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Abstract: The main objective of this research is to evaluate the effect of sentinel multispectral images on estimating 

shallow water depth using linear bathymetry model. Multispectral image data was integrated with available echo 

sounding and GPS data for the determination of the bathymetry after tide correction in three areas on Delta coast 

i.e., Kitchiner, Damietta and Rashid. Three visible and one near infrared band (Top of Atmospheric Reflectance 

level, with 10 m resolution) were used in models derivation. Sentinel image bands were geometrically and 

atmospherically corrected and sun glint was removed prior to bathymetry models estimation. Three models with ln 

function were the derivates using Ordinary Least Square (OLS) modeling tool under ArcGIS environment. The 

results indicated that Adjusted R-Squared for the three estimated bathymetry models were 0.68, 0.62 and 0.72 for 

Damietta, Rashid and Kitchiner areas respectively. About 75% of the residual values ranged from -1.63 to 1.3 m for 

Damietta points and 50% of the residual values were between -0.39 to 0.57 m for Rashid and about 65% between -

0.76 to 0.97 m for Kitchiner. Hence it can be concluded that these predicted models provide time- and cost-effective 

solution for Shallow water depths estimation. 
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INTRODUCTION 

 
Bathymetry information is one of the important 

parameters which plays a major role in planning near-
shore structure activities such as engineering work, 
pipeline laying, port management and dredging 
operation. It is also significantly important to determine 
the underwater topography, movement of sediments 
and to generate the hydrographic chart for safety 
transportation. Monitoring batihymetry throughout the 
year is essential for sediment level prediction to 
maintain smooth navigation. The traditional 
bathymetric surveying of shallow sea water based on 
ship-borne echo sounding operations is costly and time 
consuming, where a dense network of measured points 
is required. On the other hand remotely sensed data 
have provided a cost-and time-effective solution to 
accurate    depth  estimation   (Lyzenga, 1985; Stumpf 
et al., 2003; Su et al., 2008). 

In the following years, the advance of remote 
sensing technology expanded the use of these 
methodologies to data with improved spatial and 
spectral resolution, like Ikonos (Stumpf et al., 2003; 
Mishra et al., 2004; Su et al., 2008), Quickbird (Conger 
et al., 2006; Lyons et al., 2011)  and  Worldview-2 data  

(Kerr, 2011; Bramante et al., 2013). The main 

hindrances while applying these processes were 

reflectance  penetration  and  water   turbidity (Conger 

et al., 2006; Su et al., 2008; Negm et al., 2016). 

However, the bathymetric approaches involving 

satellite imagery data are regarded as a fast and 

economically advantageous solution to automatic water 

depth calculation in shallow water (Stumpf et al., 2003; 

Su et al., 2008). 

A wide variety of empirical models has been 

evaluated for bathymetric by applying relationship 

between image pixel values and field-measured water 

depth values. The popular approach was examined by 

Lyzenga (1978, 1981, 1985) and was based on the 

bottom-reflected reflectance is approximately a linear 

function of the bottom reflectance and an exponential 

function of the water depth. Stumpf et al. (2003) 

presented an algorithm using a ratio of reflectance and 

demonstrated its benefits to retrieve depths even in deep 

water (>25 m) contrary to standard linear transform 

algorithm. Moreover, a modified version of Lyzenga’s 

model has been proposed by Conger et al. (2006) 

employing a single color band and LIDAR bathymetry 

data rather than two color bands in rotating process. 
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The main objective of this research is to evaluate 
the effect of sentinel multispectral images on estimating 
shallow water depth using linear bathymetry model. 
This study was, therefore, undertaken to:  
 

• Evaluate the contribution of visible and near 
infrared bands of sentinel-2A imagery in 
estimating shallow water bathymetry for the three 
study areas along the delta coast of Egypt 

• Derivate the linear bathymetric models using echo 
sounding data for calibration 

• To study the effect of both sun glint removal and 
atmospheric correction on imagery data and in turn 
on shallow water bathymetry model performance. 

 
Linear bathymetric model: The relationship between 
an observed reflectance Rw and the corresponding water 
depth z and bottom reflectance Ad is described by 
Lyzenga (1978) as Eq. (1):  
 

Rw = (Ad - Rw) exp(-gz)+ Rdp                             (1) 
 
where, 
Rdp  = Dark pixel value 
g  = A function of the attenuation coefficients. 
 

Rearranging Eq. (1) depth z can be described as 
Eq. (2) (Stumpf et al., 2003): 
 

Z = g
-1
[ ln (Ad - Rw) – ln (Rw - Rdp)]               (2) 

 
where, (Rw –Rdp) is +ve 

The method of single band for depth estimation 
assumes that the bottom is homogeneous and the water 
quality is uniform for the whole study area. Lyzenga 
(1978, 1985) explained that using two bands could 
correct the errors coming from different bottom types 
considered that the ratio of the bottom reflectance 
between the two bands for all bottom types is constant 
over all scene pixels. According to this idea the 
proposed model is described in Eq. (3) (Lyzenga, 
1985): 
 

Z = a0 + aiXi +ajXj                              (3) 
 

where, 
Xi  = ln (Rwi-Rdpi) 
Xj  = ln (Rwj-Rdpj) 
 

Paredes and Spero (1983) proved that if there are at 
least as many bands as the existing bottom types in a 
study area, an independent from bottom types depth can 
be estimated. Lyzenga et al. (2006) proved that the n-
band model: 

 

� = �� + ∑ ����
�	

�	�                                  (4) 

 
where, Xi is described above, although derived under 
the assumption that the water optical properties are 
uniform (Lyzenga, 1978, 1985) gives depths that are 
not influenced by variations in water properties and/or 
bottom reflectance. This means that the more the 
available bands are, the better the depth estimation. 
According to Bramante et al. (2013) imagery data with 
multiplicity of bands should produce better results over 
heterogeneous study areas. From which this study will 
support this technique which based on Eq. (4). 
 

STUDY AREA AND DATA USED 
 

Models were carried out to estimate the depth of 
water for three study areas along the coast of Egypt. 
The three coastal areas are Damietta, which lies in the 
eastern part of the coast is about 9 km length and 1.5 
width; Rashid in the west with 7 km length and 1.2 km 
width; Kitchiner, lying in between is 8 km length and 
1.6 km width as demonstrated in Fig. 1. These three 
study areas were chosen (due to availability). The sea 
bottom changes smoothly and water is clear, besides 
that the shallower and the deeper water areas are sandy 
for all study areas.  

Sentinel -2A images is Level-1C product 
(orthorectified TOA reflectance) were used in this 
study. The imagery dataset used includes four bands, 
with spatial resolution 10 m: blue (490 nm), green (560 
nm), red (665 nm) and near-infrared (842 nm). The 
images were acquired in 19 September 2016. Despite 
the water clarity, the depths estimation was constrained 
by  image  noise  that   sun  glint  caused  by   appearing 

 
 

Fig. 1: Three study areas along Delta coast 
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sparsely in a great part of image scene. The bathymetric 
model was calibrated using echo-sounding data. The 
survey of the sea bottom was partly accomplished using 
12325, 3699 and 27415 measurements of depths that 
ranged from -11.7 m to 2.6 m for the three coastal study 
areas i.e., Damietta, Rashid and Kitchiner, respectively; 
beside using the GPS which corresponds to a horizontal 
position on the sea surface. The in situ echo-sounding 
data was collected by the (Coastal Research Institute 
(CORI), data reports 2015, 2013, 2016). Fotiou and 
Pikridas (2006) reported that the internal accuracy of 
depth measurements reached 10cm and the horizontal 
position as determined using the kinematic method 
showed a final accuracy of 5-6 cm. All data process 
was performed using manufacturer processing software, 
while the multispectral dataset was georeferenced to the 
system of the horizontal coordinates for the depth 
points.  
 

METHODOLOGY 
 
Imagery data pre-processing: The multispectral data 
(2, 3, 4, 8 bands) were layer stacked then georeferenced 
to UTM (zone 36) system and WGS84. Deglinting and 
atmospheric correction processes were made for every 
band to evaluate their effect on estimated depth values. 
The available sun glint removal methods are 
categorized depending on the applied water location 
and condition, either open ocean or shallow waters. Kay 
et al. (2009) provide a thorough review of deglinting 
methodologies. A popular one for shallow waters 
deglinting was proposed by Hochberg et al. (2003) and 
was based on the exploitation of the linear relationships 
between Near Infra-Red band (NIR) and every other 
visible bands of the sentinel images in a linear 
regression by using samples of isolated pixels from the 
whole image. Hedley et al. (2005) simplified the 
implementation of this method and made it more robust 
by using samples of image pixels. The effectiveness of 
this method relies on choice of the darkness pixel 
samples, reasonably deep and with evident glint (Green 
et al., 2000, Hedley et al., 2005, Edwards, 2010). The 
linear regression runs between the sample pixels of 
every visible band on y-axis and the corresponding 
pixels of NIR band on x axis. All the image pixels are 
deglinted according to Eq. (5) by (Hedley et al., 2005): 
 

R'i = Ri – bi (RNIR - MinNIR)                                  (5) 

 
where, 
Ri'  = The deglinted pixel value 
Ri  = The initial pixel value 
bi  = The regression line slope 
RNIR = The corresponding pixel value in NIR band 
MinNIR = The minimum NIR value existing in the 

sample 
 

The technique of Hedley et al. (2005) was applied 

in  this  study  on  the ‘glint’  image  bands  towards  the  

 
 

Fig. 2: Damietta coastal area with sample points for deglinted 

pixel of green visible band 
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Fig. 3: Damietta coastal area with sample points for deglinted 

pixel of green visible ban 

 

correction of sun-glint effect. Figure 2 and 3 describes 

the sample points and the deduced slope between green 

band and near infrared band for Damietta region (as an 

example). By applying extract multi values to Points 

tool (under Spatial Analyst toolset), cell values will be 

extracted at associated sample points locations for all 

raster bands and these values will be recorded to the 

attribute table of the resulted point feature class of 

raster values. 

After the glint correction, different atmospheric 

correction algorithm were tried in this study as follows: 

  

• Dark Object Subtraction (DOS), which is 

considered as the simplest way for atmospheric 

correction. In order to avoid negative differences 

between the image pixels and the dark pixel value, 

the histogram of every band was examined and a 

cut-off at its lower end was spotted. The value 

corresponding to this cut-off was considered as the 

dark pixel value (Benny and Dawson, 1983). 

• Sentinel-2 ATCOR under PCI Geomatics 

environment to turn TOA reflectance into Bottom-

Of-Atmospheric (BOA) reflectance. All algorithm 



 

 

Res. J. Appl. Sci. Eng. Technol., 15(2): 81-90, 2018 

 

84 

concerning different atmospheric information as 

aerosol type and climate condition, visibility map 

parameters, also haze and cloud masking 

parameters were applied. All these atmospheric 

correction algorithms and methods do not improve 

the correlation between estimated and measured 

depth in all study areas. 

 

Derivation of bathymetry models for the three 

coastal study areas: The linearity between the 

measured depth (using hydrographic survey for shallow 

water of coastal areas for Damietta, Rashid and 

Kitchiner and the corresponding pixel values (at TOA 

reflectance level) for every band were firstly evaluated 

after image geometric correction. And these linearity 

evaluations were carried out to test the most effective 

band on estimated depth values. Ordinary Least Square 

(OLS) regression was carried out between control 

points of known depth over the three coastal study areas 

and sentinel images bands: 2(Blue), 3(Green), 4 (Red) 

and 8(Near infrared). Different bands formulas and 

bands combinations were investigated and tested for the 

output model after and before transformation from Top 

of Atmospheric (TOA) correction to Ground of 

Atmospheric (GOA) correction and deglinated 

processes. After sequential statistical tests and outliers 

values removal, final models were defined.  

 

RESULTS AND DISCUSSION 

 

An increasing number of studies have shown that 

bathymetric information can be derived from optical 

satellite multispectral imagery at the spatial resolution 

of the source image. Various inversion models have 

been developed to convert image pixel values into 

depth estimates. The log-linear inversion model 

developed by Lyzenga (1978) is the most popular 

among them. Sun glint removal and atmospheric 

correction of remotely sensed data are essential 

processes prior to the application of a bathymetry 

model, as reported by Negm et al. (2016).  

The coefficient of determination (R
2
) between the 

true measured water depth values after tide correction 

and the corresponding pixel values for every band (at 

Top of atmospheric reflectance level) of the three study 

areas after geometric correction process is clarified in 

Table 1; where both the red and near-infra red bands 

showed the highest correlation for the three shallow 

water study areas. These highest correlation values 

indicate that these same bands will affect the resulted 

models for better estimation of depth values.  

 

The estimated model for Damietta area: Ordinary 

Least Square was carried out using multispectral bands 

(as independent variables) and 12325 control points (as 

dependent variable). These in situ measured depths 

spanned a range between -.4 and -11.7 m (with mean= - 

Table 1: The coefficient of determination (R2) between the measured 

corrected depth and the corresponding pixel values for each 

band (B, G, R, NIR) for the three study areas 

Study areas Bands 

R2 (Top of atmospheric 

reflectance) 

Damitta Blue 0.024 

 Green 0.021 
 Red 0.139 

 Near-Infrared 0.244 

Rashid Blue 0.016 
 Green 0.046 

 Red 0.103 

 Near-infrared 0.510 
Kitchiner Blue 0.359 

 Green 0.643 

 Red 0.696 
 Near-Infrared 0.696 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4: Relation between measured and estimated shallow 

water depth for Damietta coastal area 

 

5.95 and standard deviation = 2.47). The resulted OLS 

model for Damietta area is demonstrated as follows: 

 

Y= - 85.19 - 0.037 B+ 3.72 Lndeg_G - 10.56 

Lndeg_R + 26.22 Ln_NIR 

 

where, 

Y is Estimated depth for Damitta area 

Lndeg _G, Lndeg R, are Ln deglinated of Top of 

Atmospheric Reflectance for, Green and Red. Ln_NIR 

is Ln Reflectance for Near Infra-red band, B is Top of 

Atmospheric Reflectance.  

Figure 4 describes the linear relation between 

estimated and measured depth for Damietta coastal area  
Ideally the histogram which shows the difference 

between measured and estimated depth values 
expressed as resulted standardized residuals would 
match the normal curve. Figure 5a demonstrates the 
histogram of Damietta study area which does not look 
very different from the normal curve, which means that, 
the model is very little biased. 

Figure 5b demonstrates the predicted depth values 

from model on the x-axis and the accuracy of the 

prediction on the y-axis; the distance from the line at 0 

describes how bad the prediction was for that value.  
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                                                       (a)                                                                                        (b) 
 

 
 

(c) 

 

Fig. 5: (a): Histogram of standardized residuals; (b): Residual vs. predicted plot; (c): Random residuals for estimated model for 

Damietta coastal area 

 

The accuracy of the predicted model is quite good. 

Figure 5c demonstrates random residual values for 

Damietta model. It is clear from Fig. 6 and 7, that the 

highest residual values are for points nearby 

construction work inside the water, thus realizing the 

highlighted column of residual values on histogram and 

the corresponding ones on the image. About 75% of the 

residual values was between -1.63 and 1.38 m with 

standard deviation of 0.84. 

The output estimated bathymetry map for Damietta 

coastal area is showed below (Fig. 7). 

 

Rashid area model: Ordinary Least Square was carried 

out using multispectral bands (as independent variables) 

and 3699 in situe control points (as dependent 

variables), with in situe measurements depth spanned a 

range from -8.3 m to-2.5 m, with mean of -6.15 and 

standard deviation of 1.09. The resulted OLS model for 

Rashid coastal area is: 

 

Y = 18.69 + 0.86 Lndeg_B - 6.88 Lndeg _G + 

0.344 Lndeg _R + 1.677 NIR 
 
where, 

Y is estimated depth of shallow water for Rashid 

coastal area 

Lndeg_B, Lndeg_G, Lndeg_R are Ln deglinated of 

Top of Atmospheric Reflectance for Blue, Green and 

Red. NIR is Near Infra_red reflectance band.  

Figure 8 describes the linear relation between 

estimated and measured depth for Rashid coastal area 

(R
2
 = 0.62) 

The histogram of Standardized Residuals for 

Rashid coastal area is approximately taking the shape of 

normal curve which indicates that the model is also 

little biased. About 50% of the residual values ranges 

from -0.39 - 0.57 m. with Standard Deviation of 0.25 

m. The accuracy of the predicted model looks 

reasonable (Fig. 9a and 9b). Figure 9c demonstrates 

random residual values for Rashid model. 

The resulted output of estimated bathymetry map 

for Rashid coastal area is demonstrated as follows (Fig. 

10). 

 

Kitchiner area model: Ordinary Least Square was 

carried out between multispectral bands (as independent 

variables) and 27415 in situ control points (as
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Fig. 6: The positions of highest residual values for Damietta coastal area 

 

 
 

Fig. 7:  Predicted bathymetry map for Damietta coastal area 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 8: Relationship between measured and estimated shallow 

water depth for Rashid coastal area 

 
dependent variable), with measured depth spanned a 
range between -7.2 and 2.6 m with mean of -4.01 and 

R  = 0.62
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                                                   (a)                                         (b) 
                                                                     

 

 

(c) 

 

Fig. 9: (a): Histogram of Standardized Residuals; (b): Residual vs. Predicted Plot; (c): Random residuals for estimated model for 

Rashid coastal area 

 

 
 

Fig. 10:  Predicted bathymetry map for Rashid coastal area 

standard deviation of 1.5. The resulted OLS model for 

kitchiner area is demonstrated as follows: 

 

Y= -31.85 + 0.009 Deg_B - 0.002Deg_G + 0.014 

Deg_R + 0.019 NIR 

 

where,  

• Y is estimated depth of shallow water for kitchiner 

area 

• Deg_B, Deg_G, Deg_R, are Deglinated Top of 

Atmospheric Reflectance for blue, green red bands. 

NIR is near infrared reflectance band.  

 

Figure 11 describes the linear relationship between 

estimated and measured depth for Kitchiner coastal area 

(R
2
 = 0.72) 

The histogram of Standardized Residuals for 

kitchiner coastal area is approximately takeng the shape 

of normal curve (Fig. 12a) which also indicates very 

little biased model. About 65% of the residuals range 

between (-0.76 -0.97) m, with Standard Deviation = 

0.33 m. Figure 12b and 12c showed very good accuracy 

of the predicted kitchiner model. 
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Fig. 11: Relation between measured and estimated shallow water depth for Kitchiner coastal area 

 

 

            (a)                                                                             (b) 
 

 

 

(c) 

 

Fig. 12: (a): Histogram of standardized residuals; (b): Residual vs. predicted plot; (c): Random residuals for estimated model  for 

Kitchiner coastal area 

 

The resulted output of estimated bathymetry map 

for Kitchiner coastal area is demonstrated in Fig. 13. 

All resulted models gain some source of errors: 

First the date of Hydrographic in situe measurements is 

different from the acquisition date of the images (2016), 

where the depth for Kitchiner area was measured in 

2015, while that for Damitta area was measured in 

2013. Second the spatial resolution is not sufficient for 

these specific shallow water areas. Third the accuracy 

of georeference process of the images affects the 

overall accuracy of resulted model. Despite of all these 

source of errors the accuracy and the performance of 

the resulted models are still quite reasonable. 

 

CONCLUSION 

 

Bands 2(Blue), 3(green), 4(Red) and 8(NIR) of the 

sentinel     image    were     stacked,   then    they    were 
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Fig. 13: Predicted bathymetry map for Kitchiner coastal area 

 

geometrically corrected. The linear bathymetric models 

(using OLS method) were carried out on the image 

before and after removing sun glint and atmospheric 

correction to assess their influence on the predicted 

models. The image bands were integrated with the 

available echo sounding and GPS data for calibrating 

the models as well as for the analysis of the 

corresponding depths in the three study areas i.e., 

Kitchiner, Rashid and Damietta. Different functions as 

band combination and band ratio were tested for 

derivation of optimum models. It was found that using 

Ln function for most of the bands improved the 

estimated depth models. Also the outcomes of the 

statistical analysis indicated that the model provided 

very good results by integrating the four bands with 10 

m resolution in all models. The contribution of NIR and 

Red bands for the three areas were significant in all 

models. In this study, all models were improved after 

sun deglinated process. While atmospheric correction 

didn’t improve the models, despite the trials of different 

atmspheric correction algorithm such as: Dark Object 

Subtraction (DOS) and Sentinel-2 ATCOR under PCI 

Geomatics environment. All algorithm concerning 

different atmospheric information as aerosol type and 

climate condition, visibility map parameters, also haze 

and cloud masking parameters were applied and still 

didn’t improve the correlation between estimated and 

measured depth. In general, the resulted bathymetric 

models involving the imagery data of moderate spectral 

and spatial resolution produced fairly reasonable 

results. However, a thorough statistical analysis was 

required to optimize the selection of the appropriate 

spectral bands. Also efforts are needed to obtaining 

bathymetry data for the Nile Delta and elsewhere in 

Egypt. And this study considers as a part of a larger 

effort to evaluate various cost effective, relatively 

accurate and practical bathymetry survey methods. 
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