Research Journal of Applied Sciences, Engineering and Technology 14(10): 386-398, 2017
DOI:10.19026/rjaset.14.5131

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2017 Maxwell Scientific Publication Corp.
Submitted: May 15, 2017

Accepted: June 23, 2017 Published: October 15,2017

Research Article
A Committee Machine with Intelligent Systems for Estimating Monthly Mean Reference
Evapotranspiration in an Arid Region

'Ali H. Al-Aboodi, >Alaa M. Al-Abadi and 'Husham T. Ibrahim
'Department of Civil Engineering, College of Engineering, University of Basrah, Basrah, Iraq
*Department of Geology, College of Sciences, University of Basrah, Basrah, Iraq

Abstract: The aim of this research is to estimate the reference evapotranspiration ET, as given by FAO-56 PM
equation in Basrah city, southern Iraq by using several climatic inputs data including maximum monthly mean air
temperature, minimum monthly mean air temperature, monthly mean relative humidity and monthly mean wind
speed. Three artificial intelligent systems (generalized regression neural network GRNN, multi-layer perceptron
MLP and adaptive neuro-fuzzy inference systems ANFIS) were used for predicting reference evapotranspiration.
Root mean squared error and coefficient of determination were used as comparison criteria for evaluation of
performance of all the developed models. The results shown that the models performances of multi-layer perceptron
models are better than adaptive neuro-fuzzy inference systems models and slightly better than generalized regression
neural network models with different inputs combination. A Committee Machine with Intelligent Systems (CMIS)
was constructed for estimation of ET, by integrating the results of predicting ET, from GRNN, MLP and ANFIS,
each of them has a weight factor representing its contribution in overall estimation. The results illustrated that the
performance of committee machine with intelligent systems is better than any one of the individual artificial
intelligent systems for predicting ET,,.
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INTRODUCTION

Evapotranspiration (ET) is a term used to denote
all processes that converting the existing water on the
surface into water steam. ET is an essential component
in global water energy and carbon cycles and thus
provides a link between the atmosphere and the Earth’s
surface (Tang et al., 2014). The accurate estimation of
ET is important for studying hydrological water
balance, design of irrigation systems, simulation of crop
yield and even efficient planning of water resources
projects (Kumar et al., 2011). However, ET is a
complex process because it depends on different factors
such as weather data and growth stage of the crop
(Trajkovic and Kolakovic, 2009). To avoid the need to
calibrate a separate ET equation for each crop and stage
of growth, the concept of reference evapotranspiration
(ET,) was introduced by Allen et al. (1998). ET, is
defined as the rate of ET from a hypothetical crop with
an assumed crop height of (0.12 m), a fixed surface
resistance of (70 sec/m) and an albedo of (0.23), which

would closely resemble ET from an extensive surface
of green grass of uniform height, activity growing,
well-watered and completely shading the ground.

The importance of ET, in hydrological and
agricultural studies leads to develop different
instruments and methodologies to estimate it. The ET,
can be directly measured using either lysimeter field
instrument, water balance approach, or estimated
indirectly using the climatological data (Kumar et al.,
2011). Unfortunately, the available lysimeter data are
very limited or sometimes non-existent in developing
countries. Because of these difficulties in estimating
ET,, the indirect ET, estimation methodologic which
are essentially depending on an easy to capture
meteorological data become more popular. In recent
few decades, numerous methodologies, classified as
temperature-based, radiation-based, pan-evaporation-
based and combination-type, have been developed for
estimating ET, (Trajkovic and Kolakovic, 2009). One
of the methodologies that are widely used to estimate
ET, is the FAO Penman-Monteith method.
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The Penman-Monteith method is an accurate
method for estimating evapotranspiration and can be
used in different regimes (Kumar et al., 2002). The
effectiveness of this method for estimating ET, and for
evaluating other equations have been indicated by many
studies (Pereira and Pruitt, 2004; Lopez-Urrea et al.,
2006; Gavilan et al., 2006). The main advantages of
Penman-Monteith equation are (Landeras et al., 2008):

It is applicable in different environments under
different climatic scenarios without local
calibration
The adapted equation has been validated using
lysimeters data under a wide range of climatic
conditions.

The main disadvantage of this method is that it
requires a large number of climatic variables such as air
temperature, relative humidity, solar radiation and wind
speed to compute ET, which are not always available in
meteorological stations or at least missing for a certain
period. To fill this gap, many researchers attempted to
use artificial intelligent techniques such as Artificial
Neural Networks (ANNs), Adaptive Neuro-Fuzzy
Inference System (ANFIS) and Genetic Programming
to estimate ET, with promising and successful results.

Most of the previous studies mainly focused on one
or more techniques for estimating ET,, independently.
A Committee Machine (CM), or committee neural
network, has a parallel architecture that produces a final
output by combining the results of individual experts
(Haykin, 1991). The experts may be neural networks,
empirical formulas, or other algorithms (Chen and Lin,
2006). The main advantage of CM technique is that it
can lead to significant improvements in the
performance on new data, with little extra
computational effort. In fact, the combined response of
the CM performs the best to those of its constituent
experts. The efficacy of CM for estimating ET, is not
investigated yet; therefore, the objective of this study is
to use three intelligent systems namely Generalized
Regression Neural Network (GRNN), Multi-Layer
Perceptron (MLP) and Adaptive Neuro-Fuzzy Inference
System (ANFIS) along with CM to develop more
accurate model for estimating ET, from available
meteorological data in an arid region. The Basra City in
southern Iraq has been selected to demonstrate the
adapted methodology. The optimum weights for CM is
optimally computed for the first time using Pattern
Search (PS) optimization technique.

MODELINGTECHNIQUSE

Penman-monteith method: The FAO-56 PM method
is recommended as highly accurate method for
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determining ET,. This method is a physically based
approach and requires measurements of air temperature,
relative humidity, solar radiation and wind speed as
input to estimate ET,. In this study the FAO-56 PM
method was used as a reference model for assessing the
performance of the usedapproaches.FAO-56 PM
equation which given by (Allen et al., 1998) is shown
in Eq. (1):

0.408A(R, —G)+y 900 Uy(es —€y)
ET = T+273 (1)

’ A+ y(1+0.34u,)
where,
ET, :Reference evapotranspiration [mm/day]
Rn  : Net radiation at the crop surface [MJ/m*/day]
G :Soil heat flux density [MJ/m*/day’]
T : Mean daily air temperature at 2 m height [°C]
u, : Wind speed at 2 m height [m/s]
€s : Saturation vapor pressure [kPa]
€a : Actual vapour pressure [kPa]
€€, : Saturation vapour pressure deficit [kPa]
A : Slope vapour pressure curve [kPa°C™']
y : Psychrometric constant [kPa°C™]

Generalized Regression Neural Network (GRNN):
GRNN is a variation of radial basis neural networks,
which is designed for function approximation and
regression (Alilou and Yaghmaee, 2015). GRNN is a
universal approximation for smooth function, allowing
it to solve any function approximation and estimate any
continuous variables when giving enough data
(Disorntetiwat, 2001). GRNN is a one-pass learning
algorithm with a highly parallel structure (Specht,
1991). Basically, GRNN consists of four layer (Fig. 1);
the input layer, the pattern layer, the summation layer
and the output layer (Barzegar et al., 2016). The
number of input units in input layer depends on the total
number of the observation parameters (Hannan et al.,
2010). The first layer feeds the inputs to the second
layer, where each unit represents a training input
pattern. In the second layer (pattern layer) the
Euclidean distance and activation function are
calculated. The pattern layer is connected with the
weights of the summation layer to the two neurons in
the summation layer. Summation layer has two subparts
namely Numerator and Denominator parts. Summation
of the multiplication of training data and activation
function continued within Numerator part, while the
summation of all activation function implement in
Numerator part. The summation layer feeds both the
Numerator and Denominator to the next output layer.
Equations (2 and 3) show the output layer which
dividing the Numerator part by that of each
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Fig. 1: Block diagram of GRNN architecture

Denominator part yielding the predicted values of an
unknown input vector x (Specht, 1991):

SW; exp(- D(x ;)

= @)
> exp(~ D(x, x; ))
i=1
2
m/@ x. —X;:
D(x.x;)= z( ' 'k] 3)
k=1 o
where,
W; :The weight connection between the i neuron in
the pattern layer and summation neuron
n : The number of the training patterns
D  : The Gaussian function
m  : The number of elements of an input vector
XXk : The jth element of X and X;, respectively
6 :The spread parameter, whose optimal value is

determined experimentally

During the training process, the error is measured
by the Means Squared Error (MSE). The training
process is repeated for several times with different
spread factors until the network is optimized according
to the minimum amount of MSE or a pre-defined
threshold value (Kisi et al., 2015).

Multi-Layer Perceptron (MLP): The limitations of
single layer artificial neural network have led to
development of multi-layer feed-forward networks with
one or more hidden layers, called Multi-Layer
Perceptron (MLP) networks. MLP networks overcome
many of the limitations of single layer perceptrons.
Multi-Layer Perceptron (MLP) is artificial neural
network, the computation in MLP is performed using a
set of many simple units with weighted connections
between them. MLP is a feed-forward artificial neural

388

network model that maps sets of input data onto a set of
appropriate outputs. MLP consists of multiple layers of
nodes; each layer is fully connected with another one.
Node is called a neuron (or processing element) with a
nonlinear activation function. MLP utilizes a supervised
learning technique called back-propagation for training
the network (Rumelhart and McClelland, 1986).
Learning occurs in the perceptron by changing
connection weights after each piece of data is
processed, based on the amount of error in the output
compared to the expected result (target). Figure 2 show
the two-layered feed forward neural networks with
sigmoid hidden neurons and linear output neurons. This
network includes a nonlinear activation function. The
important point to emphasize here is that the smoothly
nonlinearity (i.e., differentiable everywhere), as
opposed to the hard limiting used in Rosenblatt's
perceptron. A commonly used form of nonlinearity that
satisfies this requirement is a sigmoid nonlinearity
defined by the logistic function which shown in Eq. (4):

1
Yi = “)
1+ expi— Vj ’
where,
y; :The output of the neuron;
v; :The induced local field of neuron j (i.e., the

weighted sum of all synaptic inputs plus the bias).

The explicit expression for an output value of MLP
as shown in Eq. (5) (Nourani and Babakhani, 2013):

My Ny
Vi = f. Z\Nkj : fh(Z\NjiXi +WjoJ+Wko
o1 i1

)

where,
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Fig. 2: Two-layered feed forward neural networks

Wi : A weight in the hidden layer connecting the
i"neuron in the input layer and the jth neuron
in the hiddenlayer

Wi, : The bias for the j™ hidden neuron

fn : The activation function of the hidden neuron

Wy : A weight in the output layer connecting the j™
neuron in the hidden layer and the k™ neuron
in the output layer

Wio : The bias for the k"™ output neuron

fo : The activation function for the output neuron

X; - i™ input variable for input layer

Vi : Computed output variable

My &Ny : The number of the neurons in the input and
hidden layers, respectively

MLP has been applied successfully to solve
difficult problems in different cases with a highly
popular algorithm known as the error back-propagation
algorithm. This algorithm is based on the error-
connection learning rule.

Adaptive Neuro-Fuzzy Inference Systems (ANFIS):
Adaptive Neuro Fuzzy Inference System (ANFIS) is a
fuzzy mapping algorithm that is based on Takagi-
Sugeno fuzzy inference system. It integrates both neural
networks and fuzzy logic principles (Loukas, 2001).
The parameters associated with the membership
functions changes through the learning process. The
computation of these parameters (or their adjustment) is
facilitated by a gradient vector. This gradient vector
provides a measure of how well the fuzzy inference
system is modeling the input/output data for a given set
of parameters. When the gradient vector is obtained,
any of several optimization routines can be applied in
order to adjust the parameters to reduce some error
measure. This error measure is usually defined by the

Hidden layer

Qutput layer

> Output signal

sum of the squared difference between actual and
desired outputs. The shape of membership functions is
obtained in neuro-fuzzy by training them with
input/output data rather than specifying them manually.
The ANFIS consists of five layers (Fig. 3), the basic
functions of each layer are the input, fuzzification, rule
inference, normalization and defuzzification.

ANFIS can be represented as a linear arrangement
of input variables and a constant term as described by
Eq. (6) (Hossen et al.,2013):

Rulei: Ifx1isF;;ANDx,,isF;, ... AND xyp is
FinTHENY; = cjo + CiaXp1 + - + CimXkm

T wiyi ™. F

S owy = 15, Fij () (6)

y - Z{jvzlwi

where,
Rulei (i = 1,2,...,N)
ij(j = 1,2, ,m)

: The i" fuzzy rule
: The j™ input variable of the
k™ pattern vector

Fy; :A fuzzy variable of the j"
input variable in the i rule

2, : A fuzzy T-norm operator

w; : A rule firing-strength of the i"
rule

Vi : The i rule output

y : The overall output

The clustering algorithm is used in this research,
the clustering algorithm is a method which is usually
employed to discover a cluster center and inform the
position of heart (center) of each cluster (Stoffel et al.,
2012). It provides a method that shows how to group
data points that populate some multidimensional space
into a specific number of different clusters (Elleithy,
2010).
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Layer 1

Fig. 3: ANFIS architecture

Committee Machine with Intelligent Systems
(CMIS): The standard practices with artificial neural
networks or any other intelligent systems to train many
different candidate networks or systems, then the best
one is selected according to the comparison criteria,
such as statistical criteria (for example, the selection is
based on the performance of an independent validation
test) while discarding the rest. There are two
disadvantages in this method:

e All the effort involved in training of the discarded
networks is wasted

Randomness of the noise in the data, which have
the best validation set performance, will not
necessarily have the best test set performance.

These disadvantages can be overcome by
combining the intelligent systems together to form a
Committee Machine with Intelligent Systems (CMIS);
the importance of this procedure is that lead to
significant improvements in the performance on new
data, with little extra computational effort. The
committee often does better than the best single
constituent network in isolation (Bagheripour and
Asoodeh, 2014).

The idea behind the committee machine is to fuse
the knowledge acquired by experts in order to arrive at
an overall decision that is superior to that of any of the
individual experts acting alone (Haykin, 1991). The
assumption is that, there are N trained intelligent
systems with output vector O;, which are used to predict
target vector T. The prediction error could be written
asshown below (Bhatt and Helle, 2002; Lim, 2005;
Chen and Lin, 2006; Kadkhodaie-Ilkhchi et al., 2009;
Ghiasi-Freez et al., 2012):

el=01—T(l=1,,N) (7)

The expectation of the squared error for the ith
intelligent system (O;) is:

E; = §[(0; — T)?] = ¢[ef] ®)

where,

$[-]

: The expectation

Layer 3
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Layer 4

"

The average error for each intelligent systems is
shown in Eq. (9):

Eavg = 1N ENL B = (D T, Elef] ©)

Applying the averaging method, output vector O;
of the CMIS is shown in Eq. (10):
Ocmis = 1/N Z?]=1 0; (10)

The prediction-squared error of CMIS is shown in
Eq. (11):

Ecmis = €[(0; — T)Z] =¢[(1/N Z?’=1 0; — T)z] =
Lie)?] (11)

§I(A/N X
Considering Cauchy's inequality:

i=1

(aby + ayb, + -+ apby)? < (af + a3 + -+ a2) X

(b% + b3 + -+ b2) (12)
Equations (9) and (11) can be extended as below:
; 1 ‘\2
Eoyis = f[(w/]r]
=E;—:(el><1+93><1+---+e,,—><1]3 (13)
Fawg =3IE Ele?] =L (eF + el + +ef) x
(1+1+---+1)=§%(e§+e§+---+e§-)x(N) (14)

Cauchy's inequality can be applied to Eq. (13) and (14):

‘_‘%(elxl+ez><1+‘--+e_\,-Xl)ziz—,(ef"'ez:"'
e+ el) X (V)

(15)

By a simple substitution of two sides of Eq. (14), it
will be concluded that:
(16)

ECMIS < Eavg

The error of CMIS is less than or equal to the
average of all the intelligent systems (Lim, 2005). A
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Fig. 4: Schematic diagram of CM model

schematic diagram of the developed CMIS is shown in
(Fig. 4). There are different methods of combining the
intelligent systems outputs in the combiner. The simple
ensemble averaging method is the popular one (Chen
and Lin, 2006). In the proposed CM in this research,
each of the intelligent models has a weight factor
defining its contribution in the overall estimation. A
pattern search optimization technique is used in this
study to derive the optimal combination of the weights.
PS is a family of numerical optimization methods that
does not require any information about the gradient of
the objective function. Unlike more traditional
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optimization methods that use information about the
gradient or higher derivatives to search for an optimal
point, a PS algorithm searches a set of points around the
current point, looking for one where the value of the
objective function is lower than the value at the current
point. It converges using the theory of positive bases
Yu, 1979).

STUDYAREAAND DATAPREPARATION

Basrah City is located on Shatt Al-Arab River in
southern Iraq and has borders with Kuwait, Saudi
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Fig. 5: Location of the study area
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Table 1: The monthly statistical summary of data set used in this study

Variable Kinean Kinax Kinin SD C, K Correlation with ET,
T (°C) 26.41 40.20 9.40 9.49 35.94 -0.14 0.95
RH (%) 41.29 80.00 17.00 17.38 42.08 043 -0.93
U, 4.15 7.70 1.70 1.13 27.20 0.70 0.73
ET, 8.02 17.78 1.80 4.47 55.56 0.29 1.00

Arabia and Islamic Republic of Iran. It is located
between longitude line (47° 30'-48° 30") and latitude
line (30°00'-30° 30') as shown in (Fig. 5). Basrah has a
hot desert climate, like the rest of the surrounding
region, though it receives  slightly = more
precipitation than inland locations due to its location
near the Arabian Gulf. During the summer months,
from June to August, Basrah is consistently one of the
hottest cities on the world, with temperatures regularly
exceeding 50°C in July and August. In winter, Basrah
experiences mild weather with average high
temperatures around 20°C. At some winter nights,
minimum temperatures may be reaching to 0°C. The
City experience high humidity, sometimes exceeding
90%, due to its location close to the Arabian Gulf.
Basrah is relatively an agricultural area where palm
trees, fruit and vegetables are planted. Basrah is also
known for planting tomatoes in Safwan-Al Zubair area
(south west of center city) in winter season, which
supplies the tomatoes demands of other Iraqi Provinces.

The climate information used in this research was
obtained from the meteorological recording station in
Hi Al-Hussain at the center of the Basrah City (Fig.
5).The samples data which consist of 22 years (1991-
2012) monthly records of maximum monthly mean air
temperature (Tp.c), minimum monthly mean air
temperature (T,,;,), monthly mean Relative Humidity
(RH) and monthly mean wind speed at 2 m above the
ground surface (U,). A statistical summary of these
variables with obtained EToby using Penman-Monteith
equation (FAO-56 PM) is presented in Table 1. The RH
shows low variation if comparing with T and U,. On
the other hand, U, have the lowest correlation with ET,
and have high skewed and distribution. All variables
seem to be effective parameters on ET, with respect to
correlation values. The inputs T, RH and U, and output
ET, values were used for the constructing intelligent
models. Three models for each intelligent system with
different inputs combination are employed. The
information and input variables for these models are
shown in Table 2.

Two statistical errors namely, Root Mean Squared
Error (RMSE) and Coefficient of Determination (R?)
are used to evaluate the performance of the developed
models. The RMSE and R’are computed as shown in
Eq. (17 and 18):

n VN2
RMSE = (21=1(+Y1))1/2 (17)

Table 2:Different inputs combination of models with their intelligent

systems
Model no. Input variables Intelligent system
1 Thnins Trnax GRNN
2 Thin, Tinax, RH
3 Thins Trmax, RH, Uy
4 Thnins Trnax MLP
5 Thin, Tinax, RH
6 Thnins Trmax, RH, Uy
7 Thnins Trnax ANFIS
8 Thin, Tinax, RH
9 Tonins Trmax, RH, Uy

Table 3: The GRNN spread values for different combination inputs

Model no. Input variables Spread value
1 Thnins Tiax 0.02
2 Thin> Trnax, RH 0.02
3 Thin, Trax, RH, Uy 0.04
R? =1 - D" (18)
S (V;-T)
where,
Y&Y :The observed and estimated values
respectively
n : The number of observations
Y and ¥ : The mean of observed and estimated values

The RMSE shows the goodness of fit relevant to
high values. The R? shows the degree to which two
variables are linearly related (Karunanidhi et al.,1994).
In case of GRNN, the output value is estimated using
weighted average of the training dataset, where the
weight is calculated using the Euclidean distance
between the training and testing data. If the weight or
distance is large, then the weight will be very less and if
the distance is small, it will put more weight to the
output. The decision that is required for each of the
models inputs is the selection of the appropriate
smoothing factors to be applied. For different input
combinations, the optimum spread for the GRNN
model was determined according to the MSE criterion.
The determined spread values for different combination
inputs are shown in Table 3.

A two-layer feed forward network with sigmoid
hidden neurons and linear output neurons is used in the
present research. The network is trained with
Levenberg-Marquardt back propagation algorithm.
Many researchers employed the Levenberg-Marquardt
algorithm which is an approximation to Newton’s
method for adjusting the weights of the ANN model
because it is more powerful than the conventional
gradient descent techniques (Kisi, 2007). The optimal



Res. J. Appl. Sci. Eng. Technol., 14(10): 386-398, 2017

number of neurons in the hidden layer is determined
using trial and error method and found to be (20). The
model is evaluated by the testing data set which is not
used during the training phase. The total number of
observations is 264 samples; these observations are
divided into three parts. 60% (158 samples) for training,
these are presented to the network during training and
the network is adjusted according to its error. 20% (53
samples) is used for validating part; this set of data is
used for measuring the generalization of network and to
halt training when generalization stops improving.
Also, the testing part is taken as the same percentage of
validation test (20%, 53 samples), these have no effect
on training and so provide an independent measure of
network performance during and after training.

In this research, a subtractive clustering method is
used for extraction of clusters and fuzzy if-then rules
for ANFIS model. The subtractive clustering algorithm
is an attractive approach to the synthesis of ANFIS
networks, which estimates the cluster number and its
cluster location automatically. By using this method,
each sample point is seen as a potential cluster center.
Computation time in this method becomes linearly
proportional to data size, but independent of the
dimension problem under consideration. The effective
and important parameter in subtractive clustering which
controls number of clusters and fuzzy if-then rules is
clustering radius. This parameter is ranged of (0, 1).
The training error can be controlled by adjusting
clustering radius. Specifying a smaller cluster radius
usually yields smaller clusters and more rules, a large
cluster radius when approaching to one yields few large
cluster in the data and few rules. Optimum clustering
radius is determined by performing subtractive
clustering network for several times, with changing
radius value between (0, 1), leads to different number
of if-then rules that could be established. According to
the RMSE, the best fuzzy model is selected. The
observations are divided into two statistically parts.
80% (211 samples) for training, these are presented to
the network during training and the network is adjusted
according to its error. 20% (53 samples) is used for
checking part. The checking data is used for both
checking and testing the fuzzy inference system
parameters. Here, chkRMSE is the root mean square
error of the system generated by the checking data.
Table 4 show that the best value of clustering radius
which equal to (0.3) is associated with lowest value of
chkRMSE which equal to (1.1228) for model No. (7).
By the same way, Table 5 and 6 show the optimum
value of clustering radius with lowest value chkRMSE
for model No. (8) and model No. (9), respectively.

A Gaussian membership function (mf) is selected
to the extracted input clusters. The normal distribution
of input data is carried out by using Gaussian function
f(x) as shown in Eq. (19):
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Table 4:Clustering radius with root mean square error generated by
the checking data of model No. (7)

Clustering radius No. of rules chkRMSE
1 2 1.1899
0.9 2 1.1837
0.8 2 1.1847
0.7 2 1.1740
0.6 3 1.1908
0.5 3 1.1734
0.4 4 1.1582
0.3 5 1.1228
0.2 10 1.2279
0.1 26 1.3915

Table 5:Clustering radius with root mean square error generated by
the checking data of model no. (8)

Clustering radius No. of rules chkRMSE
1 2 1.1567
0.9 2 1.1594
0.8 2 1.1594
0.7 3 1.0951
0.6 3 1.1247
0.5 3 1.1318
0.4 4 1.1459
0.3 5 1.0826
0.2 10 1.2402
0.1 42 1.4865

Table 6:Clustering radius with root mean square error generated by
the checking data of model no. (9)

Clustering radius No. of rules chkRMSE
1 2 0.2497
0.9 2 0.2786
0.8 3 0.2141
0.7 3 0.1737
0.6 4 0.1689
0.5 5 0.1816
0.4 6 0.2149
0.3 12 0.2074
0.2 21 0.3503

0.1 116 0.9572

e~ (-w?/o?
fo0 = 19)

where,

u&ac : The parameter of normal distribution showing
the mean and standard deviation of data,
respectively.

The mean represents the cluster center, while, the
standard deviation is calculated by the following
function:

o = (radii X (max(data) — min(data)))/sqrt(8.0)
(20)

The Gaussian membership function parameters for
the models of ANFIS are shown in Table 7.

Output of each Membership Function (mf) is linear
equation consist of equation parameters multiply by
input variable. For example, output mfl in model No.
(7), which is the consequent of rule no. 1 is constructed
from two climatic inputs T, and T, as shown in Eq.
(21):
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Table 7: The gaussian membership function parameters for the models of intelligent system (ANFIS)

Model No. (7)

Min. Temperature

Max. Temperature

Inputs
parameters [ n o n
Input mf No.
mfl 2.896 9.3 3.986 20.2
mf2 2.896 14.5 3.986 26.3
mf3 2.896 20.4 3.986 353
mf4 2.896 25.8 3.986 42.1
mf5 2.896 28 3.986 453

Model No. (8)

Min. Temperature Max. Temperature Relative humidity
Inputs
parameters c i c u c i
Input mf No.
mfl 2.896 9.3 3.638 20.2 6.682 22
mf2 2.896 13.3 3.638 26.5 6.682 27
mf3 2.896 20 3.638 34.1 6.682 41
mf4 2.896 25.1 3.638 42.7 6.682 53
mf5 2.896 29 3.638 45.4 6.682 67

Model No. (9)

Min. Temperature Max. Temperature Relative humidity Wind speed
Inputs
parameters c u c u c i o n
Input mf No.
mfl 5.791 9.628 7.276 21.7 13.36 24 1.273 3.6
mf2 5.791 20 7.276 34.1 13.36 25 1.273 3.8
mf3 5.791 259 7.276 433 13.36 41 1.273 4.7
mf4 5.791 29.6 7.276 46.1 13.36 60 1.273 6.8
Table 8: Membership functions parameters

Model No. (7)

Output mf No. Cl C2 C3 C4 C5
mfl -0.090 0.204 -0.458
mf2 -1.744 -1.093 122.894
mf3 -0.060 0.251 -1.1
mf4 -0.156 -0.204 17.137
mf5 -1.121 -1.42 89.065
Model No. (8)
mfl -0.960 -0.241 0.009 54.861
mf2 0.006 0.101 -0.061 4.740
mf3 -0.664 -0.098 0.0 29.183
mf4 0.292 -0.178 -0.104 10.528
mf5 0.002 -0.144 -0.011 12.390
Model No. (9)
mfl 0.122 0.1223 -0.08297 1.421 -0.9129
mf2 0.06974 0.06057 -0.06034 0.3155 3.791
mf3 0.105 0.1037 -0.05619 1.06 -0.2413
mf4 -0.05656 0.4549 -0.1661 1.343 -8.69

outputmf1 = c1 X Tmin + c2 X Tmax + c3 21

where,

c1 &c2 :The coefficients corresponding to T and
Tmax inputs, respectively

c3 : The constant

Parameters in the above Eq. (21) are determined by
linear least squares estimation. The other parameters of

ANFIS models corresponding with different inputs
combination are shown in Table 8.

Pattern search method was used to determine
optimal combination of the weights for construction
CMIS. The fitness function for PS can be expressed as
follows:

MSEcys = Xiey 1/n(w104; + W05 + w3103 — T;)?
(22)
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where,
MSEcy;s
w;, wyandw,

: The mean square error of CMIS

: The weight factors corresponding to
GRNN (04;), MLP (0,;) and ANFIS
(03;) predictions, respectively.

T; :The ET, value (as given by the
FAO-56 PM equation)
n : The number of training data (158
samples).
RESULTSAND DISCUSSION

Table 9 show the results of applying three
intelligent models used in this study with prediction
accuracy. Results illustrated that the MLP models are
better than ANFIS models and slightly better than
GRNN models. Add RH as inputs in addition to the
Tmin and T, increases the model's performances by
reducing RMSE 35.07%, 36.84% and 3.58% and
increasing R? by 2.96%, 1.33% and 0.62% for models
No. (2, 5 and 8), respectively. Adding U, to the inputs
combinations (T, Tmax, RH) increases the model's
performance by reducing RMSE 61.54%, 72.74%
and11.58% and increasing R* by 0.76%, 1.76% and
1.91% for models No. (3, 6 and 9) respectively.

Output of the best performance models from the
previous steps, were then used an input for constructing
CM model for the overall estimation of ET,. Each
intelligent model has a weigh factor representing its
contribution in overall estimation. At the first part,
CMIS is constructed to obtain optimum combination of
the weights with models that have only two inputs
climatic data Ty, and T, Then, the weights obtained
from pattern search method as shown below:

ETocanis = 0401 X ETpppone1 noa + 0.445 X

ETopoaer voa + 0.154 X EToppoqe1 o7 (23)

At the second part, CMIS is constructed to obtain
optimum combination of the weights with models that
have only three inputs climatic data (Tmin, Tmax,
RH).Then, the weights obtained from pattern search
method as shown below:

ET,cais = 0.398 X ET p10de1 Noz + 0451 X

ETop0de1 o5 + 0151 X ETopo0¢1 o (24)

Table 9: R? and RMSE of intelligent system models in testing period
Intelligent

Model No. system R? RMSE
1 GRNN 0.9513 1.0075
2 0.9795 0.6542
3 0.9870 0.2516
4 MLP 0.9589 0.9481
5 0.9717 0.5988
6 0.9888 0.1632
7 ANFIS 0.9396 1.1228
8 0.9454 1.0826
9 0.9635 0.9572
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Fig. 6: Comparative plot in the testing period for ET, given
by the FAO-56 PM equation and ET, estimated by
artificial intelligent models for models 1, 2 and 3

RMSE of predicted ET, from CMIS with models
that have only two inputs climatic data is 0.8321 and R
is 0.9623. There is a significant improvement in the
models' performance when comparison with best model
of intelligent system (MLP), by reducing
RMSEby12.23% and increasing R* by 0.35%. Also,
when applying CMIS with models that have three
inputs climatic data, the values of RMSE and R’ are
0.4251 and 0.9823 respectively. Reducing RMSE by
29.01% and increasing R* by 1.09% comparison with
best model of intelligent system (MLP). Figure 6 to 8
presents the details of the target and estimated monthly
reference evapotranspiration by artificial intelligent
models, while Fig. 9 presents the details of the target
and estimated ET, by CMIS with models have two
inputs climatic data (a) and models have three inputs
climatic data (b).
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have three inputs climatic data

CONCLUSION

In this study, three artificial intelligent systems
(GRNN, MLP and ANFIS) were used for predicting
ET, in Basrah city, southern Iraq. Root Mean Squared
Error (RMSE) and coefficient of determination (R?)
were used as evaluation criteria. At general, the models'
performances of MLP models were better than ANFIS
models and slightly better than GRNN models with
different inputs com2bination. The Relative humidity is
added to the models with two inputs combination (T,
Tmax), the models' performances is increased by
reducing RMSE by 35.07%, 36.84% and 3.58%
andincreasing R* by 2.96%, 1.33% and 0.62% for
models No. (2, 5 and 8) respectively. In similar way,
wind speed (U,) is added also to other inputs
combination to study the effect of each parameter on
ET,. The models' performances with this case is
increased by reducing RMSE by 61.54%, 72.74% and
11.58% and increasing R* by 0.76%, 1.76% and 1.91%
for models No. (3, 6 and 9) respectively. Wind speed
has more effective than relative humidity. In other part
of study, a CMIS was constructed for the overall
estimation of ET, by integrating the results of
predicting ET, from GRNN, MLP and ANFIS, each of
them has a weight factor representing its contribution in
overall estimation. The values of RMSE and R* when
using the concept of CMIS for predicting ET, with
models that have only two inputs climatic data (T,

Tmax) are 0.8321 and 0.9623 respectively. There is a
significant improvement in the models' performance
when comparison with best model of artificial
intelligent system (MLP) by reducing RMSE by
12.23% and increasing R* by 0.35%. When applying
CMIS with models have three inputs climatic data
(Timax> Tmin» RH), the values of RMSE and R? are 0.4251
and 0.9823 respectively. As can be seen, that RMSE is
reduced by 29.01% and R* is increased by 1.09%
comparison with best model of intelligent system
(MLP). This indicates that CMIS has a significant
improvement for estimation of ET,,.
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