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Abstract: Reactive Power Dispatch (RPD) is a complex, non−continuous and it is famous and essential problem in 
the power system. The calculation of this problem is really part of optimal load flow calculations. In this study, two 
types of Particle Swarm Optimization (PSO) algorithm are utilize as an optimization tools to solve RPD problem in 
order to minimize real Power Loss (PLoss) in the power system and keep voltage at all buses within acceptable limit. 
First type of PSO algorithm is Conventional PSO and the second type is utilize to improve the searching quality, also 
to decrease the time calculation and to enhance the convergence characteristic in the first type, it is called Modified 
PSO (MPSO). These types of PSO algorithm are tested on IEEE Node− 14, Node−30, Node−57 and Node−118 
power systems to test their efficiency and ability in solving RPD problem in small and large power systems. The 
simulation results in four power systems show that the MPSO algorithm has a better performance in decreasing 
losses, decreasing time calculation and enhancement of voltage profile when compared to the Conventional PSO and 
other algorithms that reported in the literature. 
 
Keywords: Conventional PSO, modified PSO, optimal load flow calculations, power loss, reactive power dispatch, 

voltage profile 

 
INTRODUCTION 

 

Reactive Power Dispatch (RPD) problem is played 

essential role in enhancing the work of power system. 

The main goals of RPD are to minimization the losses 

in branches and voltage profile enhancement. This idea 

is accomplished through a suitable tuning for reactive 

power devices like generator voltages (VG), 

transformers ratio (Tap) and reactive power sources 

(capacitor QC /reactor XL). While dealing with some 

equality and inequality constrains including load flow 

equations (Abido, 2006; Deeb and Shidepour, 1990; 

Durairaj et al., 2006). 

RPD calculation is really a part of optimal load 

flow calculations. Carpentier was introduced the 

Optimal Power Flow (OPF) calculations in year 1962s 

(Carpentier, 1962). Then, several researchers have been 
working on solving OPF problem by utilizing multi 

methods for example recursive quadratic, linear and 

nonlinear programing, interior point method and so on 

(Habiabollahzadeh et al., 1989; Aoki et al., 1987; Yan 

and Quintana, 1999; Momoh and Zhu, 1999). 
Several classical techniques have been presented 

for   solution   RPD  like linear programming, nonlinear  
programing, quadratic programming, interior point 
technique,  newton  approach  and  so  on (Kirschen and  

Van Meeteren, 1988; Lee et al., 1985; Quintana and 
Santos-Nieto, 1989; Nanda et al., 1989; Liu et al., 
1992; Granville, 1994; Yan et al., 2006). These 
classical techniques have many restrictions such as, 
want of continuous as well as differentiable objective 
functions, slip to local optima and complexity in 
dealing   with a   very big number of variables (Bakare 
et al., 2005). Thus, it becomes necessary to improve 
optimization methods which are able to avoiding these 
disadvantages. 

To avoid these disadvantages, several optimization 
methods which have flexibility and ability for dealing 
with complex problem for example, evolutionary 
programming (Wu and Ma, 1995; Liang et al., 2006), 
simple, improve and adaptive Genetic Algorithm (GA) 
(Iba, 1994;   Durairaj et al., 2006;   Devaraj, 2007; Wu 
et al., 1998) evolutionary strategies (Bhagwan Das and 
Patvardhan, 2003), Differential Evolution (DE) (Abou 
El Ela et al., 2011; Liang et al., 2007; Varadarajan and 
Swarup, 2008), Harmony Search (HS) (Khazali and 
Kalantar, 2011),  Particle  Swarm  Optimization  (PSO) 
(Yoshida et al., 2000), Seeker Optimization Algorithm 
(SOA) (Dai et al., 2009), Biogeography Based 
Optimization (BBO) (Bhattacharya and Chattopadhyay, 
2010), Gravitational Search Algorithm (GSA) (Duman 
et al., 2012). These methods have presented high 
efficiency in solving RPD problem. 
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Lateef et al., presented Fully Informed PSO 

(FIPSO) to solution of RPD problem. The researchers 

applied this approach on standard IEEE 6−node, 

30−node and 118−node systems to decrease the loss 

(Tehzeeb-Ul-Hassan et al., 2012). Junghare et al. 

presented Dynamic PSO (DPSO) on RPD problems to 

reduce the    branch loss for   6 − node system (Badar 

et al., 2012). Roben et al. developed a new DE 

algorithm to solution of RPD problem. The researchers 

in this study work on the implications of steady state 

voltage stability (Ramirez et al., 2011). Chang et al., 

presented improved Hybrid DE (HDE) for the solution 

of RPD problem. The researchers used HDE on IEEE 

30−node system (Yang et al., 2012). Baskar et al., 

adopted a Modified NSGA−II (MNSGA − II) to deal 

with multi objective RPD problem for system voltage 

stability as well as reducing active power loss (Jeyadevi 

et al., 2011). 

Mehdinejad et al. (2016) investigated the 

improvement hybrid PSO and imperialist competitive 

(PSO − ICA) in order to solution the RPD problem in 

power systems. Standard IEEE −57 node and 

118 node systems are utilized for solution of this 

problem with two objectives for decreasing of line loss 

and Total Voltage Deviation (TVD) (Mehdinejad et al., 

2016). Habibi et al. proposed a new hybrid algorithm to 

manage discrete and continuous variables for solving 

RPD problem (Ghasemi et al., 2014). 

In this study utilize Conventional PSO and MPSO 

algorithms for solving RPD problem. The great aim in 

this study is to enhance the performance, quality and 

convergence characteristic of Conventional PSO. The 

main objective is to decrease power loss through a 

suitable adjustment of control variables (VG, Tap and 

QC) while dealing with number of inequality and 

equality constrains. IEEE Nodes - 14, - 30, - 57 and - 

118 are utilizing as a test systems so as to test the 

efficiency and flexibility of MPSO for solving this 

problem. The simulation results prove that the results 

obtained in MPSO is better in decreasing line power 

loss as well as enhancement of voltage profile for the 

system compared to those in Conventional PSO and 

other reported papers. 

 

MATERIALS AND METHODS 

 

Problem formulation: The main goal of the objective 

function of RPD problem is to decrease Power Losses 

(PLoss) of the system through proper adjustment of 

control parameters  and  at  the same  time  dealing with  

equality and unequal constrains and the equation of 

PLoss can be expressed as (Rajan and Malakar, 2015): 

 

Min PLoss = ∑ GK(Vi
2Ntl

K=1 + Vj
2 − 2ViVicos(ɸi −  ɸj)     

 (1) 

From Eq.  (1), 

 

Ntl  : The number of branches 

Ploss  : The active power losses 

GK  : The conductance of line K 

Vi : The voltage value at i −node 

Vj  : The voltage value at j −node 

ɸi, ɸj  : The difference angles voltage at node i and j 

 

Constrains: They are two types of constrains in RPD 

problem as follows: 

 

Equality constrains: These constrains are the 

equations of the Power Flow and defined by the 

following equation (Rajan and Malakar, 2015): 

 

𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑐𝑜𝑠(ɸ𝑖𝑗) +  𝐵𝑖𝑗𝑠𝑖𝑛(ɸ𝑖𝑗) = 0𝑁𝐵
𝑗=1   

   (2)  

𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗𝑠𝑖𝑛(ɸ𝑖𝑗) − 𝐵𝑖𝑗𝑐𝑜𝑠(ɸ𝑖𝑗) = 0

𝑁𝐵

𝑗=1

 

                                                                                     (3) 

From Eq. (2) and (3), 

𝑁𝐵  : The total number of nodes in the system 

𝑃𝐺𝑖  : The output real power 

𝑄𝐺𝑖  : The output reactive power of generator at node 𝑖 
𝑃𝐷𝑖  : The load active power  

𝑄𝐷𝑖  : The load reactive power at node 𝑖 
𝐺𝑖𝑗   : The mutual conductance among 𝑖 node and 𝑗node  

𝐵𝑖𝑗  : The mutual susceptance among 𝑖 node and 𝑗node 

𝑉𝑖  : The voltage value in i node  

𝑉𝑗   : The voltage value in 𝑗 node 

ɸ𝑖𝑗   : The voltage angle variation in node 𝑖 and 𝑗 

 

Inequality constrains: These constrains including 

independent variables (control variables) like generator 

voltages (𝑉𝐺), Transformers ratio (𝑇𝑎𝑝) and switch-able 

VAR sources (𝑄𝐶). Also including state variables such 

as voltages at load node (𝑉𝐿) and output reactive power 

of the generator (𝑄𝐺) as follows (Rajan and Malakar, 

2015): 

 

Control variables: 

 

𝑉𝐺𝑖−𝑚𝑖𝑛  ≤  𝑉𝐺𝑖 ≤  𝑉𝐺𝑖−𝑚𝑎𝑥  𝑖 = 1, … , 𝑁𝐺             (4)  

 

𝑇𝑎𝑝 𝑖−𝑚𝑖𝑛 ≤  𝑇𝑎𝑝 𝑖  ≤  𝑇𝑎𝑝 𝑖−𝑚𝑎𝑥  𝑖 = 1, … , 𝑁𝑇        (5)  

 

𝑄𝐶𝑖−𝑚𝑖𝑛  ≤ 𝑄𝐶𝑖 ≤ 𝑄𝐶𝑖−𝑚𝑎𝑥  𝑖 = 1, … , 𝑁𝑇             (6) 

 

State variables: 

 

𝑉𝐿𝑖−𝑚𝑖𝑛  ≤  𝑉𝐿𝑖 ≤  𝑉𝐿𝑖−𝑚𝑎𝑥  𝑖 = 1, … , 𝑁𝑃𝑄            (7) 
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𝑄𝐺𝑖−𝑚𝑖𝑛  ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖−𝑚𝑎𝑥  𝑖 = 1, … , 𝑁𝐺             (8)  

 

In this study, state variables (𝑉𝐿, 𝑄𝐺) can be 

incorporated with Eq. (1) as a quadratic penalty terms. 

Thus, Eq. (1) can be written as shown in Eq. (9), (Rajan 

and Malakar, 2015): 

 

𝑚𝑖𝑛 𝐹 = 𝑃𝑙𝑜𝑠𝑠 +  𝜆𝑉 ∑ (𝑣𝐿𝑖 − 𝑣𝐿𝑖
𝑙𝑖𝑚 )𝑁𝐿

𝑖=1
2

 +

𝜆𝑄 ∑ (𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑙𝑖𝑚 )2𝑁𝐺

𝑖=1
                (9) 

 

In the above equation, 𝜆𝑉 and 𝜆𝑄 are penalty terms 

and 𝑋lim  is the limit value of inequality constrains, 

𝑁𝐿 is the total number of load nodes, 𝑁𝐺 is the 

numbers of generation station and 𝑃𝐿𝑜𝑠𝑠 is given in Eq. 

(1). 

 

Concept of average voltage: In this study, the new 

average voltage index is suggested to deal with all 

voltage nodes as well as satisfy most of the electrical 

utility limits. The equation of this concept can be 

written as shown below: 

 

𝑉𝑎𝑣  =  
∑ 𝑉𝑖

𝑁𝑛
𝑖=1

𝑁𝑛
              (10) 

 

From the above equation, 𝑉𝑎𝑣 is the average voltage 

of all system; the voltage in node i is 𝑉𝑖; and the total 

number of nodes is 𝑁𝑛. 

 

Conventional PSO algorithm: This technique is fast, 

robust, simple, high accuracy and requires less time 

calculation. Eberhart and Kennedy were first introduced 

PSO in year 1995 (Kennedy and Eberhart, 1995). PSO 

is a kind of big group of swarm intelligence techniques 

that emerged to be a favorable tool for dealing with 

optimization problems. It is a type of stochastic 

optimization technique; it has behavior like the 

behavior of flock school fish or swarms of birds in 

order to search for food. Each agent have local best 

position discover by the agent itself (𝑃𝑏𝑒𝑠𝑡), as well as, 

the best position discovered between all agents in the 

population (𝑃𝑏𝑒𝑠𝑡) is stored in a memory called (𝐺𝑏𝑒𝑠𝑡). 

The (𝑃𝑏𝑒𝑠𝑡) and (𝐺𝑏𝑒𝑠𝑡) values are change at every 

iteration in PSO algorithm. Then, the agents change 

their speed and position by utilizing Eq. (11) and Eq. 

(12) (Vlachogiannis and Lee, 2006): 

 

𝑣𝑖
𝑘+1 = 𝐾*[𝑤 ∗ 𝑣𝑖

𝑘 + 𝑐1old *𝑟𝑎𝑛𝑑1*(𝑃𝑏𝑖
𝑘 - 𝑥𝑖

𝑘) + 

𝑐2old*𝑟𝑎𝑛𝑑2*(𝐺𝑏𝑖
𝑘 -𝑥𝑖

𝑘)]              (11) 

 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1               (12) 

 

From the above equations: 

𝑣  : The velocity of agent 

𝑊  : The inertia weight 

𝑐1 old, 𝑐2 old   : The old constant learning factors 

between [0-2.5] 

𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2 : The uniformly distributed positive 

number within limit [0 − 1] 

𝑃𝑏𝑖   : The best position of agent 

𝐺𝑏𝑖  : The global best position of agent 

𝑋𝑖  : The position of agent 

𝐾  : The constriction factor and it is 

utilized so as to guarantee the 

convergence of the algorithm and it 

can be expressed as (Eberhart and 

Shi, 2000): 

 

𝐾 =
2

|2−ɸ−√ɸ2−4ɸ |
 , ɸ = 𝐶1 + 𝐶2, ɸ ≥ 4        (13) 

 

In this study, (𝑊) given in (11), is reducing 

linearly from (0.9 to 0.4) by increasing the iteration so 

as to make the balancing between 𝑃𝑏𝑖and 𝐺𝑏𝑖 position 

by utilizing Eq. (14): 

 

𝑊 =  𝑊𝑚𝑎𝑥  −  
𝑊𝑚𝑎𝑥  − 𝑊𝑚𝑖𝑛

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
∗ 𝑖𝑡𝑒𝑟            (14) 

 

From the above equation: 

𝑊 𝑚𝑎𝑥  : The max inertia 

𝑊 𝑚𝑖𝑛  : The min inertia 

𝑖𝑡𝑒𝑟 : The present iteration 

𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  : The max iterations 

 

MPSO Algorithm: This algorithm is utilize so as to 

enhance the quality and the performance of 

Conventional PSO, so as to get best convergence 

characteristic, lesser time in calculation and solution is 

nearby to the optimal solution than Conventional PSO. 

In this algorithm, agents move to be nearest to the 

better position and discover the global minimum point 

(Niknam et al., 2011). The worse implication is ignored 

but the best one is kept and recorded as the optimal 

implication unless a best one is achieved and is defined 

by 𝑃𝑏𝑒𝑠𝑡 . As well as the best position among all the 

swarm initiate is estimated by𝐺𝑏𝑒𝑠𝑡 . The equations for 

the MPSO can be expressed as in Eq. (15) to (18): 

 

𝑣𝑖
𝑘+1 = 𝑤 ∗ 𝑣𝑖

𝑘 + 𝑐1new *𝑟𝑎𝑛𝑑1*(𝑃𝑏𝑖
𝑘 - 𝑥𝑖

𝑘)  

+ 𝑐2new*𝑟𝑎𝑛𝑑2*(𝐺𝑏𝑖
𝑘 -𝑥𝑖

𝑘)              (15)  

 

𝑥𝑖
𝑘+1  = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                           (16) 

 

𝑐1new =  𝑟𝑎𝑛𝑑( )                                             (17) 
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𝑐2new =  𝑟𝑎𝑛𝑑( )               (18) 
 
The learning factors (𝑐1old and 𝑐2old) given in Eq. 

(11) are modified to a random values (𝑐1new and 
𝑐2new ) given in Eq. (15) within range [0,1] instead of 
constant value (𝑐1 old and 𝑐2 old) given in PSO. When 
using 𝑐1new and 𝑐2new in MPSO raises the ability of 
Conventional PSO to discover the optimal solution 
faster than utilize (𝑐1 old and 𝑐2 old) constant values 
given in Conventional PSO. 
 
Representation of MPSO For Solving 𝐑𝐏𝐃: The 
MPSO algorithm has (7) steps are given as: 
 
Step 𝟏: Among minimum and maximum limits, are 

generated particles stochastic. 
Step 𝟐: Assign the initial particles for the local best 

value 𝑃𝑏𝑒𝑠𝑡 .  
Step 𝟑: Calculate objective function related to local 

𝑃𝑏𝑒𝑠𝑡  and global 𝐺𝑏𝑒𝑠𝑡  position. 

Step 𝟒: Update the 𝑥𝑖
𝑘+1  and 𝑣𝑖

𝑘+1  using Eq. (15) and 
(16) for all particles. 

Step 𝟓: Comparison an objective function for each 
agent based on its local best value 𝑃𝑏𝑒𝑠𝑡  if it is 
bigger than 𝑃𝑏𝑒𝑠𝑡  set present value as local best 
𝑃𝑏𝑒𝑠𝑡and locate it as a present location in the 
search problem. 

Step 𝟔: According to the values of objective function, 
calculate the 𝑚𝑖𝑛 𝑃𝑏𝑒𝑠𝑡  and set as global 𝐺𝑏𝑒𝑠𝑡 . 

Step 𝟕: The steps are repeated from step (4) to step 
(6) until max iteration. 

 

RESULTS AND DISCUSSION 

 

Conventional PSO and MPSO methods evaluated 

and tested on IEEE node−14, 30, 57 and 118 systems 

for solving RPD. The two PSO algorithms and other 

algorithms that reported in the literature have been 

implemented in MATLAB program and the number of 

particles and maximum iterations in this study are 50 

and 200, respectively for the four test systems. 

 
𝐈𝐄𝐄𝐄 14-Node system: This system consisting of 20 
branches, 5 generators at (nodes 1, 2, 3, 6 and 8), 3 
transformers are placed in (branches 8, 9 and 10) and 
one reactive power source compensation in (bus 9). Bus 
data, branch data, generator data and other operating 
data are given in reference (Pandya and Roy, 2015). 
The constrains of control variables are given in Table 1 
and the constrains (Max, Min) of reactive power output 
(QG) of generators are given in Table 2 (Pandya and 
Roy, 2015). This system including 5 generator voltages 
(VG), 3 transformers ratio (Tap) and 1 reactive power 
(VAR) compensation (Qc), so this system has 9 
dimensions of search space as given in Table 3. The 
simulation results for the presented algorithms is given 
also in Table 3 and compared with EP and SARGA 
algorithms (Subbaraj and Rajnarayan, 2009). The 
reduction in PLoss is 9.2% at MPSO, 9.1% at PSO, 1.5%  

at EP and 2.5% at SARGA algorithms. Figure 1 and 2 

show the convergence at 200 iteration and from these 
Figures it is clearly that the convergence characteristic 

of MPSO   is   better   and effective for minimizing loss  

Table 1: Constrains of control variables 

Power system type Independent variables Min. (p.u.) Max. (p.u.) 

IEEEbus−14 Generator voltage (𝑉𝐺) 0.95 1.1 

 Transformer tap (OLTC) 0.9 1.1 

 VAR source (𝑄𝐶) 0 0.20 

 
Table 2: Constrains (Max, Min) of reactive power output (QG) of generators 

Power system type Generator variables QMin (p.u.) QMax (p.u.) 

IEEEbus−14 1 0 10 

 2 -40 50 

 3 0 40 

 6 -6 24 

 8 -6 24 

 
Table 3: Simulation results of IEEE Node−14 system 

Control variables Base case MPSO PSO EP SARGA 

𝑉𝐺−1 1.060 1.100 1.100 NR* NR* 

𝑉𝐺−2 1.045 1.085 1.086 1.029 1.060 

𝑉𝐺−3 1.010 1.055 1.056 1.016 1.036 

𝑉𝐺−6 1.070 1.069 1.067 1.097 1.099 

𝑉𝐺−8 1.090 1.074 1.060 1.053 1.078 

𝑇𝑎𝑝8  0.978 1.018 1.019 1.04 0.95 

𝑇𝑎𝑝9  0.969 0.975 0.988 0.94 0.95 

𝑇𝑎𝑝10  0.932 1.024 1.008 1.03 0.96 

𝑄𝐶−9 0.19 14.64 0.185 0.18 0.06 

𝑃𝐺  (MW) 272.39 271.32 271.32 NR* NR* 

𝑄𝐺  (Mvar) 82.44 75.79 76.79 NR* NR* 

Reduction in PLoss (%) 0 9.2 9.1 1.5 2.5 

Total PLoss (Mw) 13.550 12.293 12.315 13.346 13.216 

NR* means not reported. 
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Fig. 1: Convergence for IEEE 14 node power system with conventional PSO algorithm 
 

 
 

Fig. 2: Convergence for IEEE 14 node power system with MPSO algorithm 

 

than Conventional PSO algorithm. The average voltage 

at initial is 1.048, at PSO is 1.059 and at MPSO is 

1.081. 
 
𝐈𝐄𝐄𝐄 30-node system: This system containing of 41 
branches, 6 generators at (nodes 1, 2, 5, 8, 11 and 13), 4 
transformers at (branches 11, 12, 15 and 36) and 2 
reactive  power  source at  (nodes 10 and 24).  Bus data,  

branch data, generator data and other operating data in 
reference (Pandya and Roy, 2015). Bounds of 
independent (control) variables are written in Table 4 
and constrains of reactive power output for generators 
(QG) are given in Table 5 (Pandya and Roy, 2015). This 
system has 12 independent variables (control variables), 
6 generator voltages (VG), 4 transformers ratio (Tap) 
and 2 reactive power compensation (capacitor banks) 

 

Table 4: Constrains of independent (control) variables 

Power system type Independent variables Min. (p.u.) Max. (p.u.) 

IEEEbus−30 Generator voltage (𝑉𝐺) 0.95 1.1 

 Transformer position (OLTC) 0.9 1.1 

 VAR source (𝑄𝐶) 0 0.20 

 
Table 5: Constrains of reactive power output for generators (QG) 

Power system type Generator variable  QMin QMax 

IEEEbus−30 1  0 10 

 2 -40 50 

 5 -40 40 

 8 -10 40 

 11 -6 24 

 13 -6 24 
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Table 6: Simulation results of IEEE− 30 Node system 

Control variables Base case MPSO PSO EP SARGA 

VG1 1.060 1.101 1.100 NR* NR* 

VG2 1.045 1.086 1.072 1.097 1.094 

VG5 1.010 1.047 1.038 1.049 1.053 

VG8 1.010 1.057 1.048 1.033 1.059 

VG11 1.082 1.048 1.058 1.092 1.099 

VG13 1.071 1.068 1.080 1.091 1.099 

Tap11  0.978 0.983 0.987 1.01 0.99 

Tap12  0.969 1.023 1.015 1.03 1.03 

Tap15  0.932 1.020 1.009 1.07 0.98 

Tap36 0.968 0.988 1.012 0.99 0.96 

QC10 0.19 0.077 0.077 0.19 0.19 

QC24 0.043 0.119 0.128 0.04 0.04 

𝑃𝐺  (MW) 300.9 299.54 299.66 NR* NR* 

𝑄𝐺  (Mvar) 133.9 130.83 130.94 NR* NR* 

Reduction in PLoss (%) 0 8.4 7.4 6.6 8.3 

Total PLoss (Mw) 17.55  16.07  16.25  16.38  16.09  

NR* means not reported. 

 

 
 
Fig. 3: Convergence of IEEE 30-node system with conventional PSO algorithm 
 

 
 

Fig. 4: Convergence of  IEEE 30-node system with MPSO algorithm 
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VAR sources (QC) as given in Table 6. The simulation 

results for the presented algorithms are also given in 

Table 6 and also compared with EP and SARGA 

algorithms (Subbaraj and Rajnarayan, 2009). The 

reduction in PL is 8.4% at MPSO, 7.4% at PSO, 6.6% at 

EP and 8.3% at SARGA algorithms. Figure 3 and 4 

show the convergence at 200 iteration and from these 

Figures it is clearly that the convergence characteristic 

of MPSO is better and effective for minimizing loss 

than Conventional PSO algorithm. The average voltage 

at initial is 1.029, at PSO is 1.035 and at MPSO is 

1.049. 

 

𝐈𝐄𝐄𝐄 57-Node system: This standard system involves 

80 branches, 7 generators, 17 transformers and 3 

reactive power compensations. Bus, branch, generator 
 

Table 7: Constrains of reactive power generation  

Power system type Generator nodes QMin QMax 

57 Bus 1 -140 200 

 2 -17 50 

 3 -10 60 

 6 -8 25 

 8 -140 200 

 9 -3 9 

 12 -150 155 

 

 

Table 8: Simulation results of IEEE Node−57 systems  

Control variables Base case MPSO PSO CGA  AGA  

𝑉𝐺  1 1.040 1.093 1.083 0.968 1.027 

𝑉𝐺  2 1.010 1.086 1.071 1.049 1.011 

𝑉𝐺  3 0.985 1.056 1.055 1.056 1.033 

𝑉𝐺  6 0.980 1.038 1.036 0.987 1.001 

𝑉𝐺  8 1.005 1.066 1.059 1.022 1.051 

𝑉𝐺  9 0.980 1.054 1.048 0.991 1.051 

𝑉𝐺  12 1.015 1.054 1.046 1.004 1.057 

𝑇𝑎𝑝 19 0.970 0.975 0.987 0.920 1.030 

𝑇𝑎𝑝 20 0.978 0.982 0.983 0.920 1.020 

𝑇𝑎𝑝 31 1.043 0.975 0.981 0.970 1.060 

𝑇𝑎𝑝 35 1.000 1.025 1.003 NR* NR* 

𝑇𝑎𝑝 36 1.000 1.002 0.985 NR* NR* 

𝑇𝑎𝑝 37 1.043 1.007 1.009 0.900 0.990 

𝑇𝑎𝑝 41 0.967 0.994 1.007 0.910 1.100 

𝑇𝑎𝑝 46 0.975 1.013 1.018 1.100 0.980 

𝑇𝑎𝑝 54 0.955 0.988 0.986 0.940 1.010 

𝑇𝑎𝑝 58 0.955 0.979 0.992 0.950 1.080 

𝑇𝑎𝑝 59 0.900 0.983 0.990 1.030 0.940 

𝑇𝑎𝑝 65 0.930 1.015 0.997 1.090 0.950 

𝑇𝑎𝑝 66 0.895 0.975 0.984 0.900 1.050 

𝑇𝑎𝑝 71 0.958 1.020 0.990 0.900 0.950 

𝑇𝑎𝑝 73 0.958 1.001 0.988 1.000 1.010 

𝑇𝑎𝑝 76 0.980 0.979 0.980 0.960 0.940 

𝑇𝑎𝑝 80 0.940 1.002 1.017 1.000 1.000 

𝑄𝐶  18 0.1 0.179 0.131 0.084 0.016 

𝑄𝐶  25 0.059 0.176 0.144 0.008 0.015 

𝑄𝐶  53 0.063 0.141 0.162 0.053 0.038 

𝑃𝐺  (MW) 1278.6 1274.4 1274.8 1276 1275 

𝑄𝐺  (Mvar) 321.08 272.27 276.58 309.1 304.4 

Reduction in PLoss (%) 0 15.4 14.1 9.2 11.6 

Total PLoss (Mw) 27.8 23.51 23.86 25.24 24.56 

NR* means not reported. 

 
Table 9: Independent (Control) variables settings 

System type Control variables Min Max 

57 Bus Generator voltage (VG) 0.95 1.1 

 Transformer Tap (Tap) 0.9 1.1 

 VAR Source 

Compensation (QC) 

0 0.20 

 

and other operation data are given in reference (Pandya 

and Roy, 2015). The bounds of reactive power 

generation   in  (MVAR)   are   displayed   in    Table  7 

(Pandya and Roy, 2015). This system includes 7 

generator voltages node (VG), 17 transformer ratio 

(Tap) and 3 switch-able (VAr) sources compensation 

as presented in Table 8, so this system has 27 
independent control variables and the constrains of 

these variables are listed in Table 9. The simulation 

results are given in Table 8 that compared with CGA 

and AGA algorithms (Dai et al., 2009). The simulation 

results showed the best performance resulting from 
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Fig. 5: Convergence for IEEE 57- node power system with conventional PSO algorithm 
 

 
 

Fig. 6: Convergence for IEEE 57-node power system with MPSO algorithm 
 

using MPSO algorithm over those resulting from using 

Conventional PSO and Other reported algorithms. The 

reduction in PLoss is 15.4% at MPSO, 14.1% at PSO, 

9.2% at CGA and 11.6% at AGA algorithms. Figure 5 

and 6 show the convergence of Conventional PSO and 
MPSO algorithms also at 200 iterations and from these 

Figures are clearly that the convergence characteristic 

of MPSO is better and effective for minimizing loss 

than Conventional PSO algorithm. The average voltage 

at initial is 0.992, at PSO is 1.014 and at MPSO is 

1.024. 

 

𝐈𝐄𝐄𝐄 118-Node system: So as to test and evaluate the 

ability of the MPSO algorithm in handling large power 

system, IEEE node-118 is presented as a test system. 

 
Table 10: Control variables constrains 

System type Variables Min Max 

118 Bus Generator voltage 

(𝑉𝐺) 

0.95 1.1 

 Transformer 

Position (𝑇𝑎𝑝) 

0.9 1.1 

 VAR Source 

Compensation (𝑄𝐶) 

0 0.20 
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Table 11: Simulation results of IEEE Node−118 systems 
Control variables Base case MPSO PSO PSO CLPSO 

𝑉𝐺  1 0.955 1.021 1.019 1.085 1.033 

𝑉𝐺  4 0.998 1.044 1.038 1.042 1.055 

𝑉𝐺  6 0.990 1.044 1.044 1.080 0.975 

𝑉𝐺  8 1.015 1.063 1.039 0.968 0.966 

𝑉𝐺  10 1.050 1.084 1.040 1.075 0.981 

𝑉𝐺  12 0.990 1.032 1.029 1.022 1.009 

𝑉𝐺  15 0.970 1.024 1.020 1.078 0.978 

𝑉𝐺  18 0.973 1.042 1.016 1.049 1.079 

𝑉𝐺  19 0.962 1.031 1.015 1.077 1.080 

𝑉𝐺  24 0.992 1.058 1.033 1.082 1.028 

𝑉𝐺  25 1.050 1.064 1.059 0.956 1.030 

𝑉𝐺  26 1.015 1.033 1.049 1.080 0.987 

𝑉𝐺  27 0.968 1.020 1.021 1.087 1.015 

𝑉𝐺31 0.967 1.023 1.012 0.960 0.961 

𝑉𝐺  32 0.963 1.023 1.018 1.100 0.985 

𝑉𝐺  34 0.984 1.034 1.023 0.961 1.015 

𝑉𝐺  36 0.980 1.035 1.014 1.036 1.084 

𝑉𝐺  40 0.970 1.016 1.015 1.091 0.983 

𝑉𝐺  42 0.985 1.019 1.015 0.970 1.051 

𝑉𝐺  46 1.005 1.010 1.017 1.039 0.975 

𝑉𝐺  49 1.025 1.045 1.030 1.083 0.983 

𝑉𝐺  54 0.955 1.029 1.020 0.976 0.963 

𝑉𝐺  55 0.952 1.031 1.017 1.010 0.971 

𝑉𝐺56 0.954 1.029 1.018 0.953 1.025 

𝑉𝐺  59 0.985 1.052 1.042 0.967 1.000 

𝑉𝐺  61 0.995 1.042 1.029 1.093 1.077 

𝑉𝐺  62 0.998 1.029 1.029 1.097 1.048 

𝑉𝐺  65 1.005 1.054 1.042 1.089 0.968 

𝑉𝐺  66 1.050 1.056 1.054 1.086 0.964 

𝑉𝐺  69 1.035 1.072 1.058 0.966 0.957 

𝑉𝐺  70 0.984 1.040 1.031 1.078 0.976 

𝑉𝐺  72 0.980 1.039 1.039 0.950 1.024 

𝑉𝐺  73 0.991 1.028 1.015 0.972 0.965 

𝑉𝐺  74 0.958 1.032 1.029 0.971 1.073 

𝑉𝐺  76 0.943 1.005 1.021 0.960 1.030 

𝑉𝐺  77 1.006 1.038 1.026 1.078 1.027 

𝑉𝐺  80 1.040 1.049 1.038 1.078 0.985 

𝑉𝐺  85 0.985 1.024 1.024 0.956 0.983 

𝑉𝐺  87 1.015 1.019 1.022 0.964 1.088 

𝑉𝐺  89 1.000 1.074 1.061 0.974 0.989 

𝑉𝐺  90 1.005 1.045 1.032 1.024 0.990 

𝑉𝐺  91 0.980 1.052 1.033 0.961 1.028 

𝑉𝐺  92 0.990 1.058 1.038 0.956 0.976 

𝑉𝐺  99 1.010 1.023 1.037 0.954 1.088 

𝑉𝐺  100 1.017 1.049 1.037 0.958 0.961 

𝑉𝐺  103 1.010 1.045 1.031 1.016 0.961 

𝑉𝐺  104 0.971 1.035 1.031 1.099 1.012 

𝑉𝐺  105 0.965 1.043 1.029 0.969 1.068 

𝑉𝐺  107 0.952 1.023 1.008 0.965 0.976 

𝑉𝐺  110 0.973 1.032 1.028 1.087 1.041 

𝑉𝐺  111 0.980 1.035 1.039 1.037 0.979 

𝑉𝐺  112 0.975 1.018 1.019 1.092 0.976 

𝑉𝐺  113 0.993 1.043 1.027 1.075 0.972 

𝑉𝐺  116 1.005 1.011 1.031 0.959 1.033 

𝑇𝑎𝑝 8 0.985 0.999 0.994 1.011 1.004 

𝑇𝑎𝑝 32 0.960 1.017 1.013 1.090 1.060 

𝑇𝑎𝑝 36 0.960 0.994 0.997 1.003 1.000 

𝑇𝑎𝑝 51 0.935 0.998 1.000 1.000 1.000 

𝑇𝑎𝑝 93 0.960 1.000 0.997 1.008 0.992 

𝑇𝑎𝑝 95 0.985 0.995 1.020 1.032 1.007 

𝑇𝑎𝑝 102 0.935 1.024 1.004 0.944 1.061 

𝑇𝑎𝑝 107 0.935 0.989 1.008 0.906 0.930 

𝑇𝑎𝑝 127 0.935 1.010 1.009 0.967 0.957 

𝑄𝐶  34 0.140 0.049 0.048 0.093 0.117 

𝑄𝐶  44 0.100 0.026 0.026 0.093 0.098 

𝑄𝐶  45 0.100 0.196 0.197 0.086 0.094 

𝑄𝐶  46 0.100 0.117 0.118 0.089 0.026 

𝑄𝐶  48 0.150 0.056 0.056 0.118 0.028 

𝑄𝐶  74 0.120 0.120 0.120 0.046 0.005 
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Table 11: Continue      

Control variables Base case MPSO PSO PSO CLPSO 

𝑄𝐶  79 0.200 0.139 0.140 0.105 0. 148 

𝑄𝐶  82 0.200 0.180 0.180 0.164 0.194 

𝑄𝐶  83 0.100 0.166 0.166 0.096 0.069 

𝑄𝐶  105 0.200 0.189 0.190 0.089 0.090 

𝑄𝐶  107 0.060 0.128 0.129 0.050 0.049 

𝑄𝐶  110 0.060 0.014 0.014 0.055 0.022 

PG(MW) 4374.8 4359.3 4361.4 NR* NR* 

QG(MVAR) 795.6 604.3 653.5 NR* NR* 

Reduction in PLOSS (%) 0 11.7 10.1 0.6 1.3 

Total PLOSS (Mw) 132.8 117.19 119.34 131.99 130.96 

NR* means not reported. 

 

 
 
Fig. 7: Convergence of  IEEE 118-node system with conventional PSO algorithm 
 

 
 

Fig. 8: Convergence of  IEEE 118-node system with MPSO algorithm   
 

Bus, generator, branch, the limits of reactive power 
generation output and other operating data are given in 
reference (Vlachogiannis and Lee, 2006). This system 
involves of 54 generators, 9 transformers and 12 banks 

of capacitors. The upper (max.) and lower (min.) 
bounds of transformer tap, reactive power 
compensation and generator nodes of independent 
control variables are listed in Table 10. In this system, 
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the total numbers of independent control variables are 
75 numbers, i.e., 54 generator voltages (VG), 9 
transformer ratios (Tap) and 12 injected VAR source 
from capacitor banks (QC) as presented in the 
simulation results Table 11. The simulation results for 
this case are given in Table 11 and compared with 
Conventional PSO and other algorithms that reported in 
the literature (Mahadevan and Kannan, 2010). From 
these results indicate that MPSO has high ability in 
solving RPD problem than other methods in this test. 
The reduction in PLoss is 8.7% at MPSO, 7.4% at PSO, 
6.6% at EP and 8.3% at SARGA algorithms. Figure 7 
and 8 show the convergence of Conventional PSO and 
MPSO at 300 iterations and from these Figures it is 
clearly that the convergence characteristic of MPSO is 
best in minimizing loss than Conventional PSO 
algorithm. The average voltage at initial is 0.986, at 
PSO is 1.024 and at MPSO is 1.033. 

 
CONCLUSION 

 

In this study, in order to enhance the performance, 
quality and to avoid premature convergence of 

Convrntional PSO algorithm, MPSO algorithm is 
utilized for solving RPD problem. The two algorithims 

are presented on IEEE Node−14, −30, −57 and 

−118systems. From the simulation results, it is prove 

that MPSO algorithm is best in convergence speed 
characterastic to obtain optimal solutions that decreased 

the power loss as well as voltage profile improvement of 

the system and also the reduction in PL is more than 
Conventional PSO and other algorithms that reported in 

the litreture such as, EP, SARGA algorithms at IEEE 

Node−14, −30, CGA, AGA algorithms at IEEE Node 

−57, PSO and CLPSO algorithms at at IEEE Node 

−118 in all presented test systems in this study. In 

addition, the simulation results proved that MPSO 

algorithm able to obtain best quality−solutions in lesser 

time than Conventional PSO for all presented systems 
for solving RPD and other complex problem in power 

system. 
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