next, we present a new way of how to use using the 
probabilities of RI learned from the weighted average. 
The EL model (with SVM, LR, NB, CART, RF, 
adaBoost and bagging) can be used to improve intensity 
forecasts. We first learn two LM intensity forecast 
models. One only usesd NRI observations from the 
training set and the other only uses the RI observations. 
This method produces the two following models: LMRI 
and LMNRI. For each test instance, we predict the 
probability of RI using the EL model and the increase in 
intensity∆ܸܺܣܯusing LMRI and LMNRI. We combine 
LMRI and LMNRI predictions using the probabilities of 
RI and α that range from 0 to 10. α is used to increase or 
decrease the effect of the intensity models. SoThus, if 
we want to give the LMRI model highergreater 
influence, we decrease α. The prediction of ∆VMAX is 
defined as follows: 

 
ܺܣܯܸ∆ ൌ ோܲூ

ఈ ൈ  ெோூܺܣܯܸ∆
ሺ1 െ ோܲூ

ఈሻ ൈ  ெேோூ(12)ܺܣܯܸ∆
 

Figure 9 presents the predicted changes in 
intensities Mean Absolute Error (MAE) of the 
intensities. The MAE on the predictions’ RI 
observations is plotted against MAE on the NRI 
observations. This method illustrates how the model 
improves the intensity forecast on RI observations and 
how it affects the forecast of NRI observations. The 
square point in each figure represents the LM model 
learned on all (RI and NRI) instances. It has a high RI 
observation mean absolute error compared to the NRI 
observations. This results from the fact that NRI cases 
are overrepresented in the dataset. The circle point in 
Fig. 9 represents the LM_RII model. It has lower error 
when forecasting RI instances compared to pure LM but 
slightly higher error when forecasting NRI instances. 
The points connected by the line represent our proposed 
model (LM_alpha_RI). Each point on the line represents 
a different α value. It shows improvement over the other 
models with lower RI and NRI forecast error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Mean absolute error of RI cases vs. NRI cases 

intensity forecast 
 

CONCLUSION 
 

The investigation in this study indicates that 
machine learning methods have the potential to 
significantly improve rapid intensification event 
prediction. It is interesting to note that each of the 
feature selection methods (forward, backward and hill 
climbing) selected very different subsets of features, but 
they all selected at least one of the previous changes in 
intensity predictors. However, not all predictors deemed 
important by the official RII model were selected by the 
models. 

The simple Ensemble Learning (EL) technique 
based on the Bayesian Model Averaging (BMA) showed 
a relatively high performance with an AUC of 0.89, 
which is very similar to the performance of the logistic 
regression model alone. Balancing the data using 
SMOTE had positive effects for SVM and CART but 
did not affect the performance of LR and NB. 

The results of this investigation show that using 
machine learning methods have the potential to improve 
the status quo for predicting rapid intensification events. 
In addition, we introduced a new method to improve 
storm intensity prediction by combining several 
intensity models with a rapid intensification model. An 
advantage of this method over RAPID is that it can learn 
to which degree the degree to which intensity will 
increase in RI instances without having multiple 
thresholds for a certain time interval. As part of this 
study, we are releasing the useddata set used in this 
study with the hope to of encouragingspark more 
research in this important application area. 
 

REFERENCES 
 

Breiman, L., 2001. Random forests. Mach. Learn., 
45(1): 5-32. 

Breiman, L., J. Friedman, C.J. Stone and R.A. Olshen, 
1984. Classification and Regression Trees. 
Wadsworth, Belmont, Calif. 

R
I 

ca
se

s 
m

ea
n 

ab
so

lu
te

 e
rr

or
 (

kt
)

NRI cases mean absolute error (kt)

24

22

20

18

16

14

12

10

10 15 50

LM
LM_RII
LM_alpha_RI



 
 

Res. J. Appl. Sci. Eng. Technol., 13(8): 638-651, 2016 
 

651 

Cortes, C. and V. Vapnik, 1995. Support-vector 
networks. Mach. Learn., 20(3): 273-297. 

DeMaria, M., 2013. Ships predictor file. RAMMB 
Technical Report, Colorado State University, 
Regional and Mesoscale Meteorology Branch 
(RAMMB) of NOAA/NESDIS. 2013. Retrieved 
form: 
http://rammb.cira.colostate.edu/research/tropical_cy
clones/ships/docs/SHIPS_predictor_file_2013.doc. 

DeMaria, M., M. Mainelli, L.K. Shay, J.A. Knaff and J. 
Kaplan, 2005. Further improvements to the 
statistical hurricane intensity prediction scheme 
(SHIPS). Weather Forecast., 20(4): 531-543. 

Dunteman, G.H., 1989. Principal Components Analysis. 
Sage University papers Series, Newbury Park, 
Calif. 

Galar, M., A. Fernandez, E. Barrenechea, H. Bustince 
and F. Herrera, 2012. A review on ensembles for 
the class imbalance problem: Bagging-, boosting-, 
and hybrid-based approaches. IEEE T. Syst. Man 
Cy. C, 42(4): 463-484. 

Greiner, R., 1992. Probabilistic hill-climbing: Theory 
and applications. Proceeding of the 9th Biennial 
Conference of the Canadian Society for 
Computational Studies of Intelligence (CSCSI-92), 
pp: 60. 

Kaplan, J. and M. DeMaria, 1995. A simple empirical 
model for predicting the decay of tropical cyclone 
winds after landfall. J. Appl. Meteorol., 34(11): 
2499-2512. 

Kaplan, J. and M. DeMaria, 2003. Large-scale 
characteristics of rapidly intensifying tropical 
cyclones in the north Atlantic basin. Weather 
Forecast., 18(6): 1093-1108. 

Kaplan, J., J.J. Cione, M. DeMaria, J. Knaff, J. Dunion 
et al., 2010a. 9C.4 Enhancements to the operational 
ships rapid intensification index. Proceeding of the 
29th Conference on Hurricanes and Tropical 
Meteorology, Rickenbacker Causeway. 

Kaplan, J., M. DeMaria and J.A. Knaff, 2010b. A 
revised tropical cyclone rapid intensification index 
for the Atlantic and eastern north pacific basins. 
Weather Forecast., 25(1): 220-241. 

Kaplan, J., C.M. Rozoff, M. DeMaria, C.R. Sampson, 
J.P. Kossin, C.S. Velden, J.J. Cione, J.P. Dunion, 
J.A. Knaff, J.A. Zhang et al., 2015. Evaluating 
environmental impacts on tropical cyclone rapid 
intensification predictability utilizing statistical 
models. Weather Forecast., 30(5): 1374-1396. 

Kieper, M.E. and H. Jiang, 2012. Predicting tropical 
cyclone rapid intensification using the 37 GHz ring 
pattern identified from passive microwave 
measurements. Geophys. Res. Lett., 39(13). 

Lippsett, L., 2011. Gliders tracked potential for oil to 
reach the east coast. OCEANUS Mag., 48(3). 

Maimon, O. and L. Rokach, 2005. Data Mining and 
Knowledge Discovery Handbook. Springer-Verlag, 
New York, Inc., Secaucus, NJ, USA. 

Meisner, B.N., 2006. An overview of NHC prediction 
model. NOAA Technical Attachment SR/SSD 95-
36. 

National Hurricane Center, 2009. NHC Track and 
Intensity Models. pp: 18. Retrieved form: 
http://www.nhc.noaa.gov/modelsummary.shtml. 
(Accessed on: September 17, 2013) 

Rhome, J.R., 2007. Technical summary of the national 
hurricane center track and intensity models. 
Technical Report, National Hurricane Center, 2007. 
Retrieved form: 
http://www.nhc.noaa.gov/pdf/model_summary_200
70912.pdf. 

Rozoff, C.M. and J.P. Kossin, 2011. New probabilistic 
forecast models for the prediction of tropical 
cyclone rapid intensification. Weather Forecast., 
26(5): 677-689. 

Russell, S. and P. Norvig, 1995. Artificial Intelligence: 
A Modern Approach. Prentice-Hall, Egnlewood 
Cliffs, NJ. 

Schott, T., C. Landsea, G. Hafele, J. Lorens, A. Taylor, 
H. Thurm, B. Ward, M. Willis and W. Zaleski, 
2012. The Saffir-Simpson Hurricane Wind Scale. 
National Weather Services, National Hurricane 
Centre, National Oceanic and Atmospheric 
Administration (NOAA) Factsheet. Retrieved form: 
http://www.nhc.noaa.gov/pdf/sshws.pdf. 

Shay, L.K., G.J. Goni and P.G. Black, 2000. Effects of a 
warm oceanic feature on hurricane opal. Mon. 
Weather Rev., 128(5): 1366-1383. 

Tan, P.N., M. Steinbach and V. Kumar, 2005. 
Introduction to Data Mining. 1st Edn., Addison-
Wesley Longman Publishing Co., Inc., Boston, 
MA, USA. 

Torgo, L., 2010. Data Mining with R: Learning with 
case studies. Chapman and Hall/CRC, Taylor & 
Francis Group, Boca Raton, London, New York. 
Retrieved form: 
http://www.dainf.ct.utfpr.edu.br/~kaestner/Minerac
ao/RDataMining/Data%20Mining%20with%20R-
Kumar.pdf. 

Walker, S.H. and D.B. Duncan, 1967. Estimation of the 
probability of an event as a function of several 
independent variables. Biometrika, 54(1-2): 167-
179. 

Wang, B. and X. Zhou, 2008. Climate variation and 
prediction of rapid intensification in tropical 
cyclones in the western north pacific. Meteorol. 
Atmos. Phys., 99(1): 1-16. 

 
 


