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Abstract: This study aims to solve the problem of detecting anomalies in big data. A border-based Gird Partition 
(BGP) algorithm was proposed. The BGP algorithm focuses on calculating the Local Outlier Factor (LOF) for big 
data in a distributed environment. It splits the data into intersected subsets, then allocates these subsets to the slave 
nodes in a distributed environment. Some parts of these subsets are replicated between slave nodes. The slave nodes 
calculate the LOF for each subset that it owns. The splitting of the data between the slave nodes is done in grid-
based without considering the size of the data that will be assigned to every slave node. The BGP algorithm results 
in un-balanced distribution of the subsets between slave nodes. To overcome this problem a modification on the 
BGP algorithm is proposed to take in consideration the size of the data that will be assigned to every slave node. The 
modified algorithm called Balanced boarder-based Gird Partition algorithm (BBGP). BBGP splits the data between 
the slave node equally. So that all the slave nodes will do balanced processing for calculating the LOF for the data. 
In the end, we evaluate the performance of the two algorithms through a series of simulation experiments over real 
data sets. 
 
Keywords: Anomaly detection, big data, distributed environment, local outlier factor, outlier detection 

 
INTRODUCTION 

 
Nowadays there is a huge growth in the area of Big 

Data. A lot of information flows on the internet and a 
lot of data are generated every day in our life. For many 
social websites (e.g., Facebook and twitter), a huge 
amount of information is generated every day. This 
information must be processed and filtered to detect the 
suspicions one from them. Suspicions information may 
be noise or wrong data or maybe up normal one. The 
process of detecting these types of information are 
called outlier detection. According to (Hawkins, 1980), 
“An outlier is an observation that deviates so much 
from other observations as to arouse suspicion that it 
was generated by a different mechanism”. Many other 
studies and definitions have been proposed for outlier 
detection e.g., top-n outlier (Ramaswamy et al., 2000), 
DB-outlier (Knox and Ng, 1998) and density-based 
outlier (Breunig et al., 2000). 

There exist lots of algorithms for the outlier 
detection. Most of them focus on the centralized 
processing of the data. Due to the huge increase in data 
generated every day, this data will take a lot of time for 
processing and detecting outliers. There are many 
applications that time will be very critical for them 
(e.g., Credit card Fraud detection). So, there is a need 
for processing this data in a distributed environment, 
not a centralized one. 

This study focuses on the problem of processing 
data in a distributed environment for detecting outliers. 
We use density-based outlier (Breunig et al., 2000) for 
detecting outliers. Density-based outlier has advantages 
over Some other algorithms. Other algorithms label 
every tuple as an outlier or not (Ramaswamy et al., 
2000) (Knox and Ng, 1998), on the other hand, density-
based algorithms measure the degree of being an outlier 
for a tuple p with respect to its neighbors. For 
measuring this degree for p we calculate its Local 
Outlier Factor (LOF). LOF represents the degree of a 
tuple to be outlier w.r.t its neighbors. Many real-world 
applications proved that measuring the degree of 
outlierness for p is more meaningful that marking p as 
an outlier or not. There exist two studies in solving the 
problem of distributed outlier detection (Lozano and 
Acufia, 2005) (Bai  et al., 2016). The authors in 
(Lozano and Acufia, 2005) analyzed the process of 
calculating the LOF and find that the step to calculate 
the KDNeighbors (which is the matrix that contains the 
elements of dataset D with its respective k-neighbors) is 
the most exhaustive step that takes time and processing 
power. They proposed a master-slave solution for this 
problem that offloads all the KDNeighbors calculations 
to the slaves to calculate it. The authors in Bai et al. 
(2016) also proposed an algorithm that also solves the 
problem of calculating LOF using distributed 
environment. They divide all the datasets into grids and 
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sends these grids to be processed by the slave nodes. 
Their algorithm needs a communication between all the 
slaves to handle all the neighbor tuples. 

In this study, we proposed practical approaches for 
calculating the LOF for tuples in a distributed 
environment which can be summarized as follows: 

We proposed a border-based Gird Partition (BGP) 
algorithm which is based on the GBP on Bai et al. 
(2016), this algorithm partition the dataset into subsets 
and add a border to each subset of the dataset. The 
tuples in these borders are replicated in each adjacent 
subset. 

We modified our BGP algorithm and proposed a 
Balanced boarder-based Gird Partition algorithm 
(BBGP). BBGP algorithm partition the tuples between 
slaves in a balanced way to distribute the workload to 
all the slaves equally and utilize the resources in every 
slave. 

We evaluate the performance of the proposed 
approaches through a series of simulation experiments 
over real data sets. The experimental results show that 
our proposed approaches give better results for 
calculating the LOF for the tuples in comparing with 
Bai et al. (2016). 

Many approaches for outlier detection were 
proposed, depending on the type of model they learn 
(non-parametric   model   or    statistical) (Rajasegarar 
et al., 2008) Non-parametric techniques have a lot of 
types of data clustering, Distance-based, Density-based 
and rule-based approaches. data clustering approaches 
aim to find groups of similar data points where each 
group of data points is well separated. This approach 
was first intended to cluster a group of points but after 
that,   it   was used  to   detect   outliers e.g., Aggarwal 
et al. (2003), Cao et al. (2006) and Guha et al. (2003). 
Distance-based approaches were proposed to detect 
outliers in a group of points based on the distance 
between points. Points out of the distance are supposed 
to be outliers e.g., Knox and Ng (1998). These 
approaches have an important problem with finding the 
outliers in a group of points with multi distances. 
Density-based approaches solve the problem of the 
distance based approaches by finding the outliers 
depend on the density of each group of points. Each 
point calculates its density depends on the other points 
near to it. The author in Breunig et al. (2000) proposed 
a number that measures the degree of each point of 
being an outlier this number is called LOF (local outlier 
factor). Some techniques improve the detection 
accuracy of LOF by changing the way k-NNs are 
computed (Tang, et al., 2002) so that it can cover a 
wider range of outlier types and finding a symmetric 
neighborhood relationship (Jin et al., 2006).  

For the problem of distributed outlier detection 
there exist two studies (Lozano and Acufia, 2005; Bai 
et al., 2016). In Lozano and Acufia (2005) the authors 
proposed a distributed algorithm for calculating LOF. 
They analyzed the LOF algorithm and find that the 

most exhaustive step that requires time is the step of 
calculating KDNeighbors (which is the matrix that 
contains the elements of dataset D with its respective k-
neighbors). For this reason, they attempt to paralyze 
this step. The architecture is composed of master and 
slaves, the master distributes the data to all the slave. 
Each slave calculates KDNeighbors for his local data 
and sends the results to the master. The master collects 
the partial KDNeighbors and finds the KDNeighbors 
matrix, then computes the reachability and LOF. 
Clearly, this approach is not suitable for distributed 
outlier detection on large-scale data, because all the 
data are combined in the last step and processed to 
compute the LOF for each tuple (centrally on the 
master node). The master node becomes a bottleneck 
when the data is large. In Bai et al. (2016) the authors 
also proposed a distributed algorithm for calculating 
LOF. Their architecture is also composed of master and 
slaves. They proposed Gird-Based Partition algorithm 
(GBP) for data portioning between slaves. In GBP, the 
author first splits the whole dataset into isometric grids 
considering the dimensionality of the dataset d. for each 
dimension the author splits this dimension into several 
isometric segments (the number of segments is denoted 
by s). Then, the whole space is split into sd grids. The 
author set s as the smallest number that satisfies sd ≥ |N| 
where |N| is the number of slave nodes.  

They propose also the Distributed LOF Computing 
method (DLC). Each slave generates LOF for most of 
the tuples in it. The boarder tuples are then transmitted 
between slaves to calculated its LOF efficiently then all 
the LOFs for the tuples are sent back to the master 
node. This approach has some drawbacks in two parts, 
first in the Gird-Based Partition algorithm the authors 
partition the data to the slaves without taking in 
consideration the data distribution which makes the 
slaves unbalanced, some slaves have a lot of data with 
respect to the others. Second, the cross-border tuples 
are sent over the network many times which consumes 
network and every time a new tuple is sent to the salve 
the neighbors for this tuple recalculate the LOF for 
them which consumes time and processing power. 

Recently, there also emerge some outlier detection 
algorithms for special purposes, such as high 
dimensional data (Aggarwal and Yu, 2001), streaming 
data (Kontaki et al., 2011) and uncertain data 
(Aggarwal and Yu, 2008). 
 

MATERIALS AND METHODS 
 
Local Outlier Factor (LOF): In this section, we will 
use the density based outlier detection algorithm to 
detect the outlier tuples. To measure the outlierness of 
each tuple we will use the LOF algorithm. The process 
of calculating the LOF takes a lot of time and 
processing power. We will use a distributed 
environment solution to distribute the processing 
between many  nodes. So that they calculate the LOF in  
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Fig. 2: System flow 
 
border-based Gird Partition (BGP) algorithm which is 
based on the GBP on Bai et al. (2016), this algorithm 
partition the dataset into subsets and add a border to 
each subset of the dataset. The tuples between this 
border and the subset boarder are replicated in both 
subsets. After that, each subset is allocated to a slave 
node which calculates the LOF for this subset only. 
Finally, each slave node sends its results back to the 
master node. As shown in Fig. 2 the data set consists of 
4 rows 2 orange and 2 blue rows, we divide the rows 
between two slave nodes. 2 rows for first slave node 
(orange) and the other 2 rows for the other slave node. 
A border was added for each subset (orange and blue) 
the border width is half of the row height. So, in Fig. 2 
we will send the first slave node 2 orange rows and 0.5 
blue row and the other slave node 2 blue rows and 0.5 
orange row. 
 
Border-based Gird Partition (BGP): The BGP is 
based on the old GBP in Bai et al. (2016). In our BGP 
algorithm, we continue from the step that determines 
the number of grids. Then we divide the dataset into 
isometric grids. Each grid has a border in its dimension 
i. We propose a border. This border b is for each 
dimension i in the dataset. The size of the border is a 
percentage of the width of the grid in the dimension i 
(iא[1,d]). After determining the border width, each grid 
will now have a new virtual border in dimension i 
which is its original border plus the proposed border 
size. Each grid now will be allocated to a slave node. 
As shown in Fig. 2 if the boarder is 25% of grid width. 
So, when we divide the 4 rows into two slave nodes 
there must be 2 grids. Each grid will be 2 row (gird in 
orange and grid in blue). The border width is 25% of 
the grid so each grid will take 25% of the other grid i.e., 
0.5 row. grid 1 will become 2 orange rows and 0.5 blue 
row and grid 2 will be 2 blue rows and 0.5 orange row 
as shown in algorithm 1. In algorithm 1 we first 
calculate the new safe border for each grid, then we add 
all the tuples between the original border and the new 

border to the grid (lines 1-8). After that we sort the 
girds in g according to the number of tuples in g in 
descending order, taking in consideration that the tuples 
in g are not only the tuples below original border but 
also the tuples between the new border and the original 
border (line 9). Then we go through all the sorted girds 
and allocate each grid g randomly to all the slave nodes 
till all the slave nodes are allocated with grids. (lines 
10-13).  

For the remaining grids g, we calculate the average 
number of tuples per slave node and initialize a set N’ 
that contains all the slave nodes with a number of tuples 
less than or equal (lines 14-15). After that, we select the 
slave node with the largest number of grids that are 
adjacent to that grid g from N’ and allocate g to this 
slave node (lines 16-17). We repeat this process (line 
13-19) till all the girds are allocated to slave nodes.  

After finish allocating the tuples in the grids to the 
slave nodes using algorithm 1, Each slave node starts to 
process its tuples and calculate the LOF for each tuple. 
After each node finish calculating the LOF for the 
tuples it sends the result back to the master node. 

As shown in Fig. 3 we have a dataset with n tuples 
and two slaves. The BGP algorithm will partition the 
dataset into 4 isometric grids. Each slave node will be 
allocated a number of grids for this example g1 will be 
allocated to a slave node and g2, g3, g4 will be 
allocated to the other slave node according to the 
algorithm 1. Given the border percentage, for example, 
we have two percentage one in the red color and the 
other in the blue color. We have three choices one to 
process the tuples without using any border. The second 
one is to apply the red border and the last one is to 
apply the blue border. 
 
Algorithm 1: Border based Grid partition 

input: Grid set G, dataset N, Boarder percentage b 
output: Grids set allocated to slave nodes 

1 for each gird g in G do 
2 for each dimension i in d do 
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Fig. 3: BGP Example |N | = 2, K = 3 
 
3 bw  the border width for dimension i 
4 calculate new border for g in i 
5 update g new border in i 
6 end 
7 add tuples between the original grid border and the 

new border to g 
8 end 
9 sort grids in G according to the number of tuples 

(tuples below safe border) in g in descending order 
10 for each grid g in G do 
11 if there exist slave node with no grid then 
12 randomly choose a slave node with no grids and 

allocate g to it 
13  else 
14 ε  the average number of tuples per salve node 
15 initialize a slave node set N’ that contain all the 

slave nodes that has number of tuples less than or 
equal ε 

16 n  select the slave node with the largest number 
of grids that are adjacent to g 

17 allocate g to n 
18 end 
19 end 

 
First, if we didn’t apply any border, then when we 

calculate the disk(p1) it will be d3. As it is the distance 
that can include at least 3 tuples (k = 3). If we apply our 
border to be the red border then when we calculate the 
disk(p1) it will be d4. As it is the distance that includes 

at least 3 tuples (k = 3). The distance changed after we 
apply our border to be the red border as points p2, p3 
were added to the neighbors of p1 and they are near to 
p1 than p4. So that the d2 is smaller than d3 as we 
added extra tuples (p2,p3) from the red border. On the 
other hand, for the point p6 if we apply the red border 
the disk(p6) will be d1 but if we increase our border and 
apply the blue border the disk(p6) will be d2 as p7 is 
now in the neighbors of p6 and it is near to p6 than p8. 
 
Balanced Border-Based Gird Partition algorithm 
(BBGP): In the BGP we notice that the portioning of 
the dataset is done using the girds concept that the 
author in Bai et al. (2016) proposed. One characteristic 
of this grids is that they are isometric which mean that 
all the girds must be with the same dimensions. In fact, 
this characteristic may lead to unbalanced subsets in the 
slave nodes. For example, if we have four grids and 2 
slave nodes and the dataset is distributed to be most of 
it in grid g1 and the other three grids are almost empty. 
Then when we allocated our grids to the two slave 
nodes one slave node will be allocated with g1 and the 
other slave node will be allocated with the other three 
empty grids. If we calculate the workload in the two 
slaves we will found that the two slaves are not 
balanced and one of them is underutilized which is 
against  the   characteristics   of   the parallel 
computing. As   shown   in   Fig. 3  we   notice that 
most  of  the  points  are  in grid g1. And the other three  
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Fig. 7: Processing time for GBP+DLC, BGP and BBGP for 

shuttle data set 
 

 
 
Fig. 8: Size of data over the network for GBP+DLC, BGP 

and BBGP for CovType data set 
 
in one grid which is processed by only one slave. While 
slave A is processing the 70% of tuples, the other slave 
B is processing only 30% of them. Slave B after 
finishing processing the 30% of tuples it waits idle till 
slave A finish it's processing which takes a lot of time 
and don’t consume all the resources. On the other hand, 
the BBGP algorithm takes less time as when portioning 
the tuples each one of the four grids has almost the 
same number of tuples. So, every slave has almost the 
same number of tuples which utilize all the resources. 

For the time and boarder percentage we notice that 
when we increase the border the time for processing is 
increased a little (or stable in comparing with the total 
number of tuples to be processed) as there are extra 
redundant tuples that will be processed. 
 
Size of data that was transmitted over the network: 
Figure 8 illustrates that, the data size transmitted over 
the network for the covtype dataset for the GBP+DLC 
algorithm is more than the size of the data for the BGP 
and BBGP algorithms. But when we reach border 
percentage of 0.2 the data size of the BBGP algorithm 
is more than the BGP and GBP+DLC algorithm this is 
because that number of redundant tuples increases 
when increasing the border percentage.  

For the shuttle dataset the data size transmitted 
over  the  network is illustrated in Fig. 9. The size of the  

 
 
Fig. 9: Size of data over the network for GBP+DLC, BGP 

and BBGP for shuttle data set 
 
data transmitted over the network for BBGP algorithm 
is always much bigger than the other two algorithms. 
That’s because of the distribution of the tuples around 
the boarders is high in compared to covType dataset. 

We notice that the data size over the network for 
our BBGP algorithm is larger than the data for 
GBP+DLC. But the time for processing the data for the 
BBGP is less than the time for the GBP+DLC 
algorithm. This is due to that the GBP+DLC algorithm 
takes time to calculate the k-distance neighbors and 
sends a request to the slaves which has these neighbors. 
Then the slaves send these tuples. After that, it takes 
time to calculate the LOF for these tuples. This request 
and response take time which is more than the 
processing time for the LOF for each tuple. That’s why 
the data size over the network is larger for the BBGP 
algorithm but the time is smaller than the GBP+DLC 
algorithm. 
 
Accuracy in calculating the right LOF for each 
tuple: In evaluating the accuracy of the algorithms, we 
calculated the LOF for the tuples in both datasets 
covtype and shuttle. The GBP+DLC algorithm 
calculated the LOF for all the tuples correctly as any 
tuple that is needed in the slave it will be sent to it from 
the other slave so its accuracy is 100%. 

For the BGP and BBGP algorithm, each slave node 
sends a LOF value for each tuple it has. The tuples 
replicated in both slaves have two values one from each 
slave node. The master node has the choice to select the 
LOF with the ssmallest value, biggest or average value 
between the two slaves. For each tuples, we subtracts 
the LOF of our algorithm and that of the original LOF 
and found that for each border of the six borders (0.001, 
0.005, 0.01, 0.1, 0.2, 0.25) the master can selects LOF 
with the minimum, maximum or average value. 
 
BGP algorithm: For the covtype dataset, if the master 
selects the LOF with the minimum value, about 90.5-
91.5% of the tuples are equal to zero and about 98.5-
98.7% of  the   tuples are less than or equal to 0.1. If the  
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Table 1: Accuracy of the algorithms for the two datasets 

Data set Border 

BGP 
-----------------------------------------------------------------------------------------------------------------------------------
Min. 
---------------------------------------- 

Max. 
---------------------------------------- 

Avg 
-----------------------------------------

= 0 <0.1 = 0 <0.1 = 0 <0.1 
Covtype 0.001 91.52 98.71 91.52 98.71 91.52 98.71 

0.005 91.52 98.71 91.52 98.71 91.52 98.71 
0.01 91.52 98.71 91.52 98.71 91.52 98.71 
0.1 91.36 98.69 91.33 98.62 91.17 98.71 
0.2 90.56 98.6 90.91 98.53 89.95 98.58 
0.25 90.5 98.58 90.74 98.44 89.72 98.52 

Shuttle 0.001 98.12 99.88 98.12 99.88 98.12 99.88 
 0.005 98.12 99.88 98.12 99.88 98.12 99.88 
 0.01 98.12 99.88 98.12 99.88 98.12 99.88 
 0.1 98.12 99.88 98.13 99.89 98.12 99.88 
 0.2 98.12 99.88 98.13 99.89 98.12 99.88 
 0.25 98.12 99.88 98.13 99.89 98.12 99.88 

Data set Border 

BBGP 
-----------------------------------------------------------------------------------------------------------------------------------
Min 
---------------------------------------- 

Max 
---------------------------------------- 

Avg 
-----------------------------------------

= 0 <0.1 = 0 <0.1 = 0 <0.1 
Covtype 0.001 88.25 98.48 88.25 98.47 88.25 98.47 

0.005 88.26 98.49 88.26 98.47 88.26 98.47 
0.01 88.25 98.49 88.25 98.46 86 98.31 
0.1 87.1 98.41 87.14 98.13 86 98.31 
0.2 87.01 98.45 87.03 98.16 85.79 98.28 
0.25 86.98 98.36 87.29 98.27 86.02 98.32 

Shuttle 0.001 76.81 92.39 76.4 92.14 75.43 92.24 
0.005 77.36 92.53 77.16 92.41 76.65 92.42 

 0.01 77.24 92.54 77.12 92.44 76.56 92.47 
 0.1 77.42 92.55 77.32 92.52 76.92 92.53 
 0.2 77.43 92.55 77.31 92.52 77.05 92.53 
 0.25 77.49 92.55 77.34 92.52 77.05 92.53 

Min.: Minimum; Max.: Maximum 
 
master selects the LOF with the maximum value, about 
90.7-91.5% of the tuples are equal to zero and about 
98.4-98.7% of the tuples are less than or equal to 0.1. If 
the master selects the LOF with the average value, 
about 89.7-91.5% of the tuples are equal to zero and 
about 98.5-98.7% of the tuples are less than or equal to 
0.1. 

For the shuttle dataset, if the master selects the 
LOF with the minimum value, about 98.12% of the 
tuples are equal to zero and about 99.88% of the tuples 
are less than or equal to 0.1. If the master selects the 
LOF with the maximum value, about 98.12% of the 
tuples are equal to zero and about 99.88% of the tuples 
are less than or equal to 0.1. If the master selects the 
LOF with the average value, about 98.12% of the tuples 
are equal to zero and about 99.88% of the tuples are 
less than or equal to 0.1 as shown in Table 1. 
 
BBGP algorithm: For the covtype dataset, if the 
master selects the LOF with the minimum value, about 
86.9-88.25% of the tuples are equal to zero and about 
98.3-98.5% of the tuples are less than or equal to 0.1. If 
the master selects the LOF with the maximum value, 
about 87-88.25% of the tuples are equal to zero and 
about 98.1-98.5% of the tuples are less than or equal to 
0.1. If the master selects the LOF with the average 
value, about 85.7-88.25% of the tuples are equal to zero 

and about 98.2-98.4% of the tuples are less than or 
equal to 0.1  

For the shuttle dataset if the master selects the LOF 
with the minimum value, about 76.8-77.4% of the 
tuples are equal to zero and about 92.5% of the tuples 
are less than or equal to 0.1. If the master selects the 
LOF with the maximum value, about 76.4-77.3% of the 
tuples are equal to zero and about 92.1-92.5% of the 
tuples are less than or equal to 0.1. If the master selects 
the LOF with the average value, about 75.4-77% of the 
tuples are equal to zero and about 92.2-92.5% of the 
tuples are less than or equal to 0.1 as shown in Table 1. 

This can be summarized in Fig. 10 and 11 for both 
the datasets and the two algorithms (BGP and BBGP) 
using the two comparison techniques mentioned above 
(zero and below 0.1). 
 

CONCLUSION 
 

This study focuses on the problem of calculating 
the outliers for big data sets in a distributed 
environment processed. We discussed the existing 
algorithms that calculate the outliers from the dataset 
and mentioned the LOF to represent the degree of the 
outlierness for each tuple in the data set. We also 
discussed the existing algorithms for calculating the 
LOF    for    large-scale    data   sets   in   a    distributed  
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Fig. 10: Percentage of true positive outliers detected for BGP 

and BBGP algorithm for CovType data set 
 

 
 
Fig. 11: Percentage of true positive outliers detected for BGP 

and BBGP algorithm for shuttle data set 
 
environment and mentioned its weakness. Then we 
propose two algorithms boarder-based Gird Partition 
(BGP) and Balanced boarder-based Gird Partition 
algorithm (BBGP). BGP uses a safe border to copy 
tuples between grids to be processed with each grid and 
discussed the impact of border size change on the 
results. BBGP algorithm solves the problem of 
unbalanced grids distributed between processing nodes. 
Finally, we evaluate our algorithms by time, data size 
over network and accuracy of the output over two real 
data sets shuttle and covtype. The evaluation results 
show that our two algorithms BGP and BBGP take less 
time than GBP+DLC algorithm. And the accuracy of 
our algorithms in calculating LOF is about 90-92% for 
BGP and 87-88.3% for BBGP. 
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