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Abstract: The aim of this research is to estimate the reference evapotranspiration ETo as given by FAO-56 PM 
equation in Basrah city, southern Iraq by using several climatic inputs data including maximum monthly mean air 
temperature, minimum monthly mean air temperature, monthly mean relative humidity and monthly mean wind 
speed. Three artificial intelligent systems (generalized regression neural network GRNN, multi-layer perceptron 
MLP and adaptive neuro-fuzzy inference systems ANFIS) were used for predicting reference evapotranspiration. 
Root mean squared error and coefficient of determination were used as comparison criteria for evaluation of 
performance of all the developed models. The results shown that the models performances of multi-layer perceptron 
models are better than adaptive neuro-fuzzy inference systems models and slightly better than generalized regression 
neural network models with different inputs combination. A Committee Machine with Intelligent Systems (CMIS) 
was constructed for estimation of ETo by integrating the results of predicting ETo from GRNN, MLP and ANFIS, 
each of them has a weight factor representing its contribution in overall estimation. The results illustrated that the 
performance of committee machine with intelligent systems is better than any one of the individual artificial 
intelligent systems for predicting ETo. 
 
Keywords: Adaptive neuro-fuzzy inference systems, artificial neural network, basrah, committee machine, 

evapotranspiration, Iraq 
 

INTRODUCTION 
 

Evapotranspiration (ET) is a term used to denote 
all processes that converting the existing water on the 
surface into water steam. ET is an essential component 
in global water energy and carbon cycles and thus 
provides a link between the atmosphere and the Earth’s 
surface (Tang et al., 2014). The accurate estimation of 
ET is important for studying hydrological water 
balance, design of irrigation systems, simulation of crop 
yield and even efficient planning of water resources 
projects (Kumar et al., 2011). However, ET is a 
complex process because it depends on different factors 
such as weather data and growth stage of the crop 
(Trajkovic and Kolakovic, 2009). To avoid the need to 
calibrate a separate ET equation for each crop and stage 
of growth, the concept of reference evapotranspiration 
(ET0) was introduced by Allen et al. (1998). ET0 is 
defined as the rate of ET from a hypothetical crop with 
an assumed crop height of (0.12 m), a fixed surface 
resistance of (70 sec/m) and an albedo of (0.23), which 

would closely resemble ET from an extensive surface 
of green grass of uniform height, activity growing, 
well-watered and completely shading the ground.  

The importance of ET0 in hydrological and 
agricultural studies leads to develop different 
instruments and methodologies to estimate it. The ET0 
can be directly measured using either lysimeter field 
instrument, water balance approach, or estimated 
indirectly using the climatological data (Kumar et al., 
2011). Unfortunately, the available lysimeter data are 
very limited or sometimes non-existent in developing 
countries. Because of these difficulties in estimating 
ET0, the indirect ET0 estimation methodologic which 
are essentially depending on an easy to capture 
meteorological data become more popular. In recent 
few decades, numerous methodologies, classified as 
temperature-based, radiation-based, pan-evaporation-
based and combination-type, have been developed for 
estimating ET0 (Trajkovic and Kolakovic, 2009). One 
of the methodologies that are widely used to estimate 
ET0 is the FAO Penman-Monteith method. 
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The Penman-Monteith method is an accurate 
method for estimating evapotranspiration and can be 
used in different regimes (Kumar et al., 2002). The 
effectiveness of this method for estimating ET0 and for 
evaluating other equations have been indicated by many 
studies (Pereira and Pruitt, 2004; López-Urrea et al., 
2006; Gavilān et al., 2006). The main advantages of 
Penman-Monteith equation are (Landeras et al., 2008): 
 
• It is applicable in different environments under 

different climatic scenarios without local 
calibration  

• The adapted equation has been validated using 
lysimeters data under a wide range of climatic 
conditions.  
 
The main disadvantage of this method is that it 

requires a large number of climatic variables such as air 
temperature, relative humidity, solar radiation and wind 
speed to compute ET0 which are not always available in 
meteorological stations or at least missing for a certain 
period. To fill this gap, many researchers attempted to 
use artificial intelligent techniques such as Artificial 
Neural Networks (ANNs), Adaptive Neuro-Fuzzy 
Inference System (ANFIS) and Genetic Programming 
to estimate ET0 with promising and successful results. 

Most of the previous studies mainly focused on one 
or more techniques for estimating ET0, independently. 
A Committee Machine (CM), or committee neural 
network, has a parallel architecture that produces a final 
output by combining the results of individual experts 
(Haykin, 1991). The experts may be neural networks, 
empirical formulas, or other algorithms (Chen and Lin, 
2006). The main advantage of CM technique is that it 
can lead to significant improvements in the 
performance on new data, with little extra 
computational effort. In fact, the combined response of 
the CM performs the best to those of its constituent 
experts. The efficacy of CM for estimating ET0 is not 
investigated yet; therefore, the objective of this study is 
to use three intelligent systems namely Generalized 
Regression Neural Network (GRNN), Multi-Layer 
Perceptron (MLP) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS) along with CM to develop more 
accurate model for estimating ET0 from available 
meteorological data in an arid region. The Basra City in 
southern Iraq has been selected to demonstrate the 
adapted methodology. The optimum weights for CM is 
optimally computed for the first time using Pattern 
Search (PS) optimization technique.  
 

MODELINGTECHNIQUSE 
 
Penman-monteith method: The FAO-56 PM method 
is recommended as highly accurate method for 

determining ET0. This method is a physically based 
approach and requires measurements of air temperature, 
relative humidity, solar radiation and wind speed as 
input to estimate ET0. In this study the FAO-56 PM 
method was used as a reference model for assessing the 
performance of the usedapproaches.FAO-56 PM 
equation which given by (Allen et al., 1998) is shown 
in Eq. (1): 
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where, 
ETo : Reference evapotranspiration [mm/day] 
Rn : Net radiation at the crop surface [MJ/m2/day] 
G : Soil heat flux density [MJ/m2/day2] 
T : Mean daily air temperature at 2 m height [°C] 
u2 : Wind speed at 2 m height [m/s] 
es : Saturation vapor pressure [kPa] 
ea : Actual vapour pressure [kPa] 
es-ea : Saturation vapour pressure deficit [kPa] 
∆ : Slope vapour pressure curve [kPa°C-1] 

γ : Psychrometric constant [kPa°C-1] 

 
Generalized Regression Neural Network (GRNN): 
GRNN is a variation of radial basis neural networks, 
which is designed for function approximation and 
regression (Alilou and Yaghmaee, 2015). GRNN is a 
universal approximation for smooth function, allowing 
it to solve any function approximation and estimate any 
continuous variables when giving enough data 
(Disorntetiwat, 2001). GRNN is a one-pass learning 
algorithm with a highly parallel structure (Specht, 
1991). Basically, GRNN consists of four layer (Fig. 1); 
the input layer, the pattern layer, the summation layer 
and the output layer (Barzegar et al., 2016). The 
number of input units in input layer depends on the total 
number of the observation parameters (Hannan et al., 
2010). The first layer feeds the inputs to the second 
layer, where each unit represents a training input 
pattern. In the second layer (pattern layer) the 
Euclidean distance and activation function are 
calculated. The pattern layer is connected with the 
weights of the summation layer to the two neurons in 
the summation layer. Summation layer has two subparts 
namely Numerator and Denominator parts. Summation 
of the multiplication of training data and activation 
function continued within Numerator part, while the 
summation of all activation function implement in 
Numerator part. The summation layer feeds both the 
Numerator and Denominator to the next output layer. 
Equations (2 and 3) show the output layer which 
dividing the Numerator part by that of each
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Fig. 1: Block diagram of GRNN architecture 

 
Denominator part yielding the predicted values of an 
unknown input vector x (Specht, 1991): 
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where, 
Wi  : The weight connection between the ith neuron in 

the pattern layer and summation neuron 
n : The number of the training patterns 
D : The Gaussian function 
m : The number of elements of an input vector 
xk,xik : The jth element of x and xi, respectively 
σ : The spread parameter, whose optimal value is 

determined experimentally 
 

During the training process, the error is measured 
by the Means Squared Error (MSE). The training 
process is repeated for several times with different 
spread factors until the network is optimized according 
to the minimum amount of MSE or a pre-defined 
threshold value (Kisi et al., 2015). 
 
Multi-Layer Perceptron (MLP): The limitations of 
single layer artificial neural network have led to 
development of multi-layer feed-forward networks with 
one or more hidden layers, called Multi-Layer 
Perceptron (MLP) networks. MLP networks overcome 
many of the limitations of single layer perceptrons. 
Multi-Layer Perceptron (MLP) is artificial neural 
network, the computation in MLP is performed using a 
set of many simple units with weighted connections 
between them. MLP is a feed-forward artificial neural 

network model that maps sets of input data onto a set of 
appropriate outputs. MLP consists of multiple layers of 
nodes; each layer is fully connected with another one. 
Node is called a neuron (or processing element) with a 
nonlinear activation function. MLP utilizes a supervised 
learning technique called back-propagation for training 
the network (Rumelhart and McClelland, 1986). 

Learning occurs in the perceptron by changing 
connection weights after each piece of data is 
processed, based on the amount of error in the output 
compared to the expected result (target). Figure 2 show 
the two-layered feed forward neural networks with 
sigmoid hidden neurons and linear output neurons. This 
network includes a nonlinear activation function. The 
important point to emphasize here is that the smoothly 
nonlinearity (i.e., differentiable everywhere), as 
opposed to the hard limiting used in Rosenblatt's 
perceptron. A commonly used form of nonlinearity that 
satisfies this requirement is a sigmoid nonlinearity 
defined by the logistic function which shown in Eq. (4): 
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where, 
 ;௜ : The output of the neuronݕ
 ௝ : The induced local field of neuron j (i.e., theݒ

weighted sum of all synaptic inputs plus the bias). 
 

The explicit expression for an output value of MLP 
as shown in Eq. (5) (Nourani and Babakhani, 2013): 
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where, 
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Fig. 2: Two-layered feed forward neural networks 
 

௝ܹ௜ : A weight in the hidden layer connecting the 
ithneuron in the input layer and the jth neuron 
in the hiddenlayer 

௝ܹ௢ : The bias for the jth hidden neuron 
௛݂ : The activation function of the hidden neuron 

௞ܹ௝ : A weight in the output layer connecting the jth 
neuron in the hidden layer and the kth neuron 
in the output layer 

௞ܹ௢ : The bias for the kth output neuron 
௢݂ : The activation function for the output neuron 
௜ܺ : ith input variable for input layer 

 ௞ : Computed output variableݕ
&ேܯ ேܰ : The number of the neurons in the input and 

hidden layers, respectively 
 

MLP has been applied successfully to solve 
difficult problems in different cases with a highly 
popular algorithm known as the error back-propagation 
algorithm. This algorithm is based on the error-
connection learning rule. 
 
Adaptive Neuro-Fuzzy Inference Systems (ANFIS): 
Adaptive Neuro Fuzzy Inference System (ANFIS) is a 
fuzzy mapping algorithm that is based on Takagi-
Sugeno fuzzy inference system. It integrates both neural 
networks and fuzzy logic principles (Loukas, 2001). 
The parameters associated with the membership 
functions changes through the learning process. The 
computation of these parameters (or their adjustment) is 
facilitated by a gradient vector. This gradient vector 
provides a measure of how well the fuzzy inference 
system is modeling the input/output data for a given set 
of parameters. When the gradient vector is obtained, 
any of several optimization routines can be applied in 
order to adjust the parameters to reduce some error 
measure. This error measure is usually defined by the 

sum of the squared difference between actual and 
desired outputs. The shape of membership functions is 
obtained in neuro-fuzzy by training them with 
input/output data rather than specifying them manually. 
The ANFIS consists of five layers (Fig. 3), the basic 
functions of each layer are the input, fuzzification, rule 
inference, normalization and defuzzification. 

ANFIS can be represented as a linear arrangement 
of input variables and a constant term as described by 
Eq. (6) (Hossen et al.,2013): 
 

:݈݅݁ݑܴ ௜ଶܨݏ௞ଶ݅ݔܦܰܣ௜ଵܨݏ௞ଵ݅ݔ݂ܫ …  ݏ௞௠݅ݔܦܰܣ
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where, 
ሺ݅ ݈݅݁ݑܴ ൌ 1,2, … , ܰሻ : The ith fuzzy rule 
௞௝ሺ݆ݔ ൌ 1,2, … , ݉ሻ : The jth input variable of the 

kth pattern vector 
 ௜௝ : A fuzzy variable of the jthܨ

input variable in the ith rule 
П௝ୀଵ

௠  : A fuzzy T-norm operator 
 ௜ : A rule firing-strength of the ithݓ

rule 
 ௜ : The ith rule outputݕ
 The overall output : ݕ
 

The clustering algorithm is used in this research, 
the clustering algorithm is a method which is usually 
employed to discover a cluster center and inform the 
position of heart (center) of each cluster (Stoffel et al., 
2012). It provides a method that shows how to group 
data points that populate some multidimensional space 
into a specific number of different clusters (Elleithy, 
2010). 
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Table 1: The monthly statistical summary of data set used in this study 
Variable Xmean Xmax Xmin SD Cv K Correlation with ET0 
T (°C) 26.41 40.20 9.40 9.49 35.94 -0.14 0.95 
RH (%) 41.29 80.00 17.00 17.38 42.08 0.43 -0.93 
U2 4.15 7.70 1.70 1.13 27.20 0.70 0.73 
ET0 8.02 17.78 1.80 4.47 55.56 0.29 1.00 
 
Arabia and Islamic Republic of Iran. It is located 
between longitude line (47° 30'-48° 30') and latitude 
line (30°00'-30° 30') as shown in (Fig. 5). Basrah has a 
hot desert climate, like the rest of the surrounding 
region, though it receives slightly more 
precipitation than inland locations due to its location 
near the Arabian Gulf. During the summer months, 
from June to August, Basrah is consistently one of the 
hottest cities on the world, with temperatures regularly 
exceeding 50°C in July and August. In winter, Basrah 
experiences mild weather with average high 
temperatures around 20°C. At some winter nights, 
minimum temperatures may be reaching to 0°C. The 
City experience high humidity, sometimes exceeding 
90%, due to its location close to the Arabian Gulf. 
Basrah is relatively an agricultural area where palm 
trees, fruit and vegetables are planted. Basrah is also 
known for planting tomatoes in Safwan-Al Zubair area 
(south west of center city) in winter season, which 
supplies the tomatoes demands of other Iraqi Provinces.  

The climate information used in this research was 
obtained from the meteorological recording station in 
Hi Al-Hussain at the center of the Basrah City (Fig. 
5).The samples data which consist of 22 years (1991-
2012) monthly records of maximum monthly mean air 
temperature (Tmax), minimum monthly mean air 
temperature (Tmin), monthly mean Relative Humidity 
(RH) and monthly mean wind speed at 2 m above the 
ground surface (U2). A statistical summary of these 
variables with obtained ET0by using Penman-Monteith 
equation (FAO-56 PM) is presented in Table 1. The RH 
shows low variation if comparing with T and U2. On 
the other hand, U2 have the lowest correlation with ET0 
and have high skewed and distribution. All variables 
seem to be effective parameters on ET0 with respect to 
correlation values. The inputs T, RH and U2 and output 
ET0 values were used for the constructing intelligent 
models. Three models for each intelligent system with 
different inputs combination are employed. The 
information and input variables for these models are 
shown in Table 2. 

Two statistical errors namely, Root Mean Squared 
Error (RMSE) and Coefficient of Determination (R2) 
are used to evaluate the performance of the developed 
models. The RMSE and R2are computed as shown in 
Eq. (17 and 18): 
 

ܧܵܯܴ ൌ ሺ
∑ ሺ௒ೕି௒෠ೕ

೙
ೕసభ ሻమ

௡
ሻଵ/ଶ             (17) 

Table 2: Different inputs combination of models with their intelligent 
systems 

Model no. Input variables Intelligent system 
1 Tmin, Tmax GRNN 
2 Tmin, Tmax, RH  
3 Tmin, Tmax, RH, U2  
4 Tmin, Tmax MLP 
5 Tmin, Tmax, RH  
6 Tmin, Tmax, RH, U2  
7 Tmin, Tmax ANFIS 
8 Tmin, Tmax, RH  
9 Tmin, Tmax, RH, U2  
 
Table 3: The GRNN spread values for different combination inputs 
Model no. Input variables Spread value 
1 Tmin, Tmax 0.02 
2 Tmin, Tmax, RH 0.02 
3 Tmin, Tmax, RH, U2 0.04 
 

ܴଶ ൌ 1 െ
∑ ሺ௒ೕି௒෠ೕ

೙
ೕసభ ሻమ

∑ ሺ௒ೕି௒ത೙
ೕసభ ሻమ                            (18) 

 
where, 
ܻ& ෠ܻ : The observed and estimated values 

respectively 
݊ : The number of observations 
Y ഥ and ෠ܻ  : The mean of observed and estimated values 
 

The RMSE shows the goodness of fit relevant to 
high values. The R2 shows the degree to which two 
variables are linearly related (Karunanidhi et al.,1994). 
In case of GRNN, the output value is estimated using 
weighted average of the training dataset, where the 
weight is calculated using the Euclidean distance 
between the training and testing data. If the weight or 
distance is large, then the weight will be very less and if 
the distance is small, it will put more weight to the 
output. The decision that is required for each of the 
models inputs is the selection of the appropriate 
smoothing factors to be applied. For different input 
combinations, the optimum spread for the GRNN 
model was determined according to the MSE criterion. 
The determined spread values for different combination 
inputs are shown in Table 3. 

A two-layer feed forward network with sigmoid 
hidden neurons and linear output neurons is used in the 
present research. The network is trained with 
Levenberg-Marquardt back propagation algorithm. 
Many researchers employed the Levenberg-Marquardt 
algorithm which is an approximation to Newton’s 
method for adjusting the weights of the ANN model 
because it is more powerful than the conventional 
gradient descent techniques (Kişi, 2007). The optimal 
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number of neurons in the hidden layer is determined 
using trial and error method and found to be (20). The 
model is evaluated by the testing data set which is not 
used during the training phase. The total number of 
observations is 264 samples; these observations are 
divided into three parts. 60% (158 samples) for training, 
these are presented to the network during training and 
the network is adjusted according to its error. 20% (53 
samples) is used for validating part; this set of data is 
used for measuring the generalization of network and to 
halt training when generalization stops improving. 
Also, the testing part is taken as the same percentage of 
validation test (20%, 53 samples), these have no effect 
on training and so provide an independent measure of 
network performance during and after training.  

In this research, a subtractive clustering method is 
used for extraction of clusters and fuzzy if-then rules 
for ANFIS model. The subtractive clustering algorithm 
is an attractive approach to the synthesis of ANFIS 
networks, which estimates the cluster number and its 
cluster location automatically. By using this method, 
each sample point is seen as a potential cluster center. 
Computation time in this method becomes linearly 
proportional to data size, but independent of the 
dimension problem under consideration. The effective 
and important parameter in subtractive clustering which 
controls number of clusters and fuzzy if-then rules is 
clustering radius. This parameter is ranged of (0, 1). 
The training error can be controlled by adjusting 
clustering radius. Specifying a smaller cluster radius 
usually yields smaller clusters and more rules, a large 
cluster radius when approaching to one yields few large 
cluster in the data and few rules. Optimum clustering 
radius is determined by performing subtractive 
clustering network for several times, with changing 
radius value between (0, 1), leads to different number 
of if-then rules that could be established. According to 
the RMSE, the best fuzzy model is selected. The 
observations are divided into two statistically parts. 
80% (211 samples) for training, these are presented to 
the network during training and the network is adjusted 
according to its error. 20% (53 samples) is used for 
checking part. The checking data is used for both 
checking and testing the fuzzy inference system 
parameters. Here, chkRMSE is the root mean square 
error of the system generated by the checking data. 
Table 4 show that the best value of clustering radius 
which equal to (0.3) is associated with lowest value of 
chkRMSE which equal to (1.1228) for model No. (7). 
By the same way, Table 5 and 6 show the optimum 
value of clustering radius with lowest value chkRMSE 
for model No. (8) and model No. (9), respectively.  

A Gaussian membership function (mf) is selected 
to the extracted input clusters. The normal distribution 
of input data is carried out by using Gaussian function 
f(x) as shown in Eq. (19): 

Table 4: Clustering radius with root mean square error generated by 
the checking data of model No. (7) 

Clustering radius No. of rules chkRMSE
1 2 1.1899
0.9 2 1.1837
0.8 2 1.1847
0.7 2 1.1740
0.6 3 1.1908
0.5 3 1.1734
0.4 4 1.1582
0.3 5 1.1228
0.2 10 1.2279
0.1 26 1.3915
 
Table 5: Clustering radius with root mean square error generated by 

the checking data of model no. (8) 
Clustering radius No. of rules chkRMSE
1 2 1.1567
0.9 2 1.1594
0.8 2 1.1594
0.7 3 1.0951
0.6 3 1.1247
0.5 3 1.1318
0.4 4 1.1459
0.3 5 1.0826
0.2 10 1.2402
0.1 42 1.4865
 
Table 6: Clustering radius with root mean square error generated by 

the checking data of model no. (9) 
Clustering radius No. of rules chkRMSE
1 2 0.2497
0.9 2 0.2786
0.8 3 0.2141
0.7 3 0.1737
0.6 4 0.1689
0.5 5 0.1816 
0.4 6 0.2149
0.3 12 0.2074
0.2 21 0.3503
0.1 116 0.9572
 

݂ሺݔሻ ൌ ௘షሺೣషഋሻమ/഑మ

ఙ√ଶగ
              (19) 

 
where, 
 σ : The parameter of normal distribution showing&ߤ

the mean and standard deviation of data, 
respectively.  

 
The mean represents the cluster center, while, the 

standard deviation is calculated by the following 
function: 
 
ߪ ൌ ሺ݅݅݀ܽݎ ൈ ሺmaxሺ݀ܽܽݐሻ െ minሺ݀ܽܽݐሻሻሻ/ݐݎݍݏሺ8.0ሻ
                (20) 
 

The Gaussian membership function parameters for 
the models of ANFIS are shown in Table 7. 

Output of each Membership Function (mf) is linear 
equation consist of equation parameters multiply by 
input variable. For example, output mf1 in model No. 
(7), which is the consequent of rule no. 1 is constructed 
from two climatic inputs Tmin and Tmax as shown in Eq. 
(21): 
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Table 7: The gaussian membership function parameters for the models of intelligent system (ANFIS) 
 Model No. (7) 

----------------------------------------------------------------------- 
    

Inputs 
parameters 

Min. Temperature 
--------------------------------- 

Max. Temperature 
--------------------------------- 

    

σ µ σ µ     
Input mf No.     
mf1 2.896 9.3 3.986 20.2     
mf2 2.896 14.5 3.986 26.3     
mf3 2.896 20.4 3.986 35.3     
mf4 2.896 25.8 3.986 42.1     
mf5 2.896 28 3.986 45.3     

 Model No. (8) 
-------------------------------------------------------------------------------------------------------------- 

  

Inputs 
parameters 

Min. Temperature 
--------------------------------- 

Max. Temperature 
--------------------------------- 

Relative humidity 
--------------------------------- 

  

σ µ σ µ σ µ   
Input mf No.   
mf1 2.896 9.3 3.638 20.2 6.682 22   
mf2 2.896 13.3 3.638 26.5 6.682 27   
mf3 2.896 20 3.638 34.1 6.682 41   
mf4 2.896 25.1 3.638 42.7 6.682 53   
mf5 2.896 29 3.638 45.4 6.682 67   

 Model No. (9) 
----------------------------------------------------------------------------------------------------------------------------------------------------------

Inputs 
parameters 

Min. Temperature 
--------------------------------- 

Max. Temperature 
---------------------------------- 

Relative humidity 
---------------------------------- 

Wind speed 
--------------------------------------

σ µ σ µ σ µ σ µ 
Input mf No. 
mf1 5.791 9.628 7.276 21.7 13.36 24 1.273 3.6 
mf2 5.791 20 7.276 34.1 13.36 25 1.273 3.8 
mf3 5.791 25.9 7.276 43.3 13.36 41 1.273 4.7 
mf4 5.791 29.6 7.276 46.1 13.36 60 1.273 6.8 
 
Table 8: Membership functions parameters 

Output mf No. 

Model No. (7) 
----------------------------------------------------------------------------------------------------------------------------------------------- 
C1 C2  C3 C4 C5 

mf1 -0.090 0.204 -0.458   
mf2 -1.744   -1.093  122.894   
mf3 -0.060 0.251 -1.1   
mf4 -0.156   -0.204  17.137   
mf5 -1.121   -1.42  89.065   
Model No. (8)      
mf1 -0.960   -0.241  0.009 54.861  
mf2  0.006 0.101 -0.061 4.740  
mf3 -0.664   -0.098  0.0 29.183  
mf4  0.292   -0.178 -0.104 10.528  
mf5  0.002   -0.144 -0.011 12.390  
Model No. (9)      
mf1  0.122 0.1223 -0.08297 1.421 -0.9129 
mf2  0.06974 0.06057 -0.06034 0.3155 3.791 
mf3  0.105 0.1037 -0.05619 1.06 -0.2413 
mf4 -0.05656 0.4549 -0.1661 1.343 -8.69 
 

1݂݉ݐݑ݌ݐݑ݋ ൌ ܿ1 ൈ ܶ݉݅݊ ൅ ܿ2 ൈ ݔܽ݉ܶ ൅ ܿ3       (21)  
 
where, 
ܿ1 &ܿ2 : The coefficients corresponding to Tmin and 

Tmax inputs, respectively 
ܿ3 : The constant  

 
Parameters in the above Eq. (21) are determined by 

linear least squares estimation. The other parameters of 

ANFIS models corresponding with different inputs 
combination are shown in Table 8. 

Pattern search method was used to determine 
optimal combination of the weights for construction 
CMIS. The fitness function for PS can be expressed as 
follows: 
 
஼ெூௌܧܵܯ ൌ ∑ 1/݊ሺݓଵ݋ଵ௜ ൅ ଶ௜݋ଶݓ ൅ ଷ௜݋ଷଵݓ െ ௜ܶሻଶ௡

௜ୀଵ
                (22) 
 



where, 
 ஼ெூௌܧܵܯ
,ଵݓ ଶandݓ

௜ܶ 

݊ 
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