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Abstract: The aim of the study was the development of models that describe Laser beam welding process of 

maraging steel 250 sheets, based on measured experimental data. Maraging steel 250 is widely used in applications 

that require high strength steel. For example, in aerospace industry, to produce engine components, or in sports 

industry, to produce bicycle frames or golf club heads. In order to achieve a reliable and repeatable welding process, 

we investigated the influence of welding parameters on the welded process responses, i.e., weld penetration depth 

and bead width. Two modeling techniques for predicting weld bead geometry were developed and tested. One 

method is the Multiple Regression Analysis (MRA) which is widely used for modeling welding processes and the 

other is Artificial Intelligence (AI) technique, which is rarely applied for modeling welding processes. The MRA 

method uses polynomials to express the relations between bead geometry and welding parameters, while the AI 

method is more flexible and presents in the model terms with physical meaning. Both MRA and AI models present 

similar statistical quality of fit between the predicted values of bead geometry and the actual experimentally 

measured data. 
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INTRODUCTION 

 
Laser Beam Welding (LBW) is widely used in 

various industrial applications for high quality joining 
of mechanical elements (Schlüter, 2007). Due to the 
high power density of the laser beam, LBW is 
characterized by a narrow weld width and high 
penetration, a narrow heat-affected zone and minimal 
distortion of the workpiece. The selected combination 
of input parameters determines the geometry of the 
laser weld bead and its quality. The main input 
parameters that control process quality are laser power, 
welding speed, focal depth and shielding gas (Huang et 
al., 1991).  

In the current investigation, two methods are used 
to model weld bead formation: Multiple Regression 
Analysis (MRA); and Artificial Intelligence(AI), which 
uses evolutionary search of experimental data to 
determine mathematical equations. Wu and Ume (2012) 
applied stepwise regression analysis to predict 
penetration depth of butt welds in thin plates. Lee and 
Um (2000) modeled a gas metal arc welding process by 
using the multiple regression analysis and neural 
network. Benyouniset al. (2005) applied linear 
regression to model welding parameters to predict four 
responses: heat input, weld width, weld penetration and 
the geometry of the heat affected zone. Eureqa is an AI-

powered modeling engine that uses evolutionary search 
to determine mathematical equations that describe sets 
of data in their simplest form (Schmidt and Lipson, 
2009). The software automatically builds analytical 
models and allows experts to evaluate their physical 
meaning (Popraweetet al., 2010). Devrientet al. (2013) 
utilized Eureqa to fit welding parameters in a laser 
transmission welding of thermoplastics with dual 
clamping devices; however, they did not use it for weld 
modeling purposes. 

Additional method proposed by several researchers 
for modeling weld geometry in various welding 
processes, is Artificial Neural Network (ANN) (Ghosh 
et al., 2007; Kim et al., 2003). The model received by 
ANN method is typically a complicated mathematical 
expression that does not present any physical insight. 
Towsyfyanet al. (2013) showed that in modeling 
Submerged Arc Welding process the ANN method 
presented result that were in good agreement with the 
MRA method. 

In our study, the experimental plan was developed 
using a D-optimal design method. Twenty-three 
welding experiments and an additional three validation 
experiments were performed. Seven laser input 
parameters were measured in the experiment: laser 
power, welding speed, focal depth, focal diameter, 
shield  gas  nozzle  distance  from the workpiece, shield  
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Table 1: Welding parameters and their levels 

Parameter  Code 

Laser power LP 

Welding speed S 
Focal depth  F 

Shield gas tilt TET 

Focal diameter D 
Work piece cleanness CM 

Shield gas distance N 

 
gas tilt angle and the cleanness level of the workpiece’s 
surface.  

 

MATERIALS AND METHODS

 
Materials: Maraging steel 250 with chemical nominal 
composition in weight percent of 18.46% Ni, 8.3% Co, 
4.7% Mo, 0.45% Ti, 0.1% Al, 0.01% C and Fe balance, 
was used as workpiece material. The size of each 
welded plate was 200×100 mm and its thickness 4.5 
mm.  

 
Experiment plan and execution: The experiment was 
planned using D-optimal design (Heredia
2003). The D-optimality criterion seeks to maximize 
the determinant of the information matrix
specific experiment design. The independent input 
variables and their values are presented in Table1. 

Second order polynomials were fitted to the 
experimental data to obtain the regression equations. 
The general expression of the second order polynomials 
(Montgomery, 2001) is presented in Eq. (1):
 

2

0 i i ii ii ij i j
Y b b X b X b X X= + ∑ + ∑ + ∑

 
A multivariate regression method was applied to fit 

this explicit expression to the experimental data to 
identify the required bij coefficients (Montgomery, 
2001).  

The experiments were carried out using 4
Ytterbium Fiber Laser, model YLS-4000
IPG Laser GmbH. Pure argon was used as the shielding 
gas. The experimental setup is presented in Fig. 1. The 
experiment was performed according to the design table 
in random order to avoid systematic errors. Additional 
information about the experiment is available in (Katz 
et al., 2017). 

Two transverse specimens were cut from each 
weld. A standard metallographic cross
made for each transverse specimen. The bead profile 
geometry, i.e., penetration and width, was measured 
using an optical microscope. An integrated software 
package that amplifies the image ×100 allows 
measurement of weld bead dimensions within 0.001 
mm accuracy. The average of two measured profile 
parameters was logged for each experiment. Two 
examples of bead geometry cross-sections are shown in 
Fig. 2. On the left is a typical cross-section for a low 
laser power and low welding speed weld. On the right 
is  a  typical  cross-section  for  a  high 
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Unit L1 L2 

Watt 1000 2000 

m/min 2 3 
Mm 0 1.5 

Degrees 20 - 

Mm 0.378 0.513 
-  None Acetone 

Mm 6 10 

gas tilt angle and the cleanness level of the workpiece’s 

MATERIALS AND METHODS 

steel 250 with chemical nominal 
composition in weight percent of 18.46% Ni, 8.3% Co, 
4.7% Mo, 0.45% Ti, 0.1% Al, 0.01% C and Fe balance, 
was used as workpiece material. The size of each 
welded plate was 200×100 mm and its thickness 4.5 

The experiment was 
optimal design (Heredia-Langneret al., 

optimality criterion seeks to maximize 
information matrixX'X of a 

specific experiment design. The independent input 
variables and their values are presented in Table1.  

Second order polynomials were fitted to the 
experimental data to obtain the regression equations. 
The general expression of the second order polynomials 
(Montgomery, 2001) is presented in Eq. (1): 

i i ii ii ij i j
Y b b X b X b X X

(1) 

A multivariate regression method was applied to fit 
this explicit expression to the experimental data to 

coefficients (Montgomery, 

The experiments were carried out using 4-kW 
4000-CT-WW from 

IPG Laser GmbH. Pure argon was used as the shielding 
gas. The experimental setup is presented in Fig. 1. The 
experiment was performed according to the design table 
in random order to avoid systematic errors. Additional 

available in (Katz 

Two transverse specimens were cut from each 
weld. A standard metallographic cross-section was 
made for each transverse specimen. The bead profile 
geometry, i.e., penetration and width, was measured 

cope. An integrated software 
package that amplifies the image ×100 allows 
measurement of weld bead dimensions within 0.001 
mm accuracy. The average of two measured profile 
parameters was logged for each experiment. Two 

ons are shown in 
section for a low 

laser power and low welding speed weld. On the right 
high  laser power and  

 
Fig. 1: Experimental setup 

 

 

 
Fig. 2: Measured bead geometry (on the left: low power & 

low welding speed weld; on the right: high power and 

high welding speed weld) 

 

high welding speed weld, the images were a

using the method in (Steiner and Katz, 2007).

During the welding process, 

workpiece is produced by the laser beam and it depends 

on welding speed. The value of 

calculated    for    each  experiment, 

L3 

3000 

5 
3 

30 

0.693 
Polish+ Acetone 

15 

 

 

 

(on the left: low power & 

low welding speed weld; on the right: high power and 

high welding speed weld, the images were analyzed 

using the method in (Steiner and Katz, 2007). 

During the welding process, heat input to the 

workpiece is produced by the laser beam and it depends 

on welding speed. The value of heat input can be 

experiment,   sinceheat   input =  
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Table 2: Experimental design matrix and experimental responses 

LP (watt) 

Welding parameters 

------------------------------------------------------------------------------------------------------------------- 

Measured responses 

----------------------------------- 

S (m/min) F (mm) TET (deg) D (mm) CM N (mm) 

Penetration 

depth 

Weld 

width 

2000 3 1.5 20 0.378 L1 10 2.565 2.513 

2000 2 0 30 0.513 L3 15 2.64 2.23 
1000 2 0 30 0.378 L1 6 1.97 1.961 

1000 5 0 30 0.693 L3 15 0.633 1.16 

2000 5 0 30 0.693 L2 6 1.209 2.08 
1000 2 1.5 30 0.693 L2 15 1.127 1.75 

1000 5 0 20 0.513 L2 10 0.97 1.28 

1000 2 3 20 0.693 L1 15 1.071 1.924 
3000 3 3 30 0.513 L2 6 3.34 2.8 

3000 2 3 30 0.378 L1 15 4.182 3.78 

3000 5 3 30 0.378 L3 10 2.78 1.96 
1000 5 3 30 0.693 L1 6 0.541 1.275 

1000 2 3 30 0.378 L3 10 1.804 1.813 

1000 5 3 20 0.378 L2 15 0.8 1.22 
3000 2 1.5 30 0.693 L1 6 4.074 3.637 

1000 2 0 20 0.693 L3 6 1.13 1.73 
3000 2 1.5 20 0.378 L3 6 3.93 3.02 

3000 5 0 20 0.513 L1 6 2.867 2.053 

2000 2 3 20 0.513 L2 6 3.068 3.084 
3000 5 1.5 30 0.513 L2 15 2.65 2.043 

3000 3 3 20 0.693 L3 15 3.026 2.624 

3000 2 0 20 0.693 L2 10 4.2 3.46 
1000 5 1.5 20 0.378 L3 6 1.127 1.241 

 
η*(LP/S), where η, energy transfer efficiency, is in the 
range of 0.7-0.8 (Fuerschbach, 1996) and both LP and S 
are known input parameters.  

The experiments were performed in a random order 
following the optimal design matrix shown in Table 2. 
Table 2 also includes the measured responses obtained 
from the 23 welding experiments: weld penetration 
depth and weld bead width. The responses of weld bead 
geometry were measured using transverse sectioned 
specimens and an optical microscope.  
 
Methods for modeling weld bead geometry: Two 
methods were used to model bead geometry, i.e., depth 
of penetration and weld bead width: multiple regression 
analysis and the AI technique. 
 
Multiple Regression Analysis (MRA) method: The 
modified quadratic model in Eq. 2 was used to fit the 
experimental responses listed in Table 2. We tested the 
significance of the regression models, the significance 
of individual model coefficients and lack of fit utilizing 
ANOVA with JMP 13 statistical software. The 
multivariate regression method designates which are the 
significant parameters in the model.  
 
Penetration depth: Fig. 3 presents the fit between the 
predicted and actual values. The predicted values were 
calculated using the penetration depth model in Eq. (2) 
and the actual values represent the 23 experimental 
results in Table 2. R

2
 = 0.95, RMSE = 0.276 and p-

valu<0.0001 represent a very good fit between the 
predicted and actual responses: 
 

[ ]

( )( )4

2.0089 0.0011 0.3510

1.4471 1.0289 10 1956.5217 3.3043

PenetrationDepth mm LP S

D LP S−

= + −

− − ⋅ − −

       (2) 

 
 

 
 

Fig. 3: Predicted vs. actual fit: penetration depth (left), weld 

bead width (right) 

 
Equation 2 shows that as increasing laser power 

increases heat input to the workpiece, more metal 
volume is molten, therefore increasing penetration 
depth. Increasing welding speed (S) decreases heat 
input and as result, decreases weld penetration. 
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Decreasing the focal diameter (D) increases the laser 
power density, which means the heat will localize in a 
small metal area and therefore penetration depth 
increases. To achieve maximum penetration depth, one 
should increase LPand decrease S and D. Benyouniset 
al. (2005) presented an empirical relation of weld 
penetration that depends on the parameters LP, S and F.  
 
Weld bead width: Fig. 3 (on the right) shows the fit 
between the predicted and actual values of weld bead 
width. The predicted values were calculated using the 
weld zone width model according to Eq. (3) and the 
actual measured values are from Table 3. R

2
 = 0.91, 

RMSE = 0.243 and p-value<0.0001 represent a good fit 
between predicted and actual responses. The empirical 
model for weld bead width is presented in Eq. (3): 
 

[ ]

( ) ( )

4

4

2.0485 6.0663 10

0.3176 1.3335 10 1956.5217 3.3043

WeldBeadWidth mm LP

S LP S

−

−

= + ⋅

− − ⋅ − −

(3) 

 
Equation (3) shows that increasing laser power LP 

increases the weld zone width. Conversely, increasing 
the welding speed decreases weld zone width. 
 
Artificial intelligence method:Eureqa is an Artificial 
Intelligence (AI) powered modeling engine. The 
software uses evolutionary algorithms to determine 
mathematical equations that describe sets of data in 
their simplest form. An evolutionary algorithm uses 
mechanisms inspired by biological evolution. Using the 
collected experimental data, we decided to find a model 
for bead geometry, i.e., penetration depth and weld 
bead width. 
 
Weld penetration depth: Based on our experimental 
results shown in Table 2, the best equation that 
represents penetration depth is shown in Eq. (4): 
 

4[ ] 5.32 01 .0017( /0 )PenetrationDepth mm LP LP S−= ⋅ + (4) 
 

Here we received the following calculated values: 
R

2
 = 0.947, RMSE = 0.275, Correlation coefficient = 

0.973 and Mean squared error = 0.0759. These results 
represent very good fit between predicted and actual 
values. Eq. (4) is simpler than Eq. (2), which also 
describes penetration depth and was obtained by 
multiple regression analysis. Eq. (4) does not include 
the parameter D and interestingly it includes the term 
LP/S, which is directly proportional to the expression of 
heat input.The structure of Eq. (4) is similar to the 
empirically determinedEq. (1), presented by Norris et 
al. (2011). 
 

Weld bead width: Based on our experimental data 

shown in Table 2, the best equation that represents weld 

bead zone is that shown in Eq. (5): 

 

[ ] 1.01 0.00167( / )WeldBeadWidth mm LP S= +  (5) 

The calculated values of R
2
 = 0.916, RMSE = 

0.223, Correlation coefficient = 0.957 and Mean 

squared error = 0.0498 represent good fit between the 

predicted and actual values. As observed in Eq. (5), 

weld bead width is dependent on a constant value and a 

value proportional heat input (LP/S). Again, it is a 

simpler expression than Eq. (3), which was obtained by 

the MRA method and may be physically interpreted. 

The higher the heat input (LP/S), the more material is 

molten and both the depth penetration and weld bead 

width increase.  

 

RESULTS AND DISCUSSION 

 

Comparison of MRA and AI methods: Table 3 

compares the statistical quality of fit between the 

predicted values proposed by each of the two models 

and the actual values measured in the 23 experiments. 

The coefficient of determination (R
2
) as well as the 

Root Mean Squared Error (RMSE) of the MRA and AI 

methods are almost identical. The AI modeling engine 

proposed a mathematical model that contains simple 

terms representing heat input during welding. The 

MRA model comprises of polynomial terms and is 

slightly more complicated; however, it captures the 

correct influence of the parameters LP and S and D on 

bead geometry. 

 

Experimental verification of the models: At the end 

of the 23 experiments required to find the model 

parameters, we performed an additional 3 experiments 

to verify the fit between the model and the actual 

measured values. Welding parameters as well as the 

measured responses are presented in Table 4. The 

relative error, calculated by (predicted value-measured 

value)/measured value, is also presented in Table 4 for 

each method. All relative errors are under 10% and 

represent good fit between the predicted values and the 

measured experimental results.  

 

Discussion: The study presents a method for selecting 

optimal number of welding experiments needed to 

create a database that allows developing a welding 

model. The aim of this welding model is to generate 

relationship between selected welding parameters and 

the required responses. By applying the model, one may 

predict bead geometry for a specific set of welding 

parameters. Multiple Regression Analysis is the leading 

method for modeling weld bead geometry (Benyouniset 

al., 2005). The MRA method uses polynomials to 

describe the relations between welding parameters and 

the responses. MRA show good fit with the 

experimental data and can be used to predict welding 

parameters for some specified geometry requirements. 

The second method that was applied in the study is 

artificial intelligence. The authors could not find 

references that used artificial intelligence for modeling  
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Table 3: Comparison of the two methods 

Measured responses 

MRA 

----------------------------------------------------------------- 

AI (Eureqa) 

------------------------------------------------------------------- 

R2 RMSE R2 RMSE 

Penetration depth 0.95 0.276 0.947 0.275 

Weld bead width 0.91 0.243 0.916 0.223 

 
Table 4: Measured vs. predicted responses and relative errors 

Exp # LP (Watt) S (m/min) D (mm) 
Parameters 
values 

PD (mm) 
(%) Error (PD) WW (mm) 

Error (WW) 
(%) 

1 3000 3 0.513 Measured 3.424  2.859  

    Pred. (MRA) 3.561 4.00 2.956 3.39 
    Pred. (AI) 3.296 -3.74 2.680 -6.26 

2 1000 2 0.378 Measured 1.270  1.890  

    Pred. (MRA) 1.380 8.66 1.870 -1.06 
    Pred. (AI) 1.382 8.82 1.845 -2.38 

3 3000 2 0,378 Measured 4.118  3.650  

    Pred. (MRA) 3.808 -7.53 3.413 -6.49 
    Pred. (AI) 4.146 0.68 3.515 -3.70 

 

weld bead geometry. AI method allows flexibility in 

selecting mathematical expressions to be used in the 

model. We found that the AI model comprises terms 

with a physical meaning such as the heat input term 

(LP/S).It presents natural relations between welding 

parameters and the responses, i.e., the larger is the heat 

input that the laser transfers to the joint during the 

welding process, the deeper is welding penetration and 

wider is the weld bead. The AI weld penetration model, 

described in Eq. (4) has a similar structure as the 

empirical model proposed by Norris et al. (2011). The 

models developed using both methods showed almost 

similar quality and were verified experimentally. The 

proposed methods for building welding models may be 

generalized and used to prepare practical tools for 

improving welding processes for various welding 

configurations and for different materials. 

 

CONCLUSION 

 

• The study presents a model based on multiple 

regression analysis that is capable of predicting 

weld bead geometry. The model was verified 

experimentally to show good fit with the predicted 

responses. 

• An artificial intelligence method was successfully 

used to develop a mathematical model based on a 

similar experimental data for predicting weld bead 

geometry. The AI model includes simpler 

expressions with a physical meaning.  

• Both MRA and AI models have similar statistical 

quality of fit between the predicted values and the 

actual experimental data. 
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