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Abstract: The aim of this study is to adopt the Artificial Neural Network (ANN) to Model the Cathodic Protection
system (CPS) and evaluation the potential required to protect the coated and bared pipeline as well as to the
prediction of corrosion rate. On the other hand, the experimental work was carried out to collect the required data to
be used for training and testing the neural network. The objective of this research paper is to corrosion control in the
pipeline with different potential values. The proposed structure of ANN for potential and corrosion is an input layer,
two hidden layers and one output layer and this structure is arbitrarily selected. The transfer function that has been
used in the first hidden layer for each network is the Tan-Sigmoid function and for the second layer is the pure line.
The back propagation training algorithm with one variable learning rate is used to train these neural networks. For
the potential assessment; the ANN input data includes the distance between anodes and cathodes (D), Current
Density (CD), length of pipe from end to the drain point (L), resistivity of solution (p) and the voltage of power
stations, while the potential is the network output. For the corrosion rate prediction, the network input information is
only time, surface area and resistivity of the soil (solution) (p), while the corrosion rate is the network output. Many
networks are constructed by changing the number of neurons for the hidden layers. This has been simulated by using
the MATLAB R2009a software. The optimum network for coated pipe was (13) neurons in the first hidden layer
and (8) neurons in the second hidden layer which is tested and trained by using (120 data sample). This network has
proved to be reliable and can be used to assess the potential required for CPS. Concerning the bared pipe-lines, the
collected experimental data is not stable and the fluctuation of the data occurs due to the interference between the
corroded part of the pipe and the protected parts, which causes the un-stability of potential. The optimum network
for coated pipe was (15) neurons in the first hidden layer and (4) neurons in the second hidden layer) which is tested
and trained by using (250 data sample). This network demonstrates to be reliable and capable of predicting the
corrosion rate.
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INTRODUCTION

The methods used for the identification of the
polarization parameters of cathodic protection systems
are the statistical methods (e.g., fractional design and
Fractional factorial design). In the present time, the
creative techniques are used successfully in a broad
band of applications; one of these applications is the
cathodic protection. Examples of these techniques that
are employed in CP are fuzzy logic and genetic
algorithms. Intelligent control is now becoming a
standard tool in many engineering and industrial
applications (Elaibi, 2014; Corr-Rad, 2000). It can
comprehend and learn about plants, disturbances,
environment and operating conditions (Dayhoff, 1990;
Wegener, 2004). Some examples of the factors to be
determined are plant characteristics such as its static
and dynamic behaviors (Elaibi, 2014; Corr-Rad, 2000).

Artificial neural networks, with their self-
organizing and learning ability, are now used as
promising tools for such purposes. The architecture and
functions of the artificial neural network are based on

the biological brain. Neural network provides a
different computing architecture compared with the
Von Neumann computers. The main characteristics of
the neural network are parallel and distributed in nature
as well as self-organization, however, conventional
computers have series, local and algorithmic properties
(Dayhoff, 1990; Wegener, 2004).

Work on artificial neural networks, commonly
referred to as neural networks have been motivated
right from its inspection by the recognition that the
brain computes in an entirely different way from the
conventional digital computer. The struggle is to
understand the brain operation philosophy. The favor is
to the pioneering work of Fausett (Mil-HDBK, 1984),
who introduced the idea of neurons as structural of the
brain. Typically, neurons are five to six orders of
magnitude slower than silicon logical gates; events in
silicon chip happen in the nanosecond range, whereas
neural events occur in the millisecond range. However,
the brain compensates for the relatively slow rate of
operation of a neuron by having a truly staggering
number of neurons (nerve cells) with massive
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interconnections between them. Fundament, it is
estimated that there must be on the order of 10 billion
neurons in the human cortex and 60 trillion synapses or
connections (Frank, 1999). The net result is that the
brain is an enormously efficient structure.

In its most general form, a neural network is a
machine that designs a model in the same way when the
brain performs a particular task or function of interest
(Mil-HDBK, 1984). It resembles the brain in two
respects:

Knowledge is acquired by the network through the
learning process.

Inter- neurons connections strength known as
synaptic weights are used to store the knowledge.

In this study, ANN has been used to model a
Cathodic Protection system for evaluation of the
potential required to protect the coated and bared pipe-
line.

EXPERIMENTAL WORK

Experimental work has been carried out to
determine the modeling of cathodic protection for bare
and coated pipe (with different coats), current demand
and resistivity of ground bed, the proper distance
between the cathodic pipe and anode and finally the
attenuation potential of the pipes.

Electrochemical polarization method was used for
six solution resistivity (4934.579, 1044.139, 538.785,
62.856, 34.322 and 24.5 Ohm.cm) which represent
moderate to severe conditions of a large extent of land
in north Irag-Turkey pipeline in Nineveh to Um-Qaser
in Basrah-Iraq. The details of experimental setup are
explained in (Al-Shareefi, 2009).

RESULTS AND DISCUSSION

Neural networks for coated pipe: The tested
network's output was compared with tests samples to
find the optimum neural network. The best parameters
values of for the neural network that has been selected
are shown below:

One Input layer (Receiving Five parameters)
Two Hidden layer:

13 neurons in the 1* hidden layer

-8 neurons in 2™ hidden layer

One output layer (give one output)

e OO e o

Figure 1 shows the comparison between the
optimum neural network outputs with experimental data
for the same conditions (Length, Current Density,
Resistivity, Distance and Voltage of Power station) for
each point for the optimum network and Fig. 2 shows
the regression for this network.

Figure 3 to 12 show the comparison between the
other neural networks outputs with experimental data
and their regression curves for coated pipe.
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Fig. 1: Comparison between experimental data and NNT data
of potential difference for coated pipe of the optimum
NNT which has two hidden layers (13) neurons 1%

hidden layer and 8 neurons in 2™ hidden layer).
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Fig. 2: Regression for the optimum NNT which has two
hidden layers (13 neurons 1% hidden layer and 8

neurons in 2™ hidden layer) for coated pipe
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Fig. 3: Comparison between experimental data and NNT data
of potential difference for coated pipe of NNT which
has two hidden layers (5 neurons 1% hidden layer and

13 neurons in 2™ hidden layer)
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Fig. 7: Comparison between experimental data and NNT data

of potential difference for coated pipe of NNT which
has two hidden layers (4 neurons 1% hidden layer and
11 neurons in 2™ hidden layer)
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Fig. 8: Regression for the optimum NNT which has two
hidden layers (4 neurons 1% hidden layer and 11
neurons in 2™ hidden layer) for coated pipe
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Fig. 9: Comparison between experimental data and NNT data

of potential difference for coated pipe of NNT which
has two hidden layers (14 neurons 1* hidden layer and
4 neurons in 2™ hidden layer)
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Fig. 14: Comparison between the data predicted by NNT with
experimental data of the distribution of potential
along length of pipe from the end to the drain point
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Fig. 12: Regression for the optimum NNT which has two Fig. 15: Comparison between the data predicted by NNT with
hidden layers (13 neurons Ist hidden layer and 6 experimental data of the distribution of potential
neurons in 2™ hidden layer) for coated pipe along length of pipe from the end to the drain point
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Fig. 17: The fluctuation of potential for bared pipe
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Fig. 18: Comparison between experimental data and NNT data of potential difference for bared pipe of NNT which has two
hidden layers (13 neurons 1* hidden layer and 8 neurons in 2™ hidden layer)
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Fig. 19: Comparison between experimental data and NNT data of potential difference for bared pipe of NNT which has two
hidden layers (5 neurons 1% hidden layer and 20 neurons in 2™ hidden layer)
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Fig. 20: Comparison between experimental data and NNT data of potential difference for bared pipe of NNT which has two
hidden layers (10 neurons 1* hidden layer and 25 neurons in 2™ hidden layer)

Neural networks for bared pipe: For this type of pipe,
the collected experimental data are not stable as shown
in Fig. 17 to 22. The fluctuation of the data occurs due
to the interference between the bare part of pipes and
the protected parts; this will cause the un-stability of
potential. This un-stability of potential was not
happened in the coated pipe because the coated pipe has
a uniform structure due to the isolation of coated layers
which gives uniform polarization. This fluctuation is
affecting on the training process of neural networks.
For that reason, all proposed networks will not give
good results as shown in Fig. 18 to 22.

The significant of this study it is predictive route
for protection for pipeline methods (Al-Shareefi, 2009).
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CONCLUSION

This study introduces a new topology to determine
the performance of neural network corrosion control by
the impressed cathodic protection which was used in
petroleum and gas pipeline protection. The following
conclusions can be deduced:

The neural network control protects the pipeline
from the corrosion. The controller is flexible and
the curve mode corresponds well with the changing
of the environment resistivity.
The  controller  produces
compensating for changes

good  results,
in environment
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Fig. 21: Comparison between experimental data and NNT data of potential difference for bared pipe of NNT which has two
hidden layers (10 neurons 1* hidden layer and 30 neurons in 2™ hidden layer)
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Fig. 22: Comparison between experimental data and NNT data of potential difference for bared pipe of NNT which has two
hidden layers (20 neurons 1* hidden layer and 30 neurons in 2™ hidden layer)

resistivity, the distance between cathode and anode
and protection voltage on a pipeline.

The obtained results from the
experimental works match the field results.
The neural networks have manifested exceptional
performance in predicting the corrosion protection
for the current cathodic system.

The neural networks are utilized as regression tool,
especially when used for pattern recognition and
function.

The neural networks mimic the protection pipeline
and operation of protection neurons and they have

physical
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a unique quality of self-learning, mapping and
functional approximation as shown in this study.
The model that has been developed can be useful
for planning, monitoring and design of remedial
works as well as improvement of their cathodic
protection.
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