
Research Journal of Applied Sciences, Engineering and Technology 13(12): 885-894, 2016

DOI:10.19026/rjaset.13.3761

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2016 Maxwell Scientific Publication Corp.

Submitted: September 23, 2016 Accepted: November 15, 2016 Published: December 15, 2016

Corresponding Author: Safa S. Abdul-Jabbar, Computer Science Department, College of Science, Baghdad University,

Baghdad, Iraq
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

885

Research Article

Building Words Dictionary List Using Symbol Enumeration and Hashing Methodology

Safa S. Abdul-Jabbar and Dr. Loay E. George

Computer Science Department, College of Science, Baghdad University, Baghdad, Iraq

Abstract: This study aims to introduce a new method to reduce the time needed for text retrieval systems by

building word dictionary takes the advantage of enumerating each string, multi hashing methodology stop-words

extraction and word stemming; dictionary-based text mining has an important role in understanding and analyzing

large text datasets that used in any searching, matching and information retrieval systems. All of these systems

mainly imply dealing with strings (i.e., undefined number of alphabet characters of each word and an undefined

number of words in a sentence) and text processing operation. This has a significant effect on the execution time for

the systems due to the overhead hidden-operations (like, symbols matching calculations and character conversion

operations). Some of the attained experimental results are provided for these operations with a comparison between

the proposed method results and those belong to the traditional method; which directly deals with strings only.

Results comparisons are provided for each step to understand the advantage of the proposed approach. The results

demonstrate the effectiveness of the proposed approach that reduces the execution time for each step, which in turn

leads to improve the overall execution time for the whole system while maintaining the accuracy of the operations.

Keywords: And stop-words, data editors, hashing methodology, string enumeration, string hashing, stemming,

string matching operation, word dictionary

INTRODUCTION

Dictionary based text mining has a significant role

in enabling practitioners in understanding and analyzing
large text datasets. In addition, the dictionary
commonly used in information extraction, entity
annotation, classification and link analysis tasks. Users
vary among experts and ordinary ones and the linguistic
rule-sets and pre-packaged dictionary-based
components are preferred to be utilized in real world
applications. These components are used in text
processing operations for making the text easily
accessible, simplify browsing and facilitate the process
of understanding corpora (Godboles et al., 2010). There
are many text mining tools that can be used for building
a text mining dictionary (e.g., lexical analyzer, stop-
words filtering, hash-indexing system, etc.). Many
studies have investigated the effect of these tools in the
text pre-processing systems.

Yao and Ze-Wen (2011) have used three different
filter algorithms that designed and implemented to stop-
word filtering. Then, they compared the efficiency of
these algorithms according to the experiments that have
done. The results indicated that the hash-filter method
was the fastest method (Yao and Ze-Wen, 2011). Ayral
and Yavuz (2011) have proposed an automated method

that used to identify stop words in order to improve
classification of natural language content. Popova et al.
(2013) have proposed methods to automatic stop list
feeding due to the scope of interdisciplinary methods
applied. This method allows for improving the quality
of key phrase extraction on the stage of the candidate
key phrase building (Popova et al., 2013).

Willett (2006) had improved the original Porter
stemming algorithm. Also, he provided an overview of
its subsequent use (Willett, 2006). Joshi et al. (2016)
proposed a modified version of the Porter stemmer to
overcome some of the limitations of the old algorithm
version and provide some features that made it more
useful in information retrieval (Joshi et al., 2016).

Stein and Potthast (2007) have presented two
developed hashes-based indexing approaches and
compared the performance improvements in real-world
retrieval systems (Stein and Potthast, 2007). Also,
Singh et al. (2009) have used the Modified Word
Searching Algorithm (MWSA) that matches the hash
value of the same length for text T and pattern P. The
experimental results showed the proposed MWSA
algorithm is much faster than the WSA algorithm
(Singh et al., 2009).

Dictionaries not only store the important words for

the datasets, but also rules which are composed of some

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

886

Fig. 1: Block diagram for overall system design

important words. Sakurai et al. (2001) have proposed a
method that automatically builds the rules and their
classes from the original text data by using an inductive
learning method. The result showed that the fuzzy
inductive learning algorithm is appropriate for the
acquisition of the rules. In addition, this method
acquires rules which provide higher accuracy through
numerical experiments based on 10-fold cross
validation and using daily business reports in retailing
(Sakurai et al., 2001). The dynamic dictionary can be
used for both Compression and data retrieval operations
from large dataset. So, Bhadade and Trivedi (2011)
proposed a pre-compression technique that can be
applied to the original text files. The output of this
technique could be utilized in the available standard
compression techniques (e.g., BZIP2 and arithmetic
coding) because the proposed method provides better
compression ratio. The suggested algorithm used the
dynamic dictionary that must be created at run-time.
Also, it is suitable for retrieving the phrases from the
compressed file (Bhadade and Trivedi, 2011).

The objective of this study is twofold: firstly, to

build a dictionary to be utilized for analyzing a text

with text mining mechanisms. This dictionary can be

used to extract expressive concepts from documents in

order to provide fast retrieval systems; secondly to

speed up the text-mining techniques and reduce the

memory and CPU consumption. Hence, a new method

was proposed to handle the string operations as a

sequence of numbers instead of a sequence of

characters to reduce the hidden cost of the string

operations.

MATERIALS AND METHODS

The overall design of the proposed system is

shown in Fig. 1; it consists of three stages:

• Lexical analysis

• Building main dictionary

• Indexing database system

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

887

Lexical Analysis stage is used to extract the useful

data using enumeration operation for all input

documents. While, the purpose of Building Main

Dictionary is to extract a set of words, which can be

used as attributes, from the original files to decrease the

execution time of retrieval systems as a result of

reducing the search space size. Finally, the document

indexing stage was used to determine, automatically,

the most and least significant words exist in any dataset

to help the system in partitioning the search space to

multiple nodes; this will be cause further reduce in the

time that needs for doing any retrieval process.

Lexical analysis stage: Preprocessing methods play

very substantial role in text mining system and its

applications (Vijayarani et al., 2015). The first step in

Lexical Analysis stage is the enumeration operation.

This operation means changing the way in which the

underlying data is stored for each variable. Whereas,

the computer stores the string in the form of byte for

each character (i.e., the number of bytes that used to

represent a string is equivalent to the length of that

string). While numbers are stored in a fixed length of

bytes (such as 4 bytes for integer and 8 bytes for long),

this will affect the storage required to store all

documents in each dataset (Clapson, 2014).

Therefore, it is necessary to understand how each

data type is stored in order to keep accuracy for string

converting operations (Clapson, 2014).

To illustrate how to convert any string to numbers,

there are two methods to perform this operation: The

first one is simply using the ASCII value of each

character, while the second method uses a coding

system (for handling numbers, punctuation, all alphabet

characters and other non-printable characters). This

system involves performing a mapping operation for

each character to a unique number which can be

considered as an ID that uses to identify each character

in the range [0-26] for 26 alphabet characters plus one

number for non-printable characters and spaces.

The main goal for this operation is to reduce the

hidden cost of the internal operations (calculations and

mapping operations) that consuming both CPU time

and memory space. It is important to mention that this

step will be used in the next stages of the proposed

system for speeding up the string operations.

The input data files are collected from various

resources which may contain unwanted symbols. The

second step in the lexical analysis stage consists of two

operations: data cleaning and file filtering. The first

operation used to extract words from the input character

stream (i.e., Removing: “,”, “.”, “?”, “&”, etc.) with

special processing for some cases such as “we're” �

“we are” and “B.S.” � “BS” and soon. The resulted

files from this operation may or may not contained at a

that can be used in the next stages. Hence, file filtering

operation must be done on all resulted files; exclusively

those contain data with collective meaning for using

their content in the next stages while rejecting other

files.

Algorithm (1): Lexical Analysis

Objectives: Extract useful data from the input stream

as a sequence of tokens (words).

Input: Text files.

Output: Text files with only words.

Step1: Read Text files \\ For each Text file Read all

the content of this file as an array of bytes.

Step2: Filtering undesired symbols.\\ For each word

check each letter for handling some situations

such as (we ’re → we are, don’t → do not, bi-

cycle → bicycle, B.S. → BS and up/down →

up down) and collect the words in buffer to

speed up the process of word extracting.

Step 3: Copying to a buffer. \\Copy each letter to

buffer (temporary array) which has a numeric

name for each file (i.e., The first file → 0, the

second file→ 1… and so on) to speed up the

process of word extracting.

Step 4: Buffers Filtering.\\Passes only non-empty

buffers.

Step 5: Print in files. \\Print the resulted buffers in

files that have corresponding names of the

buffers.

End;

The result of this stage is a group of files with

different sizes because each contains a variable number

of words with variable length for each word.

Building main dictionary stage: This stage implies the

following two steps:

1. Reduce the search space step:

• Stop-word extraction operation.

• Stemming operation.

2. Statistical analysis step (2-level hashing index

system).

The first step consists of two operations: The first

operation used to extract all stop-words that appeared in

the dataset because:

• The retrieval operations consume time that depends

on the search space size.

• These words appeared in all documents. This will

cause retrieval nomination of all documents.

Hence, the system accuracy will be reduced either.

• These words are not discriminating information

that the user need.

This operation was implemented using the pre-

complied stop-words lists such as Van Rijsbergen

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

888

(1979) and Fox (1992) list (Van Rijsbergen, 1979). In
this study the Fox (1992) list was used for extracting
and computing the stop-words frequency and to give
each one of these words weight values according to two
bases:

• The number of documents contains the stop-word

• The word frequency in all documents.

The reason for using the pre-complied stop-word
list beside to the use of automatic stop-word detection
system in the next stage is many words such as
(preposition, conjunction, interjection, etc.) do not have
any relevant meaning even it has less or high
frequency; it also spread in a large number of
documents. Hence, it is better to remove these words at
this stage to satisfy the best system performance.

Algorithm (2): Stop words Removal Algorithm
Objectives: Reduce the search space that leads to
reduce the required time for overall execution using the
new proposed method.
Input: Arbitrary number of text files.
Output: The stop-word file plus the same number of
input text files with reduced-size.

Step 1: Determine stop-words list (Fox, 1992).

//Define the pre-complied a list of stop-words
(i.e., An array of bytes of two dimensions) that
defined by Fox (1992).

Step 2: Read text files as blocks of bytes. //For each
Text file read its content as blocks of bytes
with size about 4 MB for each block till
reaching the end of file.

D 0 //the initial value to the array size that contain
ordinary words
Set Size 4000000 //the maximum size of
reading block

A()← Reading block (Size)/// Array of bytes
Step 3: Check the taking block //To ensure that the last

word in the taking block was completed
 Set kksize
 While A(KK) ≠ 32 Do
 kk=kk-1

End
Step 4: Count Length for each word. //Determine the

start (s) and the end (e) of each word (array of
bytes) for counting its length (g), to compare it
with the largest word length in the pre-
compiled list for excluding words that across
the largest length (i.e., 11) to reduce the
number of comparisons that required

 if g< 11 then
 Call Function1
 else
 For I = s to e step 1 do
 B(d) =A(I): d = d+1
 End For
 read next word

end if.

Step 6: Print in files. //When reaching to the end of

each file Print Array B in a file with a

numeric name, d = 0, then go to step2.

Step 7: Create stop word file. //Print all stop-words

with its repetition and no. of files that

appeared on it.

End;

Fuction1: Check Words. //Check if the word is exactly

matched one of the words that listed in

"Stop-words"; if the matching result is true

then increased the count of the similar word.

Then check the file name if this word

appears in this file for the first time, increase

the count of files for this word by one. Else

if the result is false:

For I = s to e step 1 do

B(d) = A(I): d = d+1

End For

Return

The result of this step is files corresponds to the

original files with less size beside one additional file

contains the stop-words list, its frequency and the

number of files that appears in.

Ones the resulted files are obtained from the

previous step it is appropriate to use the stemming

operation on them in identifying the roots of all words.

In this study, the Porter Stemming Algorithm used

which is considered as the most popular stemming

method prepared by Martin Porter in 1980. Porter

Stemming Algorithm is a conflation Stemming

Algorithm. It is based on the idea of the suffixes in the

English language are mostly made up of a combination

of smaller and simpler suffixes, so it is a suffix removal

algorithm. It has six steps, in each step, certain rules are

applied until one of them passes the conditions. If a rule

is accepted, the suffix is removed accordingly and starts

executing the next step. The first two steps deal with

plurals and past participles, the next two steps are

designed for words that contain double suffixes, such

as:

FUZZIFICATION→FUZZIFI→FUZZY

Last two steps do the tidying up; i.e., Making it

presentable (Jivani, 2011; Ramasubramanian and

Ramya, 2013). Figure 2 presents a simple example for

stemming process.

The limitation of this algorithm is the result stem

words which are not always the original words. The

algorithm implies sixty rules; for this reason, it is

considered a time consuming algorithm (Jivani, 2011).

In this study, the system used the porter algorithm with

a difference in the nature of its input; the algorithm was

converted in a simple way to deal with input numbers

that represent strings (not the strings themselves).

Res. J. Appl. Sci. Eng. Technol.,

Fig. 2: Stemming process (Ramasubramanian and Ramya,

2013)

The result of this process consists of files

corresponding to the original, but with less size due to

the stop-words extraction and stemming operations.

After reducing the search space, the system must be

able to partition the search space for providing ef

access to information based on a key number. This can

be done using a proper hashing algorithm because there

is a strong evidence that ensures hash tables are much

faster than others tree-structured indexes. It allows the

system to look up the required information in constant

time for access. Hashing is also simple to implement,

safe to use an arbitrary method as a black box and

expect good performance (Richter et al

The basic idea of hashing resides in transforming

the data points from the original search space into a

Hamming space with binary hash codes. So, the storage

cost for each transition will be reduced. Hence, the

query speed can be improved (Zhang and Li, 2014)

Hash functions are different in their behavior in

terms of collisions. This situation will appear

keys trying to reach the same hash table location. There

 (a)

Fig. 3: (a): Example for minimal perfect hashing;

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

889

Stemming process (Ramasubramanian and Ramya,

The result of this process consists of files

corresponding to the original, but with less size due to

words extraction and stemming operations.

After reducing the search space, the system must be

able to partition the search space for providing efficient

access to information based on a key number. This can

be done using a proper hashing algorithm because there

is a strong evidence that ensures hash tables are much

structured indexes. It allows the

ired information in constant

time for access. Hashing is also simple to implement,

safe to use an arbitrary method as a black box and

et al., 2015).

The basic idea of hashing resides in transforming

original search space into a

Hamming space with binary hash codes. So, the storage

cost for each transition will be reduced. Hence, the

query speed can be improved (Zhang and Li, 2014).

Hash functions are different in their behavior in

This situation will appear when two

keys trying to reach the same hash table location. There

are two techniques that are mainly used to deal with

collisions. One of them tries to handle the occurring

conflicts, while the other technique is to completely

avoid collisions. This will be achieved through using

different techniques such as changing. Figure 3 presents

the most important hashing data structures and surveys

their behavior (Grill, 2014).

Thus, the next step in this stage is statistical
analysis, which means performing the hashing index
operation for all files using the first two letters of each
word; they are used to define a hash function (H) value;
which must be bounded within the range [0....N
Where, N is the number of possibilities for the
character multiplied be the number of possibilities for
the second character) minus 1.H(M)
number within the range [0…N-1];
must mapped to a unique number lay in the defined
range of this function; H is a hashing i

In this step, the hash function was used to
enumerate the first two letters of each word. The used
equation of this function is:

H(M) = 27xch1+ch2

where,
ch1 = The first character of the word
ch2 = The second character of the word

Algorithm (3): Hashing Algorithm
Objectives: Convert unstructured data files to
structured data files using hash
providing very fast access.
Input: Text files including stop-words file.

 (b)

(c)

for minimal perfect hashing; (b): Open hashing techniques; (c): Chaining techniques (Botelho

are two techniques that are mainly used to deal with

collisions. One of them tries to handle the occurring

conflicts, while the other technique is to completely

avoid collisions. This will be achieved through using

different techniques such as changing. Figure 3 presents

the most important hashing data structures and surveys

, the next step in this stage is statistical
which means performing the hashing index

operation for all files using the first two letters of each
word; they are used to define a hash function (H) value;
which must be bounded within the range [0....N-1].
Where, N is the number of possibilities for the first
character multiplied be the number of possibilities for

H(M) is an integer
1]; M is the string that

must mapped to a unique number lay in the defined
is a hashing index function.

In this step, the hash function was used to
enumerate the first two letters of each word. The used

 (1)

= The first character of the word
second character of the word

Algorithm (3): Hashing Algorithm
Convert unstructured data files to

structured data files using hash-index function of

words file.

(Botelho et al., 2011)

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

890

Output: Text files (729 file only) including stop words
file.

Step1: Establish the Coding Table. //Building a coding

system.
 Tbl1() // Array of the integer numbers
 For I = 0 to 255 step 1 do

Set Tbl1(I) ← 26 //an initial value for all
printable and non-printable characters

End For
For I = 0 to 26 step 1 do // Establish the Coding Table

Set Tbl1(I + 65) ← I, Set Tbl1(I + 97) ← I
End For
For I = 0 to 26 do
For J = 0 to 26 do

tbl2(I, J) 27 * I + J//filling the matching table
for each pair of characters

End For
End For

Step 2: Read Text files. // For each Text file Read all

the content of this file as an array of bytes.
Step 3: End Trim. //Remove spaces from the end of

the file.
Step 4: Remove Double Space. // Convert double

spaces to single space.
Step 5: Hash Indexing. // Mapping each pair of two

characters with a unique value depending on

matching table as follows:

H(M) = Tbl2(Tbl1(ch1), Tbl1(ch2))

Step 6: Mapping Words. //Mapping each word to 729

file that has the same name of the first two

characters according to the H(M) that

calculated using the above equation.

Step 7: Mapping files. // Specify a file name that

contains each word, convert it to an array of

bytes, then combined it with each word in the

resulted files.

Step 8: Print in files. //Print the results in files that

have the names of the first two characters.

End;

The resulted files of the hashing function are

organized according to the hashing value. This simple

function provides an indexing technique such that the

resulted values can be used as leading address for each

data item. This allows for fast access for specific

information with the possibility of using parallel

searching for several patterns as one disconnected

pattern.

At the end of this step, the first prototype of the
main dictionary was completed by converting
the unstructured text data into structured data. This
makes the text retrieval operations and other text
mining processes faster and easier to be used. In order
to complete the proposed system for discovering most

words properties, the next stage contains extracts other
word properties.

Indexing of database system: This stage consists of

four steps:

• Statistical analysis step (3-level hashing index

system)

• File Tailing

• Word Histogram

• Determine the most frequent words in this dataset.

In the first two steps, the hash function was used

for indexing and sorting all words in each file using the
first five letters by taking the advantage of the first two
letters which have taken from the previous stage and
used a file name. Thus, in this stage the next three
letters are used with respect to the index of each file,
they were obtained from the last stage:

V0 = 27

4
xfn0+27

3
xfn1 (2)

H(M) = (27

2
xch3+27xch4+ch5) +V0 (3)

Where, fn0 is the value of the first character taken from
the file name; fn1 is the value of the second character
taken from the file name; {cg3, ch4 & ch5} are the
indexes of third, fourth and fifth characters taken from
the word.

File tailing is used in the proposed system for
selecting words with (1 to 5) characters and truncates
the first five letters from the words that have length
more than 5 letters with flag for each word. This
indicates that whether the length of the word was larger
than five letters or not. This step was used for two
reasons:

• Reduce the storage space that required to store the
dataset.

• Reduce the search time as possible by reducing the
search space, taking in consideration the system
efficiency.

The reason for limiting the word length to five

letters for encoding purpose is due to the results of
conduct analysis that was made to define the relation
between the lengths of all words and their occurrence
frequencies using three big datasets; it was found that
the most frequent word lengths are ranging from 1 to 5;
the total of occurrences of theses length constitutes
around (%70.64) for dataset1, (%72.39) for dataset 2
and (%73.72) for dataset3, as shown the Fig. 4.

The frequency of each word length is calculated in
order to:

• Determine the list of most frequent words (which

have no discriminating weight for matching/

searching or retrieval systems); these words have a

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

891

Fig. 4: Histogram summarizing the statistical analysis of

words according to length

negative effect on the operations costs in terms of

time and space beside to its bad effects on the

overall system efficacy.

• Compute the weight for each word in the dataset

according to its frequency and the number of

documents holding this word.

In this study, the list of most frequent words was

produced, taking the highest 20-word frequency for

each file in the dataset. It is worth mentioning that word

weights can be used to determine the least and most

significant words in each dataset. This feature is very

useful for any retrieval system.

Algorithm (4): indexing document system
Objectives: produce an indexing database file for

calculating words weight and determine

the non-significant word list.

Input : Text files with any number of files including

stop word file.

Output : Three Text files only.

Step 1 : Establish the Coding Table. //Building a

coding system.

Tbl1() // Array of the integer numbers

For I = 0 to 255 step 1 do

Set Tbl1(I) ← 26 //an initial value for all

printable and non-printable characters

End For

For I = 0 to 26 step 1 do //Establish the Coding

Table Set Tbl1(I + 65) ← I, Set Tbl1(I + 97)

← I

End For

Tbl2(,) //Array of integer numbers represent

the matching table for the hashing

function

For I = 0 to 26 step 1 do

For J = 0 to 26 step 1 do

tbl2(I, J) ((27 * I) + J) //filling the

matching //table for each pair of

characters

End For

End For

Step 2: Read Text files.// For each Text file Read all
the content of this file as an array of bytes
except the stop word file that will not change.

Step 3: End Trim. //Remove spaces from the end of
the file.

Step 4: Remove Double Space. //Convert double
spaces to single space.

Step 5: Find v0. //For each indexed file using the
name of each file such as

V0=27^4*ch1+27^3*ch2

Step 6: Determine hash value: //For each word in the

file using v0 and the next three letters in each
word.

H(M) =(27^2*ch3+27*ch4+ch5) +v0

Step 7: File Tailing. //Select the first five letters only

from each word with flag for words with
length>5.

Step 8: Word Histogram.//On the word hash value
counting the frequency for each word.

Step 9: Counting files. //Counting the files that contain
each word depending on the hash value of
each word.

Step 10: Sorting words.//Depending on words
frequency using the bubble sort algorithm.

Step 11: Determine the most frequent words.// Finding
the 20 maximum repetitions of all words in
each file and fill the list of the most frequent
words.

Step 12: Print in files. //Print the original stop word file
and the remaining results will show as follows
(word, length flag, no. of files, word freq.) in
two files.

- Most frequent word files
- Remaining words file //contain all words

except most Freq. words.
End;

The results of this stage were registered in three

files (i.e., Stop-words file, most frequent words file

(common non-stop words file) and the remaining words

file). The first file, which is the same file that extracted

at the second stage, contains the pre-complied stop -

words list with their frequency. The second file

contains the most frequent words that appeared in the

dataset with their frequency and the number of files

holding that word. The last file contains all words that

appeared in the dataset with the same information as in

the most frequent words file for each word.

DATASETS

In order to test the system performance, in this

study work a set of tests applied on three big datasets

were conducted. The datasets are:

250000000

200000000

150000000

100000000

50000000

Word Length VS Frequency
Dataset1
Dataset2
Dataset3

W
o
rd

 F
re

q
u
e
n

y

1 2 3 4 5 6 7 8 9 10 1112 1314 15 161718 19 202122 232425

0

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

892

Table 1: The time that took in each step for traditional and enumeration methods

Step

Dateset1

--

Dateset2

--

Dateset3

--

Enumeration

method (minute)

Traditional

method (minute)

Enumeration

method (minute)

Traditional

method (minute)

Enumeration

method (minute)

Traditional
method

(minute)

Lexical analysis 16.35 23.55 1 2.37 2.25 8.42
Stop words

Extraction

79.17 516.21 10.23 51.01 44.29 230.24

stemming 20.04 1.18 for 1 MB 1.25 1.21 for ≈ 1MB 8.21 1.12 for≈1 MB
2-level hashing

index

17.17 68.49 2.03 11.14 5.58 33.49

Indexing
database

60.35 0.5 for 1 MB 53.25 0.5 for 1 MB 62.03 0.5 for 1 MB

Table 2: The size for each dataset after and before systems stage

Stages

Dataset 1 size

--

Dataset 2 size

--

Dataset 3 size

--

Before After Before After Before After

Date preprocessing stage 4.64GB 4.27GB 541MB 527MB 2.12GB 2.01GB

Building main dictionary stage 4.27GB 3.55 GB 527MB 408 MB 2.01GB 1.86 GB
Indexing database system stage 3.55 GB 13.1MB 408 MB 3.82MB 1.86 GB 4.98MB

Table 3: Net time profit percentage for each stage comparing with the traditional method

 Stages Net time profit percentage (%)

Dataset1 Lexical analysis 87.37
 Stop-words Extraction 99.29

 2-level Hashing index 96.07

Dataset2 Lexical analysis 84.70
 Stop-words Extraction 94.35

 2-level Hashing index 95.42

Dataset3 Lexical analysis 87.37
 Stop-words Extraction 80.6

 2-level Hashing index 92.41

Dataset 1: Collected data from papers, books and
articles with the possibility of recurrence of the file
content and the size of files ranging within [1KB-
20,374KB]. The overall size of all files are formed 4.26
GB.

Dataset 2: It is a standard dataset taken from the
training and test text corpora by Burnard (1976). The
size of files ranging within [1KB-6,250KB]. The whole
files occupy 541MB.

Dataset 3: It is standard dataset obtains from Pizza and
Chili (Ferragina and Navarro, 2005). The size of files
ranging between [1KB-29.633KB). The files cover the
size 2.10GB.

RESULTS AND DISCUSSION

In this study, all algorithms were implemented
using visual C# 2015 and operated on computer with

Intel(R) Core(TM) i7-2600; CPU @ 2.60 GHz; 16 GB

RAM; OS: Microsoft Windows 10.
Each step of the proposed system was tested

through two experiments. The first one was made for
testing the system performance using numeration
operations rather than dealing with string operations.

The second experiment conducted by excluding the
use of string operation so it works with the string as the
most systems doing (traditional method).

Table 1 shows the comparison results between the
two experiments (of three datasets). The results show
the effectiveness of the proposed method when using an
enumeration operation for dealing with string. In
stemming step the same result attained as the original
Porter stemming do, but with less runtime required.

Table 2 presents the size reduction at each stage in
the dataset. This may consider as a preliminary file
compression stage, which can be used to consolidate
storage in both block storage and file system that
contains only the most important information of the
dataset.

The test results showed that the designed system
will reduce the execution time around 80% for the
overall system while maintaining the results accuracy.
Also, we can notice that the baseline of the execution
time will increase dramatically with the size and the
matching operations that required in each execution for
the traditional methods. So, it can be noticed that the
larger elapsed time was in stop-words extraction stage
for both experiments (traditional and numeric based
methods); this due to the number of the matching
operations that required to decide about whether reach
word is a stop-word or not. The net profit time obtained

in each text operation with excluding the writing and
reading operation for all files are shown in Table 3.
This table emphasis that the optimum saved time is
occurring in the stop-words step due to speeding-up
comparisons and converting operations.

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

893

The achieved speeds up results agree with the
results given by other research articles (Cox, 2002).

CONCLUSION

The proposed system provides fast and efficient

instrument for string operations, which is based on the

string conversion ability. The attained test results

showed that the proposed system significantly reduces

the required time of each operation; as shown in Table

1. Hence, this system will save up to 50% of the

execution time with controlling the accuracy of the

resulted files; this can save investments in both time

and hardware.

Also, this study builds a text-mining dictionary

using many text-mining tools, hashing functions and

numeration operations in order to provide a fixable

dictionary. This dictionary can be used for fast text

retrieval systems because of its small size comparing

with the original dataset, as shown in Table 2. Then, the

third stage is added to the system to extract words

characteristic of large-scale textual data, visualizing

them with high performance and extracts the most and

least significant word for each dataset.

For future work, more advance numeric analysis

can be applied to the resulted dictionary files to

improve the response time for retrieval systems. This

can be done using a combination of two or more

similarity measures with complementary weighting

methods.

REFERENCES

Ayral, H. and S. Yavuz, 2011. An automated domain

specific stop word generation method for natural

language text classification. Proceeding of the

IEEE International Symposium on Innovations in

Intelligent Systems and Applications (INISTA).

June 15-18, pp: 500-503.

Bhadade, U.S. and A.I. Trivedi, 2011. Lossless text

compression using dictionaries. Int. J. Comput.

Appl., 13(8): 27-34.

Botelho, F.C., A. Lacerda, G.V. Menezes and N.

Ziviani, 2011. Minimal perfect hashing: A

competitive method for indexing internal memory.

Inform. Sciences, 181(13): 2608-2625.

Burnard, L., 1976. The University of Oxford Text

Archive. University of Oxford, Retrieved from:

http://ota.ox.ac.uk/catalogue/index.Html.

Clapson, A., 2014. A Note on Type Conversions and

Numeric Precision in SAS®: Numeric to Character

and Back Again. Statistics Canada. Paper No.

1752-2014. Retrieved from:

http://support.sas.com/resources/papers/proceeding

s14/1752-2014.pdf.

Cox, N.J., 2002. Speaking stata: On numbers and

strings. Stata J., 2(3): 314-329.

Ferragina, P. and G. Navarro, 2005. Pizza&Chili

Corpus-Compressed Indexes and Their Testbeds.

Retrieved from:

http://pizzachili.dcc.uchile.cl/2013.

Fox, C., 1992. Lexical Analysis and Stoplists. In:

Frakes, W.B. and R. Baeza-Yates (Eds.),

Information Retrieval: Data Structures &

Algorithms. Prentice Hall Inc., Uppar Saddle

River, NJ, USA, pp: 102-130.

Godboles, S., I. Bhattacharya, A. Gupta and A. Verma,

2010. Building re-usable dictionary repositories for

real-world text mining. Proceeding of the 19th

ACM International Conference on Information and

Knowledge Management (CIKM’10). Toronto,

Ontario, Canada, October 26-30, pp: 1189-1198.
Grill, B., 2014. A Survey on Efficient Hashing

Techniques in Software Configuration
Management. White Paper. Retrieved from:
http://old.iseclab.org/people/bgrill/papers/grill_has
hing_2014.pdf.

Jivani, A.G., 2011. A comparative study of stemming
algorithms. Int. J. Comput. Technol. Appl., 2(6):
1930-1938.

Joshi, A., N. Thomas and M. Dabhade, 2016. Modified
porter stemming algorithm. Int. J. Comput. Sci.
Inform. Technol., 7(1): 266-269.

Popova, S., L. Kovriguina, D. Mouromtsev and I.
Khodyrev, 2013. Stop-words in keyphrase
extraction problem. Proceeding of the 14th
Conference of Open Innovations Association
(FRUCT), pp: 113-121.

Ramasubramanian, C. and R. Ramya, 2013. Effective

pre-processing activities in text mining using

improved porter’s stemming algorithm. Int. J. Adv.

Res. Comput. Commun. Eng., 2(12): 4536-4538.

Richter, S., V. Alvarez and J. Dittrich, 2015. A seven-

dimensional analysis of hashing methods and its

implications on query processing. Proc. VLDB

Endowment, 9(3): 96-107.

Sakurai, S., Y. Ichimura, A. Suyama and R. Orihara,

2001. Acquisition of a knowledge dictionary for a

text mining system using an inductive learning

method. Proceeding of the Workshop on Text

Learning: Beyond Supervision, pp: 45-52.

Singh, B., I. Yadav, S. Agarwal and R. Prasad, 2009.

An efficient word searching algorithm through

splitting and hashing the offline text. Proceeding of

the IEEE International Conference on Advances in

Recent Technologies in Communication and

Computing. Kottayam, Kerala, India, pp: 387-389.

Stein, B. and M. Potthast, 2007. Applying hash-based

indexing in text-based information retrieval.

Proceeding of the 7th Dutch-Belgian Information

Retrieval Workshop, pp: 29-35.

Van Rijsbergen, C.J., 1979. Information Retrieval.

Department of Computer Science, University of

Glasgow. Retrieved from: citeseer.ist.psu.edu/

vanrijsbergen79information.html.

Res. J. Appl. Sci. Eng. Technol., 13(12): 885-894, 2016

894

Vijayarani, S., J. Ilamathi and Nithya, 2015.
Preprocessing techniques for text mining - An
overview. Int. J. Comput. Sci. Commun. Netw.,
5(1): 7-16.

Willett, P., 2006. The porter stemming algorithm: Then

and now. Program-Electron. Lib., 40(3): 219-223.
Yao, Z. and C. Ze-Wen, 2011. Research on the

construction and filter method of stop-word list in
text preprocessing. Proceeding of the IEEE 4th
International Conference on Intelligent
Computation Technology and Automation
(ICICTA), pp: 217-221.

Zhang, D. and W.J. Li, 2014. Large-scale supervised
multimodal hashing with semantic correlation
maximization. Proceeding of the 28th AAAI
Conference on Artificial Intelligence, 1(2): 2177-
2183.

