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Terms in the Conductance 
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Abstract: The aim of this study is the ion channel model with noise variance as approximations to the Hodgkin-
Huxley model proposed, due to the Hodgkin-Huxley model affected when inserting some colored noise terms inside 
the conductances, where those effects captured by colored noise because of the gate multiplicity. Firstly, it 
introduces the comparison of ion channel based on Fox, Lu and Linaro models. Additionally, in order to overcome 
the limitations of other parameter estimation methods, the proposed method fully constrains their models and 
obtains all model's capabilities of reproducing the data. Finally, the relationship between the sequence of colored 
noise and the spike frequency are simulated efficiently each gate compared with microscopic simulations of the 
stochastic Markov process method. In simulation results, the spiking rate generated from the proposed model very 
close to microscopic simulations and doesn’t effect by the membrane size. 
 
Keywords: Colored noise, hodgkin-huxley, ion channel, microscopic, noise variance, spike frequency 

 
INTRODUCTION 

 
The nerve cell theoretical foundation in the 

building block of the nervous system was introduced by 
Hodgkin and Huxley (1952). It processes information 
and sends, receives the ultimate control signal as 
control functions such as our breathing, complex 
memory and different body activity (Andersen et al., 
2007). Although all neurons share the same basic 
structure still the neuron in nervous system has many 
different forms depending on its occupied area and its 
function. The ideas of the patch-clamp technique 
permitted to determine experimental approaches of the 
possibility of measuring ion currents through individual 
ion channels which development by Sakmann and 
Neher (1995). If the numbers of ion channels are large, 
the channel fluctuations can become also critically 
close  to  the  action  potential  threshold (Schneidman 
et al., 1998; Rubinstein, 1995), in the action potential 
threshold that has small numbers of ion channels and 
that are open, the timing accuracy was determined. In 
addition, the bursting or spiking in the ion channels in 
the numerical simulations and theoretical investigations 
of channel dynamics caused by the internal noise 
(DeFelice and Isaac, 1993; Fox and Lu, 1994; Chow 
and White, 1996; Rowat, 2007; Diba et al., 2004). 
Channel noises in the patch-clamp experiments are 
producing large voltage fluctuations to affect the 
propagation of action potentials and timing, initiation 
(Dorval and White,  2005; Jacobson et al., 2005; Kole 

et al., 2006; Kienker, 1989). The membrane channel 
dynamics which have represented by Markov models 
was utilized (Rudy and Silva, 2006; Mino et al., 2002). 
Many researchers work on this field to provide enough 
statistics of spike generation in the stochastic HH (Zeng 
and Jung, 2004; Bruce, 2009; Sengupta et al., 2010; 
Linaro et al., 2011). According to these studies that Fox 
and Lu (1994) stochastic extension to the Hodgkin and 
Huxley equations may not be suitable for accurately 
simulating channel noise, even with large numbers of 
ion channels in simulations. The method that proposed 
using more stochastic terms and avoids the expense, 
complex matrix operations (Orio and Soudry, 2012). 
The gating variables that contain Gaussian white noise 
in the stochastic HH equation was proposed (Güler, 
2013; Bédard and Destexhe, 2009). However, a 
complete, comprehensive analysis of spike generation 
in the stochastic HH this model is needed, that 
additionally includes the generation of the database on 
the estimation. 

In this study, the proposed model directly 
determines a set of maximal functions of voltage 
parameters to fit the model neuron from the Hodgkin-
Huxley equations. The behaviors of the theoretical 
relationship between neural behavior and the 
parameters that specify a neuronal model are described 
in detail. The simulation model doesn't only depend on 
the fluctuations in the number of open gates, but 
additionally on the existence of several numbers of 
gates in the single ion channels. 
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THEORETICAL BACKGROUND 
 
The Hodgkin-Huxley equations: Hodgkin and Huxley 
(1952) deduced that the ionic membrane conductances 
are variable with time and voltage-dependent and gave 
the form of this voltage-dependence. By treating a 
segment of the axon as a simple electric circuit, 
Hodgkin and Huxley (1952) arrived at equations 
describing the electric activity of the axon. The cell 
membrane, which separates the extracellular medium 
from the cytoplasm of the cell, acts as a capacitor with 
capacitance C (Hodgkin and Huxley used a value, 

based on laboratory measurement, of 10 _F/cm�for C). 
The ion current channels offer parallel pathways by 
which charge can pass through the cell membrane. 
Hodgkin and Huxley use three ionic currents in their 
description of the squid giant axon; potassium 

currentI�, sodium currentI�� and a leakage currentI�. 
The potassium and sodium currents have variable 
resistances that represent the voltage gated 
conductances associated with the membrane ion 
channels. The total current I is the sum of the ionic 
currents and the capacitive current which represents the 
rate of accumulation of charge on opposite sides of the 
cell membrane. The capacitive current, from electrical 

circuit theory, is 
	

	� , where v is the membrane potential. 

Hodgkin and Huxley take v= 0 to represent the neuron's 
resting potential and the equations below follow this 
convention: 
 	
�	� +  I��� =  I���                                                (1) 

 I��� = ∑ I��                                                             (2) 
 I� = g��V� − E��                                                   (3) 
 I = g� m�h �V − V!�"�                                          (4) 

 
The number of independent activation gates was 

represented by the integer power p in the Eq. (4), which 
was introduced by Hodgkin and Huxley (1952). In 
addition, they measured a time delay in the rise of the 
potassium and sodium currents when stepping from 
hyperpolarized to depolarize potentials, but when the 
axon is depolarized but falls alongside no appreciable 

inflection after it is depolarized. If g#, is utilized as a 
variable the end of the record can be fitted alongside a 
first-order equation, but a third- or fourth-order 
equation is needed to describe the beginning. A 
functional simplification is achieved by presuming that g#, is proportional to the fourth manipulation of a 
variable that obeys a first-order equation. In this case, 
the rise of potassium conductance from zero to a finite 

value is delineated by 1 − exp  �−t��), while the fall is 
given by exp (-4t). The rise in conductance 
consequently displays a marked inflection, while the 
fall is a simple. A comparable assumption employing a 

cube instead of a fourth power describes the early rises 
of sodium conductance.  
The ionic currents are given by Ohm's law (I = gV): 
 I��� = I�� + I� + I�                  (5) 

 I�� = g���V� − E���                 (6) 
 I� = g� �V� − E��                 (7) 
 I� = g� �V� − E��                 (8) 
 

where, E���  = The reversal potential  g���  = The ionic membrane conductance  
 

These conductance’s, in the case of the sodium and 
potassium currents, are variable and voltage-dependent, 
representing the voltage-gating of the ion channels. 
Hodgkin and Huxley (1952) deduced from experiment 
the following forms for the ionic membrane 
conductances: 
 g# = g�#n)                               (9) 

 g�� = g���m+h               (10) 
 
where, (n, m, h), are ion channel gate variables 

dynamics, g� �, is a constant with the dimensions of 
behavior per cm

2
 (mention that n between 0 and 1).  

In order to normalize the result, a maximum value 

of conductance�g� ��, is required. 
Thе n, m and h dynamic are listed below: 
 

ṅ = 	�
	� = α��1 − n� − β�n                          (11) 

 

ṁ = 	�
	� = α��1 − m� − β�m              (12) 

 

ḣ = 	-
	� = α-�1 − h� − β-h                                (13) 

 

where, α� and β�, are rate constant that the changes 

happened with voltage changes, but not affected by 
time, while the value of dimensions’ variable n can take 
place between 0 and 1, also its stand for of a single gate 
probability that is in permissive state. 

Hodgkin and Huxley measured constantly α�β� as 

functions of V in the following: 
 

α� = �∞�
�
τ.�
�                (14) 

 

β� =  /0�∞�
�
τ.�
�                              (15) 

 
Dynamics of the membrane: The HH model was 
considered in this study. The analysis is applicable to 
each conductance based model with ion channels 
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governed by linear, voltage dependent kinetics. The 
equation below described the membrane potential of the 
neuron. 
 C 	


	� = −g�ψ#�V� − E�� − g��ψ���V� − E��� −g��V� − E�� + I               (16) 
 

V above is the transmembrane voltage and ψK is the 
dynamic variable in the formula represents the ratio of 
open channel from potassium which is the proportional 
number of open channels to the complete number of 
potassium channel in the membrane; also ψNa is the 
dynamic variable in the formula represents the ratio of 
open sodium channel and 2 is externally current. All of 
the two channel variables ψK and ψNa in the Hodgkin-
Huxley equations is taken as their approximated 
deterministic value, ψK= n

4
 and ψNa= m

3
h; while the 

potassium channel has four n_gates and sodium channel 
have thrееm_gatеsand one h_gatе. In case the channel 
is considered open, all the gatеs of that channel have to 
be open and the gating variable for potassium is n and 
for sodium is m and h. 
The rate functions that found to be as: 
 

α��V� = 4.4/�/40
�
���5678967 :0/,                            (17) 

 

β��V� = 0.125 exp 5− 

>4:,                                (18) 

 

α��V� = 4./��?0
�
���5678967 :0/,                                         (19) 

 

β��V� = 4 exp 5− 

/>:,             (20) 

 

α-�V� = 0.07 exp 5− 

�4:,             (21) 

 

β-�V� = /
���5B78967 :C/                                         (22) 

 

The functions α
 and β
 have dimensions of 

[1/time] and govern the rate at which the ion channels 

transition from the closed state of the open state (α) and 

vice versa (β). 

 

Fox and Lu model: In (Fox & Lu) model, the φk, φNa 

noise terms, do not take place and they are similar to 

zero: 

 

φ�D  = φ��D  = 0,                                         (23) 

 

where, the Gaussian white noise with the mean squares 

are ηn, ηm, ηh and the high F is used to clarify the case of 

the model: 

 

⟨η��t�η��t ,�⟩D = α.�/0��Cβ.�
�G δ�t − t ,�            (24) 

⟨η��t�η��t,�⟩D = α.�/0��Cβ��
�HI δ�t − t ,�            (25) 

 

⟨η-�t�η-�t ,�⟩D = α.�/0-�CβJ-
�HI δ�t − t ,�            (26) 

 

Linaro model: In this model (Linaro et al., 2011), the 

proportions of open channels with the diffusions 

obtained from the covariances of n
4
 and m

3
h is 

determined by the competent powers of the inevitability 

gating variables. The potassium conductance, φ�� , in the 

noise term reads as: 

 

φ��  = ∑ z�,�)�L/ ,                                                    (27) 

 

where, the stochastic variables are z�,�: 
 

τ�,�z.�,� = -z�,� +σ�,�√2τ#,�ξ�,�,                          (28) 

 

τ�,� and σ�,�, are the opening, closing rates of n-gates. 

ξ�,�, are Gaussian White Noise (GWN) with zero 

means. Similarly, the sodium conductance, φ��� , in the 

noise term reads as: 

 

φ���  = ∑ z��,�P�L/ ,               (29) 

 

where, the stochastic variables are z��,�: 
 

τ��,�z.��,� = -z��,� +σ��,�√2τ��,�ξ��,�            (30) 

 

τ��,�, σ��,�, are the opening, closing rates of both m-

gates and h-gates. ξ��,�, are Gaussian white noise 

(GWN) with zero means and unit variances. In the 

differential equations for the gating variables, the noise 

terms are similar zero: 

 

η�� = η�� = η-� = 0                                           (31) 

 

THE PROPOSED MODEL 

 

The proposed model in Eq. (32, 34, 35), is a new 

modification of the Hodgkin-Huxley equations by 

development and adding GWN with the mean zero(ξ 

(t)) to the equations. In addition, it calculates the 

potassium and sodium channels when there are more 

than one n-gate and m-gate, in the dynamic variable by 

considering the membrane potential to have a large 

number of channels and that’s enough to satisfy both ψK 

and ψNa. The differential equations for the activation 

and inactivation variables in the proposed model can be 

solved at any instant in time and the values of all the 

activation; inactivation variables are known at any 

instant by inspection of the voltage trace. This proposed 

model allows for estimation all parameters and 
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functions of voltage precisely. More specifically, the 

numbers of the gating variables, the conductance and 

the steady states and time constant estimated as 

functions of voltage. The regular states are using 

mathematical modifications on data collected using four 

voltage clamp protocols. The equations that describe 

the proposed model shown as follows: 

 CVQ = − g# ∑ n)�  (V − E� ) −g��= ∑ m+h� (V−E��) 

−gR�ψR�(V−ER�) −g�(V−E�) + I+ ξ (t)            (32) 

 
where, 

ψ�  = n
4 
is an open potassium channels ratio 

ψ�� = m+his an open sodium channels, ratio 

 
If we have more than one channel the dynamic variable 

(ψ�), will be as follows: 

 

ψ�= ∑ n)�  

ψ��= ∑ m+h� , i =number of channels. 

ψR�, is an open calcium channels, ratio depends on the 

concentration of CaC�: 
 

TψCaU = VTW��XIU�Y�
TW��XIU�� , if IonR� ≥ 1mV

o, otherwise `            (33) 

 
If the concentration of the calcium is high the 

channel will open otherwise close. 

Here aψ�b, aψ��b, is the ratio of open (potassium 

and sodium channels), computed across all achievable 
order of the membrane getting 4XKn, 3XNam, XNah, 
open n- gates, as shown below: 
 

aψ�b = c�)dG.�B�)dG.�e�)dG.�6�
�)dG�B�)dG�e�)dG�6 , if X�. ≥ 1

o, otherwise `        (34) 

 

aψ��b = c�+dHI��e�+dHI��6�
�)dHI�e�)dHI�6 h, if X��. ≥ 1

o, otherwise `        (35) 

 
If the membrane size is small then 

ψ�= n) andψ��= mh+, the proposed model’s value ψ#= aψ�b = n) and ψ��= aψ��b = mh+, applies at any times. 

 

where, aψ�b,aψ��b, reads as:  

 

ψ#=n)+σ#q# 

ψ��=mh++σ��q�� 

 

The equations that describe the dynamics of q� are: 
 

τq�Q  = p�                                                             (36) 

 

τp�Q  = −γ�p�−w��Tα��1 − n� + β�nUg� + ξ�            (37) 

The equations that describe the dynamics of q�� are: 

 

τqQ �� =  p��               (38) 

 

τpQ �� = − γ��p��− w��� [α��1 − m� + β�mUg�� +
ξ��                 (39) 

 

In which �D�, D��, is identical to: 

 

α��1 − n� + β�n and α��1 − m� + β
m

m          (40) 

 

The standard deviation of ψ
k
, ψ

na
, will be as follows: 

 

σk = in4�n4�81

XK
q

K
               (41) 

 

σNa = im3�m3�81

XNa
hq

Na
               (42) 

 

The complete model for the dynamic variable 

(ψ�),� ψ���, is: 

 

ψ� = n) + i�k��k�86
dG q�              (43) 

 

ψ
Na

= m3h + im3�m3�81

XNa
hq

Na
              (44) 

 

The gate noise model is: 

 

ṅ = dn

dt
= αn�1 − n� − β

n
n + ξ

K
             (45) 

 

ṁ = dn

dt
= αm�1 − m� − β

m
m+ξ

na
            (46) 

 

ḣ = dh

dt
= αh�1 − h� − β

h
h+ξ

h
              (47) 

 

Markov process (microscopic): The traditional way of 

modelling the transient sodium current has been using 

the HH formalism, according to expressions similar to 

Eq. (32). The theoretical interpretation of this model, 

made by Hodgkin and Huxley is similar to that 

commented for the potassium current. In the case of the 

sodium channel, there should be four gating particles, 

three mparticles controlling activation and one h 

particle for inactivation, each one undergoing first-

order transitions between two forms: 

 

"1 −  m"

αm⇌
β

m

 "m":
dm

dt
= αm�1 − m� − β

m
m            (48) 

 

"1 −  h"

αh⇌
β

h

 "h":
dh

dt
= αh�1 − h� − β

h
h            (49) 
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Fig. 1: Kinetic representation of the HH model for the sodium channel 

 

where, the kinetic rates αm,h and βm,h depend on the 
membrane potential V.  

The HH model for the sodium current can be also 
represented by the kinetic model shown in Fig. 1, with 
three closed states C1, 2, 3, four inactivated I1,2,3,4 
and only one open O. All the inactivated states have 
zero h gates, but a different number of m ones. 
Similarly, the difference between the closed states and 
the open one is the same, but all of them have one h 
gate. Vertical rates from (to) inactivated states I1, 2, 3, 
4 are equal, because they all represent the same 
conformational change: a gate h becomes available 
(unavailable). On the other hand, horizontal rates are 
not equal, because they represent interactions between 
states with different m gates. For example, the 
transition from the farthest closed state C1 to C2 
happens if only one in three (kinetically 
undistinguishable) mgates become available: that is the 
reason of the 3αm rate. However, going from C3 to 
Oimplies that the remaining unavailable m gate of C3 
becomes available, leading to the αm rate. The same 
can be said for the reverse transitions: Ogoes to C3 by 
dropping only one of its three m gates. 

For example, O indicates the probability of the 
channel to be in the open state. Consequently, the rates 
represent the transition probability from one state to 
another. The occupancy of each state can be found by 
solving the corresponding master equation, like this one 
for the Ostate: 
 

dO

dt
 = αm C3 + αh I4 − �3β

m
+ β

h
� O            (50) 

 

Another outcome of the stochastic model is that the 
sum of the state’s occupancies must be one. For the 
model in Fig. 1, that means: C1 + C2 + C3 + I1 + I2 + 
I3 + I4 + O = 1. Therefore, a Markov model with N 
states may have only N − 1 independent master 
equations. 

The deterministic HH model can be interpreted as 
the Markov model in the limit of a large number of 
channels (whole cell recordings), where each state 
becomes the fraction of channels occupying it (Zeng 
and Jung, 2004). In this case, a macroscopic current can 
be expressed as: 
 

I = γ. N. O�V − EK�              (51) 

where, γ is the single channel conductance and N the 

number of channels. 

Conceptually, Markov models are closer than HH 

models to the real operation of ionic channels, given 

that it would be possible to map each state to a 

conformational form of the proteins, determined by 

molecular dynamics. 

 

RESULTS AND DISCUSSION 

 

In this section, we assess our model’s effectiveness 

in numerical experiments. The assessment develops 

computations and statistics from the microscopic 

simulations, FL, linaro equations and proposed model 

in a comparative manner. As the microscopic 

simulation scheme, we employ the method known as 

the simple stochastic method see (Mino et al., 2002) in 

which all the gates are simulated individually using the 

Markov scheme. Once the numbers of open channels 

are known, the voltage is integrated to the next time of 

gate update using Eq. (32). In the numerical 

implementation of our model equations, it is necessary 

to check, after each time step, whether or not the noise 

terms in Eq. (45, 46, 47) have taken n, m, or h outside 

the range of [0, 1]. If so, the step must be repeated with 

new random numbers for ξ
K

, ξ
na

, or ξ
h
. We compare the 

mean spiking rates obtained from the microscopic 

simulations, proposed model and the FL, linaro 

equations, using the above semi-deterministic 

dynamics. The simulation model in Eq. (43, 44) 

numerically was developed by using C++ programing 

language, MATLAB and GraphPad Prism. The input 

current was time independent, which was modified 

based on the program to handle time dependent current 

and the noise variance in this simulation were a 

periodic sin wave under noise variance, as shown 

below: 

 

I(t) = Ibase+ξ(t)               (52) 

 

where, Ibase indicates the current situation and the 

(GWN)  with     mean    zero   is  (ξ (t)).    A   series   of  
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Table 1: Constant parameters of the models 

Constant parameters  Value 

γ
K

 10 

wK
2  150 

TK 400 

γ
Na

 10 

wNa
2  200 

TNa 200 

 
Table 2: Parameter values of the membrane 

Ionic current 
Reflection 
potential (mV) 

The conductance 

(mS/cm2) 

Sodium (Na+) ENa = -115 x1 = 120 

Potassium (K+) EK = 12 x2 = 36 

Leakage (L) EL = -10.613 x3 = 0.3 

Calcium (Ca2+) ECa=136 x4 = 40 

 
experiments has been used to examine the effectiveness 
of the noise in the proposed model in a relative manner 
with the Microscopic simulation, as mentioned above.  

The experiments applying by using parameter 

values of the membrane with including Gaussian white 

noise in the proposed model and in the Fox and Lu 

(1994) and Linaroequations as described in formula 

(52). Hence, it can be seen that the performance of the 

proposed model was quite similar to the microscopic 

simulations. Thus, whatever Figures have been driven 

out as a result, there is a difference between the spike 

frequency of the Fox and Lu (1994) and Linaro 

equations and the proposed model, which is actually 

containing the spikes from microscopic simulation. In 

addition, the difference between spike frequencies 

becomes smaller when the noise variance increases. 

The Gaussian White Noise terms (GWN) with zero 

means which used in the numerical experiments shown 

below: 

 ⟨ξ
K

�t�ξ
K

�t,�⟩ = γ
K

TKaαn�1 − n� + β
n
nbδ�t − t,�       (53) 

 ⟨ξ
Na

�t�ξ
Na

�t,�⟩ = γ
Na

TNaaαm�1 − m� + β
m

mbδ�t − t,�  

                             (54) 

 

⟨ξ
K

�t�ξ
K

�t,�⟩ = αn�10n�Cβnn

4XK
δ�t − t,�            (55) 

 

⟨ξ
na

�t�ξ
na

�t,�⟩ = αm�10m�Cβmm

3XNa
δ�t − t,�            (56) 

 

⟨Ξm�T�Ξm�T,�⟩ = Αo�/0m�CΒom
dHp ∆�T − T,�               (57) 

 
The phenomenological methods through numerical 

experiments estimate the values of the parameters. Both 
these values can calculate an approximation by 
phenomenological means, as given in Table 1.  

The parameter’s value of the membrane in Eq. (32) 

shows in the Table 2. Where XK, XNa, XCa corresponds 

for potassium and sodium and calcium complete 

numbers of channels and multiplied the XK by 4n for 

potassium to get 4XKn and also for sodium, calcium 

resulting 3XNam, XNah to get open channels with the 

total number. In addition, the Markov process has been 

put into the gate’s dynamics. The probability of the 

time t and time t+∆t is exponential (-αn∆t), which 

means the n-gate is closed or becomes open and the 

probability of time t and time t + ∆t is exponential (-

βn∆t) which means the n-gate is open and the all of the 

parameters αn, βn are the rate of voltage get at the 

opening and closing of n-gates. Furthermore, the same 

process is applied for the m-gate and h-gate.  

We observe from the Fig.s that the firing statistics 

from our equations are in good agreement with the 

corresponding statistics from the microscopic 

simulations. That is, our equations capture the gate 

noise effectively. FL equations, on the other hand, 

evoke spiking rates significantly larger than the rates of 

the microscopic scheme. The reason for this 

discrepancy is that the variances of the noise terms n 

and m in the FL formulation do not really correspond to 

the gate noise. It is in fact beneficial to the FL 

formulation to have noise variances larger that needed 

to model the gate noise, when the completely stochastic 

actual dynamics, rather than the semi-deterministic 

dynamics, is taken into consideration. The differences 

in performance of the Linaro model and the proposed 

model in response to noise in the rates are rather 

striking. Why does the Linaro model undergo such a 

conspicuous loss of accuracy in its statistics when the 

noise variance is used despite the fact that the proposed 

model’s adequacy remains intact? we interpret this as 

follows. In its derivation, the Linaro et al. (2011) 

formulation draws on the covariance function of the 

fraction of open channels at the steady state. Therefore, 

the validity of the formulation becomes questionable 

when the number of open gates changes rapidly. With 

the use of noise variance, rapid changes occur in the 

values of rates, which can result in fast changes in the 

number of open gates; therefore, the Linaro et al. 

(2011) model undergoes a loss of accuracy in its 

statistics with the use of noise variance. 

Figure 2 represents the comparison between the 

three curves used different noise variance, it can be 

seen that the proposed model was quite close to the 

microscopic simulations and the spike frequency 

increase and will be more accurate when the noise 

variance increasing as investigated by Fox and Lu 

(1994). Where the membrane size for potassium is 300, 

for sodium is 1000 and Ibase= 0, threshold = 0.005 and 

the averages are computed in 30 sec’ time window. The 

numbers of the sodium channel calculated as follows: 

Number of sodium channel = Number of potassium 

channel/3*10. 

The comparison between the three curves used 

different noise variance in the simulations as shown in 

Fig. 3. In addition, the difference between spike 

frequencies becomes smaller after the noise variance 

increases as  mentioned by Linaro et al. (2011).  Where  
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Fig. 2: Mean spiking rates against the noise variance 
 

 
 
Fig. 3: The mean spiking rates against the noise variance 
 

 
 
Fig. 4: Mean spiking rates against the noise variance 

 
the membrane size for potassium is 300, for sodium is 

1000, for calcium is 150 and Ibase= 0. Furthermore, the 
averages are computed in 30 sec’ time window. 

The mean spiking rates against the noise variance 
at different noise variance used to show the comparison 
between the three curves as shown in Fig. 4. The 
proposed model was quite close to the microscopic 
simulations. In addition, after the noise variance 
increases, the difference between spike frequencies 
becomes smaller. Where the membrane size for 
potassium is 1710, for sodium is 5700, for calcium is 
1520 and Ibase= 3. The averages are computed in 30 sec’  

Table 3: Different parameter values of the membrane 

Ionic current 
Reflection potential 
(mV) 

The conductance 

(mS/cm2) 
Sodium (Na+) ENa = 110 x1 = 130 
Potassium (K+) EK = -15 x2 = 40 
Leakage (L) EL = 10.5 x3 = 0.2 
Calcium (Ca2+) ECa=126 x4 = 36 

 

 
 

Fig. 5: The mean spiking rates against the noise variance 

 

 
 

Fig. 6: The relationship between noise variance and the spike 

frequency 

 

time window. Table, 3 illustrate different parameter’s 

values of the membrane used in Fig. 4. 

Meanwhile, the mean spiking rates against the 

noise variance at different noise variance used in the 

simulations to show the comparison between the three 

curves as clarified in Fig. 5. The result showed that the 

proposed model was affected by noise variance more 

than the Linaro model. Where the membrane size for 

potassium is 1710 and for sodium is 5700, Ibase= 5, 

threshold = 0. 005 and the averages are computed in 30 

seconds’ time window. 

Additionally, the relationship between noise 

variance and the spike frequency at different noise 

variance used to show the comparison between the 

three curves as illustrated in Fig. 6. Where the 

membrane size for potassium is 3525, calcium is 3525, 

sodium is 11750 and Ibase= 12, threshold = 0. 005. And 

the simulation time window is 30 sec  

Figure 7 shows how the speed of spike frequency 

as the noise variance increases for both the proposed 

model  and  Linaro model. Furthermore,  different noise  
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Fig. 7: Spike frequency against noise variance for the 

proposed model and Linaro model 

 

variance with large membrane size used to show the 

comparison between the three curves. Whoever, the 

membrane patch composed of 3525 of potassium 

channels and 11750 of sodium channels and Ibase= 14, 

threshold = 0. 005. As well as the averages are 

computed in 30 sec’ time window. 

A series of experiments has been used to examine 

the effectiveness of the colored noise terms in the 

proposed model in a relative manner with the 

Microscopic simulation, as mentioned above. Hence, it 

can be seen that the performance of the proposed model 

was quite similar to the microscopic simulations. Thus, 

whatever Figs. have been driven out as a result, there is 

a difference between the spike frequency of the HH, 

Fox-Lu and Linaro equations and the proposed model, 

which is actually containing the spikes from 

microscopic simulation. 

In addition, the difference between spike 

frequencies becomes smaller when the noise variance 

increases. If the colored noise is included in the 

equations, it is noticeable that the spike frequency is 

very consistent with the microscopic simulation. 

 

CONCLUSION 

 

The Hodgkin-Huxley type models accept a set of 

parameters as input and generate voltage data 

describing the behavior of the neuron. Proposed model 

solving the Hodgkin-Huxley equations for a set of input 

parameters refers to integrating the equations in order to 

obtain the resulting simulated Gaussian noise and the 

voltage (potassium, sodium) channels. In addition, the 

channel noise neuron model was studied well under the 

influence of varying input signal and it has been 

discovered that to be the main cause in the unusual 

increases in the cell excitability and in spontaneous 

firing membrane size should be small enough. 

Moreover, it was discovered that the proposed model 

keeps on advancing the spontaneous firing even if 

membrane size is larger, wherever the gate of noise is 

insufficient  for  activating  the  cell.  According  to  the  

experimental results, the spiking rate generated from 
the model is extremely close to the one from the actual 
simulation, doesn’t effect by the membrane size. In 
difference, the rate generated through an increase in 
noise variance, the Fox-Lu and Linaro equation was 
almost similar as compared to the spikes from the 
model and it will be more accurate. Experimental 
results also highlight the mean spiking rates against 
noise, which was introduced by a different membrane 
size Ibase and noise variance, in which three curves 
represent the competition between the microscopic 
simulation with the proposed model and Fox-Lu and 
Linaro equation, which showed that the proposed model 
has worked quite similar to the microscopic 
simulations. Overall, the motivation for this study is to 
clarify a proposed model, deliberative and rigorous 
methodology for parameter estimation for the Fox-Lu 
and Linaro models that overcomes all the limitations of 
current parameter estimation methodologies. An 
important outcome of this methodology is that the 
proposed model allows researchers to study hypotheses 
that could not have been studied using any other 
parameter estimation method.  
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