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Abstract: The aim of this study is to adopt the Artificial Neural Network (ANN) to Model the Cathodic Protection 
system (CPS) and evaluation the potential required to protect the coated and bared pipeline as well as to the 
prediction of corrosion rate. On the other hand, the experimental work was carried out to collect the required data to 
be used for training and testing the neural network. The objective of this research paper is to corrosion control in the 
pipeline with different potential values. The proposed structure of ANN for potential and corrosion is an input layer, 
two hidden layers and one output layer and this structure is arbitrarily selected. The transfer function that has been 
used in the first hidden layer for each network is the Tan-Sigmoid function and for the second layer is the pure line. 
The back propagation training algorithm with one variable learning rate is used to train these neural networks. For 
the potential assessment; the ANN input data includes the distance between anodes and cathodes (D), Current 
Density (CD), length of pipe from end to the drain point (L), resistivity of solution (ρ) and the voltage of power 
stations, while the potential is the network output. For the corrosion rate prediction, the network input information is 
only time, surface area and resistivity of the soil (solution) (ρ), while the corrosion rate is the network output. Many 
networks are constructed by changing the number of neurons for the hidden layers. This has been simulated by using 
the MATLAB R2009a software. The optimum network for coated pipe was (13) neurons in the first hidden layer 
and (8) neurons in the second hidden layer which is tested and trained by using (120 data sample). This network has 
proved to be reliable and can be used to assess the potential required for CPS. Concerning the bared pipe-lines, the 
collected experimental data is not stable and the fluctuation of the data occurs due to the interference between the 
corroded part of the pipe and the protected parts, which causes the un-stability of potential. The optimum network 
for coated pipe was (15) neurons in the first hidden layer and (4) neurons in the second hidden layer) which is tested 
and trained by using (250 data sample). This network demonstrates to be reliable and capable of predicting the 
corrosion rate. 
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INTRODUCTION 

 
The methods used for the identification of the 

polarization parameters of cathodic protection systems 
are the statistical methods (e.g., fractional design and 
Fractional factorial design). In the present time, the 
creative techniques are used successfully in a broad 
band of applications; one of these applications is the 
cathodic protection. Examples of these techniques that 
are employed in CP are fuzzy logic and genetic 
algorithms. Intelligent control is now becoming a 
standard tool in many engineering and industrial 
applications (Elaibi, 2014; Corr-Rad, 2000). It can 
comprehend and learn about plants, disturbances, 
environment and operating conditions (Dayhoff, 1990; 
Wegener, 2004). Some examples of the factors to be 
determined are plant characteristics such as its static 
and dynamic behaviors (Elaibi, 2014; Corr-Rad, 2000).  

Artificial neural networks, with their self-
organizing and learning ability, are now used as 
promising tools for such purposes. The architecture and 
functions of the artificial neural network are based on 

the biological brain. Neural network provides a 
different computing architecture compared with the 
Von Neumann computers. The main characteristics of 
the neural network are parallel and distributed in nature 
as well as self-organization, however, conventional 
computers have series, local and algorithmic properties 
(Dayhoff, 1990; Wegener, 2004).  

Work on artificial neural networks, commonly 
referred to as neural networks have been motivated 
right from its inspection by the recognition that the 
brain computes in an entirely different way from the 
conventional digital computer. The struggle is to 
understand the brain operation philosophy. The favor is 
to the pioneering work of Fausett (Mil-HDBK, 1984), 
who introduced the idea of neurons as structural of the 
brain. Typically, neurons are five to six orders of 
magnitude slower than silicon logical gates; events in 
silicon chip happen in the nanosecond range, whereas 
neural events occur in the millisecond range. However, 
the brain compensates for the relatively slow rate of 
operation of a neuron by having a truly staggering 
number of neurons (nerve cells) with massive 
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interconnections between them. Fundament, it is 
estimated that there must be on the order of 10 billion 
neurons in the human cortex and 60 trillion synapses or 
connections (Frank, 1999). The net result is that the 
brain is an enormously efficient structure.  

In its most general form, a neural network is a 
machine that designs a model in the same way when the 
brain performs a particular task or function of interest 
(Mil-HDBK, 1984). It resembles the brain in two 
respects: 
 
• Knowledge is acquired by the network through the 

learning process. 
• Inter- neurons connections strength known as 

synaptic weights are used to store the knowledge. 
 

In this study, ANN has been used to model a 
Cathodic Protection system for evaluation of the 
potential required to protect the coated and bared pipe-
line. 
 

EXPERIMENTAL WORK 
 

Experimental work has been carried out to 
determine the modeling of cathodic protection for bare 
and coated pipe (with different coats), current demand 
and resistivity of ground bed, the proper distance 
between the cathodic pipe and anode and finally the 
attenuation potential of the pipes. 

Electrochemical polarization method was used for 
six solution resistivity (4934.579, 1044.139, 538.785, 
62.856, 34.322 and 24.5 Ohm.cm) which represent 
moderate to severe conditions of a large extent of land 
in north Iraq-Turkey pipeline in Nineveh to Um-Qaser 
in Basrah-Iraq. The details of experimental setup are 
explained in (Al-Shareefi, 2009). 
 

RESULTS AND DISCUSSION 
 
Neural networks for coated pipe: The tested 
network's output was compared with tests samples to 
find the optimum neural network. The best parameters 
values of for the neural network that has been selected 
are shown below: 
 
• One Input layer (Receiving Five parameters) 
• Two Hidden layer: 
o 13 neurons in the 1st hidden layer 
o -8 neurons in 2nd hidden layer 
• One output layer (give one output) 
 

Figure 1 shows the comparison between the 
optimum neural network outputs with experimental data 
for the same conditions (Length, Current Density,  
Resistivity, Distance and Voltage of Power station) for 
each point for the optimum network and Fig. 2 shows 
the regression for this network.  

Figure 3 to 12 show the comparison between the 
other neural networks outputs with experimental data 
and their regression curves for coated pipe. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Comparison between experimental data and NNT data 

of potential difference for coated pipe of the optimum 
NNT which has two hidden layers (13) neurons 1st 
hidden layer and 8 neurons in 2nd hidden layer). 

 

 
 
 

 
 
 
 
 
 
 
 
 

 
 

Fig. 2: Regression for the optimum NNT which has two 
hidden layers (13 neurons 1st hidden layer and 8 
neurons in 2nd hidden layer) for coated pipe 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Comparison between experimental data and NNT data 

of potential difference for coated pipe of NNT which 
has two hidden layers (5 neurons 1st hidden layer and 
13 neurons in 2nd hidden layer) 
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Fig. 4: Regression for the optimum NNT which has two 

hidden layers (5 neurons 1st hidden layer and 13 
neurons in 2nd hidden layer) for coated pipe 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Comparison between experimental data and NNT data 

of potential difference for coated pipe of NNT which 
has two hidden layers (8 neurons 1st hidden layer and 
6 neurons in 2nd hidden layer) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Regression for the optimum NNT which has two 

hidden layers (8 neurons 1st hidden layer and 6 
neurons in 2nd hidden layer) for coated pipe 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Comparison between experimental data and NNT data 

of potential difference for coated pipe of NNT which 
has two hidden layers (4 neurons 1st hidden layer and 
11 neurons in 2nd hidden layer) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Regression for the optimum NNT which has two 

hidden layers (4 neurons 1st hidden layer and 11 
neurons in 2nd hidden layer) for coated pipe 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Comparison between experimental data and NNT data 

of potential difference for coated pipe of NNT which 
has two hidden layers (14 neurons 1st hidden layer and 
4 neurons in 2nd hidden layer) 
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Fig. 10: Regression for the optimum NNT which has two 

hidden layers (14 neurons 1st hidden layer and 4 
neurons in 2nd hidden layer) for coated pipe 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: Comparison between experimental data and NNT 

data of potential difference for coated pipe of NNT 
which has two hidden layers (13 neurons 1st hidden 
layer and 6 neurons in 2nd hidden layer) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Regression for the optimum NNT which has two 

hidden layers (13 neurons 1st hidden layer and 6 
neurons in 2nd hidden layer) for coated pipe 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: Comparison between the data predicted by NNT with 

experimental data of the distribution of potential 
along length of pipe from the end to the drain point 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14: Comparison between the data predicted by NNT with 

experimental data of the distribution of potential 
along length of pipe from the end to the drain point 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 15: Comparison between the data predicted by NNT with 
experimental data of the distribution of potential 
along length of pipe from the end to the drain point 
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