
Research Journal of Applied Sciences, Engineering and Technology 16(2): 77-87, 2019          
DOI:10.19026/rjaset.16.6003 
ISSN: 2040-7459; e-ISSN: 2040-7467 
© 2019 Maxwell Scientific Publication Corp. 
Submitted: December 27, 2018                       Accepted: February 17, 2019 Published: March 15, 2019 

 
Corresponding Author: Mohamed Sakr, Faculty of Computers and Information, Shebeen El Kom, Menofia, 32511, Egypt
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

77 

 
Research Article  

Distributed Anomaly Detection Over Big Data 
 

Mohamed Sakr, Walid Atwa and Arabi Keshk 
Faculty of Computers and Information, Shebeen El Kom, Menofia, 32511, Egypt 

 
Abstract: This study aims to solve the problem of detecting anomalies in big data. A border-based Gird Partition 
(BGP) algorithm was proposed. The BGP algorithm focuses on calculating the Local Outlier Factor (LOF) for big 
data in a distributed environment. It splits the data into intersected subsets, then allocates these subsets to the slave 
nodes in a distributed environment. Some parts of these subsets are replicated between slave nodes. The slave nodes 
calculate the LOF for each subset that it owns. The splitting of the data between the slave nodes is done in grid-
based without considering the size of the data that will be assigned to every slave node. The BGP algorithm results 
in un-balanced distribution of the subsets between slave nodes. To overcome this problem a modification on the 
BGP algorithm is proposed to take in consideration the size of the data that will be assigned to every slave node. The 
modified algorithm called Balanced boarder-based Gird Partition algorithm (BBGP). BBGP splits the data between 
the slave node equally. So that all the slave nodes will do balanced processing for calculating the LOF for the data. 
In the end, we evaluate the performance of the two algorithms through a series of simulation experiments over real 
data sets. 
 
Keywords: Anomaly detection, big data, distributed environment, local outlier factor, outlier detection 

 
INTRODUCTION 

 
Nowadays there is a huge growth in the area of Big 

Data. A lot of information flows on the internet and a 
lot of data are generated every day in our life. For many 
social websites (e.g., Facebook and twitter), a huge 
amount of information is generated every day. This 
information must be processed and filtered to detect the 
suspicions one from them. Suspicions information may 
be noise or wrong data or maybe up normal one. The 
process of detecting these types of information are 
called outlier detection. According to (Hawkins, 1980), 
“An outlier is an observation that deviates so much 
from other observations as to arouse suspicion that it 
was generated by a different mechanism”. Many other 
studies and definitions have been proposed for outlier 
detection e.g., top-n outlier (Ramaswamy et al., 2000), 
DB-outlier (Knox and Ng, 1998) and density-based 
outlier (Breunig et al., 2000). 

There exist lots of algorithms for the outlier 
detection. Most of them focus on the centralized 
processing of the data. Due to the huge increase in data 
generated every day, this data will take a lot of time for 
processing and detecting outliers. There are many 
applications that time will be very critical for them 
(e.g., Credit card Fraud detection). So, there is a need 
for processing this data in a distributed environment, 
not a centralized one. 

This study focuses on the problem of processing 
data in a distributed environment for detecting outliers. 
We use density-based outlier (Breunig et al., 2000) for 
detecting outliers. Density-based outlier has advantages 
over Some other algorithms. Other algorithms label 
every tuple as an outlier or not (Ramaswamy et al., 
2000) (Knox and Ng, 1998), on the other hand, density-
based algorithms measure the degree of being an outlier 
for a tuple p with respect to its neighbors. For 
measuring this degree for p we calculate its Local 
Outlier Factor (LOF). LOF represents the degree of a 
tuple to be outlier w.r.t its neighbors. Many real-world 
applications proved that measuring the degree of 
outlierness for p is more meaningful that marking p as 
an outlier or not. There exist two studies in solving the 
problem of distributed outlier detection (Lozano and 
Acufia, 2005) (Bai  et al., 2016). The authors in 
(Lozano and Acufia, 2005) analyzed the process of 
calculating the LOF and find that the step to calculate 
the KDNeighbors (which is the matrix that contains the 
elements of dataset D with its respective k-neighbors) is 
the most exhaustive step that takes time and processing 
power. They proposed a master-slave solution for this 
problem that offloads all the KDNeighbors calculations 
to the slaves to calculate it. The authors in Bai et al. 
(2016) also proposed an algorithm that also solves the 
problem of calculating LOF using distributed 
environment. They divide all the datasets into grids and 



 
 

Res. J. Appl. Sci. Eng. Technol., 16(2): 77-87, 2019 
 

78 

sends these grids to be processed by the slave nodes. 
Their algorithm needs a communication between all the 
slaves to handle all the neighbor tuples. 

In this study, we proposed practical approaches for 
calculating the LOF for tuples in a distributed 
environment which can be summarized as follows: 

We proposed a border-based Gird Partition (BGP) 
algorithm which is based on the GBP on Bai et al. 
(2016), this algorithm partition the dataset into subsets 
and add a border to each subset of the dataset. The 
tuples in these borders are replicated in each adjacent 
subset. 

We modified our BGP algorithm and proposed a 
Balanced boarder-based Gird Partition algorithm 
(BBGP). BBGP algorithm partition the tuples between 
slaves in a balanced way to distribute the workload to 
all the slaves equally and utilize the resources in every 
slave. 

We evaluate the performance of the proposed 
approaches through a series of simulation experiments 
over real data sets. The experimental results show that 
our proposed approaches give better results for 
calculating the LOF for the tuples in comparing with 
Bai et al. (2016). 

Many approaches for outlier detection were 
proposed, depending on the type of model they learn 
(non-parametric   model   or    statistical) (Rajasegarar 
et al., 2008) Non-parametric techniques have a lot of 
types of data clustering, Distance-based, Density-based 
and rule-based approaches. data clustering approaches 
aim to find groups of similar data points where each 
group of data points is well separated. This approach 
was first intended to cluster a group of points but after 
that,   it   was used  to   detect   outliers e.g., Aggarwal 
et al. (2003), Cao et al. (2006) and Guha et al. (2003). 
Distance-based approaches were proposed to detect 
outliers in a group of points based on the distance 
between points. Points out of the distance are supposed 
to be outliers e.g., Knox and Ng (1998). These 
approaches have an important problem with finding the 
outliers in a group of points with multi distances. 
Density-based approaches solve the problem of the 
distance based approaches by finding the outliers 
depend on the density of each group of points. Each 
point calculates its density depends on the other points 
near to it. The author in Breunig et al. (2000) proposed 
a number that measures the degree of each point of 
being an outlier this number is called LOF (local outlier 
factor). Some techniques improve the detection 
accuracy of LOF by changing the way k-NNs are 
computed (Tang, et al., 2002) so that it can cover a 
wider range of outlier types and finding a symmetric 
neighborhood relationship (Jin et al., 2006).  

For the problem of distributed outlier detection 
there exist two studies (Lozano and Acufia, 2005; Bai 
et al., 2016). In Lozano and Acufia (2005) the authors 
proposed a distributed algorithm for calculating LOF. 
They analyzed the LOF algorithm and find that the 

most exhaustive step that requires time is the step of 
calculating KDNeighbors (which is the matrix that 
contains the elements of dataset D with its respective k-
neighbors). For this reason, they attempt to paralyze 
this step. The architecture is composed of master and 
slaves, the master distributes the data to all the slave. 
Each slave calculates KDNeighbors for his local data 
and sends the results to the master. The master collects 
the partial KDNeighbors and finds the KDNeighbors 
matrix, then computes the reachability and LOF. 
Clearly, this approach is not suitable for distributed 
outlier detection on large-scale data, because all the 
data are combined in the last step and processed to 
compute the LOF for each tuple (centrally on the 
master node). The master node becomes a bottleneck 
when the data is large. In Bai et al. (2016) the authors 
also proposed a distributed algorithm for calculating 
LOF. Their architecture is also composed of master and 
slaves. They proposed Gird-Based Partition algorithm 
(GBP) for data portioning between slaves. In GBP, the 
author first splits the whole dataset into isometric grids 
considering the dimensionality of the dataset d. for each 
dimension the author splits this dimension into several 
isometric segments (the number of segments is denoted 
by s). Then, the whole space is split into sd grids. The 
author set s as the smallest number that satisfies sd ≥ |N| 
where |N| is the number of slave nodes.  

They propose also the Distributed LOF Computing 
method (DLC). Each slave generates LOF for most of 
the tuples in it. The boarder tuples are then transmitted 
between slaves to calculated its LOF efficiently then all 
the LOFs for the tuples are sent back to the master 
node. This approach has some drawbacks in two parts, 
first in the Gird-Based Partition algorithm the authors 
partition the data to the slaves without taking in 
consideration the data distribution which makes the 
slaves unbalanced, some slaves have a lot of data with 
respect to the others. Second, the cross-border tuples 
are sent over the network many times which consumes 
network and every time a new tuple is sent to the salve 
the neighbors for this tuple recalculate the LOF for 
them which consumes time and processing power. 

Recently, there also emerge some outlier detection 
algorithms for special purposes, such as high 
dimensional data (Aggarwal and Yu, 2001), streaming 
data (Kontaki et al., 2011) and uncertain data 
(Aggarwal and Yu, 2008). 
 

MATERIALS AND METHODS 
 
Local Outlier Factor (LOF): In this section, we will 
use the density based outlier detection algorithm to 
detect the outlier tuples. To measure the outlierness of 
each tuple we will use the LOF algorithm. The process 
of calculating the LOF takes a lot of time and 
processing power. We will use a distributed 
environment solution to distribute the processing 
between many  nodes. So that they calculate the LOF in  



Fig. 1: The k
 
parallel w
describe ho
we will giv
calculation
the next se

Given
of D is 
p[1],p[2],…
is: 

 

 
before we 
must be so
 
Definition
integer k, t
is the furth
of a data po

K-dist
between p 

for at 
d(p,o)  

for at 
d(p,q) < d(
 
Definition
Given a po
of a tuple p
points clos
dis(q,p) ≤ 
Neighk(p) i
the numbe
than K as s
= dis(p,q4)

k-distance of po

which will red
ow we will ca
ve in detail the 
n of the LOF i
ection. 
n a dataset D in

|D| ), a tup
…p[d]}. The d

describe how
ome definitions

n 1: (k-distanc
the k-distance o
hest distance a
oint p as show
tance (p) is de
& o such that:
least k objects 

most k-1 obj
(p,o)  

n 2: (k-distanc
ositive integer 
p is a set of k-
ser to p than k

disk(p) and q
is the points {
er of points in
shown in Fig. 
) 

Res. J.

 
oint p given k = 4

duce the time
alculate the LO

system flow f
in a distributed

n d-dimensiona
ple p is dona
distance betwee

       

w the LOF is 
s that need to b

e of tuple p) 
of a tuple o (de
among the k-n
n in Fig. 1. 
efined as the 
  
q א D\{p} it ho

jects q א D\{

ce neighborho
k, the k-distan

-nearest neighb
k-distance(p) N

q ≠ p }. Whic
{q1, q2, q3, q4
n the Neighk(p
1 this happens

 Appl. Sci. Eng

4 

e. We will fi
OF of tuples th
for the distribut
d environment 

al space (the si
ated as p = 
en two tuples p

                     (

calculated the
e explained. 

Given a positi
enoted as disk(o
earest neighbo

distance dis(p

olds that d(p,q)

{p} it holds th

ood of a tupl
nce neighborho
bors i.e., the da
Neighk(p) = { 
ch in Fig. 1 t
4, O}. notice th
p) may be larg
 because dis(p

 
 

g. Technol., 16
 

79 

 

irst 
hen 
ted 
in 

ize 
{ 

p,q 

(1) 

ere 

ive 
(o)) 
ors 

p,o) 

) ≤ 

hat 

le). 
ood 
ata 

{ q| 
the 
hat 
ger 
,o) 

Definit
p). Giv
radius 
neighbo
 

 Rd
 
As

point q
the Rd
neighbo
 
Definit
a given
tuple p 
 

LRD୩ሺp

 
Th

reachab
 
Definit
integer 
 

  L
 

Th
of the 
those o
(2000)
of bein
tuple as
this tup
with th
 
System
will ca
First, w
after th
calcula

We
consist
master 
and dis
will co
sends t
many a
the resu
LOF li
hands 
respons
nodes a
all the L

We
each  su

6(2): 77-87, 201

tion 3: (reacha
ven a positive in

of the neig
orhood of p or 

disk(o,p) = max

s shown in Fi
q3 is in the nei
disk(q5,p) = di
orhood of p. 

tion 4: (local r
n parameter k, 
is defined as:

pሻ ൌ 1/
∑୭ א 

he LRDk(p) is 
bility distances

tion 5: (local o
k, the local ou

OF୩ሺpሻ ൌ
∑ א

he local outlier
ratio of the lo

of p’s k-distan
describes each

ng outlier usin
s an outlier or 
ple is supposed
e lower LOF.

m flow: In this 
alculate the LO
we will describ
hat we will go
ates the LOF fo
e designed 
s of one mas
node is respo

stribute it betw
mpute the LOF
the results bac
algorithms that
ults sent from 
ike in Lozano 
in our archit

sible for partit
and schedule t
LOF computat
e first split th
ubset   to   a   s

19 

ability distance
nteger k, the Rd
ghborhood of
the real distan

x{disk(p),dis(o,

ig. 1 the Rdis
ghborhood of p
is(q5,p) as poi

reachability den
the local reac

Rdis୩ሺୣ୧୦ౡሺ୮ሻ 

|Neigh୩ሺpሻ|

the inverse of
s of p w.r.t. the

outlier factor o
utlier factor of a

ైీౡሺ
ైీౡሺ౦ ొౝౡሺ౦ሻ 

|ୣ୧୦ౡሺ୮ሻ|

r factor of a tu
ocal reachabili
nce neighbors
h tuple will be
ng the LOF in
not. The highe

d to be more ou

section, we w
OF in a distri
be the compo
 into detail ab

or each tuple. 
a distributed 
ster node and

onsible for par
ween slave nod
F for its portio

ck to the maste
t make the ma
the slaves to f
and Acufia (2

tecture, the m
tioning the da
the processing 
tions are done i
he dataset into
slave node. To 

e of a tuple o
disk(o,p) is eith
f p if o in

nce from o to p

,p)} 

k(q3,p) = disk
p. on the other
int q5 is not 

nsity of a tuple
hability densit

ሺp, oሻ
 

f the average 
e tuples in Neig

of a tuple). Giv
a tuple p is:  

ሻ
౦ሻ    

uple p is the av
ity density of 
. As Breunig

e given a degre
nstead of mark
er the LOF mea
utlier than the 

will describe ho
ibuted environ
nents of the s

bout how the s

environment
d slave nodes
rtitioning the d
des. Each slave
on of the datas
er node. There
aster node pro
finish computin
2005). On the

master node is
ataset between

between them
in the slave no

o subsets and 
do so We prop

o w.r.t. 
her the 
n the 
: 

k(p) as 
r hand 
in the 

e). For 
ty of a 

of the 
ghk(p). 

ven an 

verage 
p and 
et al. 

ee that 
k each 
an that 
tuples 

ow we 
nment. 
system 
system 

t that 
s. The 
dataset 
e node 
set and 
e exist 

ocesses 
ng the 

e other 
s only 
n slave 
m. And 

des. 
assign 
pose a  



 
 

Res. J. Appl. Sci. Eng. Technol., 16(2): 77-87, 2019 
 

80 

 
 
Fig. 2: System flow 
 
border-based Gird Partition (BGP) algorithm which is 
based on the GBP on Bai et al. (2016), this algorithm 
partition the dataset into subsets and add a border to 
each subset of the dataset. The tuples between this 
border and the subset boarder are replicated in both 
subsets. After that, each subset is allocated to a slave 
node which calculates the LOF for this subset only. 
Finally, each slave node sends its results back to the 
master node. As shown in Fig. 2 the data set consists of 
4 rows 2 orange and 2 blue rows, we divide the rows 
between two slave nodes. 2 rows for first slave node 
(orange) and the other 2 rows for the other slave node. 
A border was added for each subset (orange and blue) 
the border width is half of the row height. So, in Fig. 2 
we will send the first slave node 2 orange rows and 0.5 
blue row and the other slave node 2 blue rows and 0.5 
orange row. 
 
Border-based Gird Partition (BGP): The BGP is 
based on the old GBP in Bai et al. (2016). In our BGP 
algorithm, we continue from the step that determines 
the number of grids. Then we divide the dataset into 
isometric grids. Each grid has a border in its dimension 
i. We propose a border. This border b is for each 
dimension i in the dataset. The size of the border is a 
percentage of the width of the grid in the dimension i 
(iא[1,d]). After determining the border width, each grid 
will now have a new virtual border in dimension i 
which is its original border plus the proposed border 
size. Each grid now will be allocated to a slave node. 
As shown in Fig. 2 if the boarder is 25% of grid width. 
So, when we divide the 4 rows into two slave nodes 
there must be 2 grids. Each grid will be 2 row (gird in 
orange and grid in blue). The border width is 25% of 
the grid so each grid will take 25% of the other grid i.e., 
0.5 row. grid 1 will become 2 orange rows and 0.5 blue 
row and grid 2 will be 2 blue rows and 0.5 orange row 
as shown in algorithm 1. In algorithm 1 we first 
calculate the new safe border for each grid, then we add 
all the tuples between the original border and the new 

border to the grid (lines 1-8). After that we sort the 
girds in g according to the number of tuples in g in 
descending order, taking in consideration that the tuples 
in g are not only the tuples below original border but 
also the tuples between the new border and the original 
border (line 9). Then we go through all the sorted girds 
and allocate each grid g randomly to all the slave nodes 
till all the slave nodes are allocated with grids. (lines 
10-13).  

For the remaining grids g, we calculate the average 
number of tuples per slave node and initialize a set N’ 
that contains all the slave nodes with a number of tuples 
less than or equal (lines 14-15). After that, we select the 
slave node with the largest number of grids that are 
adjacent to that grid g from N’ and allocate g to this 
slave node (lines 16-17). We repeat this process (line 
13-19) till all the girds are allocated to slave nodes.  

After finish allocating the tuples in the grids to the 
slave nodes using algorithm 1, Each slave node starts to 
process its tuples and calculate the LOF for each tuple. 
After each node finish calculating the LOF for the 
tuples it sends the result back to the master node. 

As shown in Fig. 3 we have a dataset with n tuples 
and two slaves. The BGP algorithm will partition the 
dataset into 4 isometric grids. Each slave node will be 
allocated a number of grids for this example g1 will be 
allocated to a slave node and g2, g3, g4 will be 
allocated to the other slave node according to the 
algorithm 1. Given the border percentage, for example, 
we have two percentage one in the red color and the 
other in the blue color. We have three choices one to 
process the tuples without using any border. The second 
one is to apply the red border and the last one is to 
apply the blue border. 
 
Algorithm 1: Border based Grid partition 

input: Grid set G, dataset N, Boarder percentage b 
output: Grids set allocated to slave nodes 

1 for each gird g in G do 
2 for each dimension i in d do 



 
 

Res. J. Appl. Sci. Eng. Technol., 16(2): 77-87, 2019 
 

81 

 
 
Fig. 3: BGP Example |N | = 2, K = 3 
 
3 bw  the border width for dimension i 
4 calculate new border for g in i 
5 update g new border in i 
6 end 
7 add tuples between the original grid border and the 

new border to g 
8 end 
9 sort grids in G according to the number of tuples 

(tuples below safe border) in g in descending order 
10 for each grid g in G do 
11 if there exist slave node with no grid then 
12 randomly choose a slave node with no grids and 

allocate g to it 
13  else 
14 ε  the average number of tuples per salve node 
15 initialize a slave node set N’ that contain all the 

slave nodes that has number of tuples less than or 
equal ε 

16 n  select the slave node with the largest number 
of grids that are adjacent to g 

17 allocate g to n 
18 end 
19 end 

 
First, if we didn’t apply any border, then when we 

calculate the disk(p1) it will be d3. As it is the distance 
that can include at least 3 tuples (k = 3). If we apply our 
border to be the red border then when we calculate the 
disk(p1) it will be d4. As it is the distance that includes 

at least 3 tuples (k = 3). The distance changed after we 
apply our border to be the red border as points p2, p3 
were added to the neighbors of p1 and they are near to 
p1 than p4. So that the d2 is smaller than d3 as we 
added extra tuples (p2,p3) from the red border. On the 
other hand, for the point p6 if we apply the red border 
the disk(p6) will be d1 but if we increase our border and 
apply the blue border the disk(p6) will be d2 as p7 is 
now in the neighbors of p6 and it is near to p6 than p8. 
 
Balanced Border-Based Gird Partition algorithm 
(BBGP): In the BGP we notice that the portioning of 
the dataset is done using the girds concept that the 
author in Bai et al. (2016) proposed. One characteristic 
of this grids is that they are isometric which mean that 
all the girds must be with the same dimensions. In fact, 
this characteristic may lead to unbalanced subsets in the 
slave nodes. For example, if we have four grids and 2 
slave nodes and the dataset is distributed to be most of 
it in grid g1 and the other three grids are almost empty. 
Then when we allocated our grids to the two slave 
nodes one slave node will be allocated with g1 and the 
other slave node will be allocated with the other three 
empty grids. If we calculate the workload in the two 
slaves we will found that the two slaves are not 
balanced and one of them is underutilized which is 
against  the   characteristics   of   the parallel 
computing. As   shown   in   Fig. 3  we   notice that 
most  of  the  points  are  in grid g1. And the other three  



 
Fig. 4: Non-
 
grids are a
slave node
the other s
between t
allocated to
 
Algorithm
algorithm (
input: num
N, Border 
output: Gri
1 for eac
2 t1, t2 

dimen
3 pg <- 

space 
the sam
less tu

4 g <-cr
5 add g 
6 End 
7 call A

 
To sol

boarder-ba
in algorith
dimensions
for exampl

-balanced grids o

almost empty. G
e and the other 
slave node. If w
them we will
o slave 1 to the

m 2: Balanced
(BBGP) 

mber of grids i
percentage b 
ids set allocate
ch dimension i

<- the smal
nsion i 

the points ng 
between t1, t2

me number of 
uples than the o
reate a grid in d
to G 

lgorithm 1 with

lve this proble
ased Gird Parti
hm 2. In BBGP
s i in the numb
le, we have 2 g

Res. J.

old GBP 

Grid g1 will be
three grids wi

we checked th
l find the nu
e other slave is

d border-based

in each dimens

ed to slave node
i in NG do 
llest and the 

in dimension i
2 such that all
tuples, the last

other spaces 
dimension i wit

h G, N, b 

em, we propos
ition algorithm
P we first loop
ber of grids in 
grids in x dimen

 Appl. Sci. Eng

e allocated to t
ill be allocated
he load balanci
umber of tup
s 100:20. 

d Gird Partiti

sion NG, data

es 

largest tuple 

i that divides t
 the spaces ha
t space may ha

th pg 

sed the Balanc
m (BBGP) show
p through all t
each dimensio

nsion and 2 gri

 
 

g. Technol., 16
 

82 

the 
d to 
ing 
les 

ion 

set 

in 

the 
ave 
ave 

ced 
wn 
the 
on, 
ids 

in dim
select t
most va
divide t
equal t
exampl
spaces 
(line 3)
spaces 
set G (l
input t
percent
into div
grids h
allocati
will ha
will lea
nodes. 
grids a
balance
 

 
Th

the boa
boarder
addition
and   th

6(2): 77-87, 201

mension y (line
the two tuples 
alue in this dim
the space betw
to the number
le, divide this
must have the 
). We create a
divided in line
line 4-5). At th
o it the grid 
tage b. after w
viding the data
have the same
ing these grids 
ave the same n
ad to balancin
As shown in F

are not balanc
ed. 

RESULT

his section pre
arder-based Gi
r-based Gird 
n a compariso

he  GBP+DLC 

19 

es 1-6). In ea
t1 and t2 that 
mension (line 

ween t1 and t2 i
r of grids in 
s space into 
same number 

a grid in the d
e 3 then we add
he end we call 
set G, data se

we apply algor
aset into a num
e number of 
to the slave no

number of tupl
ng the load be
Fig. 4 this is the
ced but in Fi

TS AND DISCU

esents the exp
ird Partition (B
Partition algo

on between the
algorithm in B

ach dimension
has the smalle
2). Now we n
into n spaces th
this dimension
two spaces. 
of tuples as po

dimension i wi
d this grid to th
our algorithm

et N and the b
rithm 2 it will 
mber of grids,
tuples. Then 

odes each slave
les to process 
etween all the
e old GBP whe
ig. 5 the grid

USSION 

perimental resu
BGP) and Bal
orithm (BBGP
e proposed me

Bai et al. (2016

n i we 
est and 
need to 
hat are 
n. For 
These 

ossible 
ith the 
he grid 

m 1 and 
border 
result 

, these 
when 

e node 
which 

e slave 
ere the 
ds are 

ults of 
lanced 
P). In 
ethods 

6) are  



 
Fig. 5: Bala
 
presented. 
JAVA pro
(Esoteric, n
and UDP c
algorithms
one master
has a 2.5 G
and 250G 
one has 2.
1T hard di
i5 CPU, 8G

To eva
were consi

 
• Time t
• Size o
• Accur

tuple 
 

The ca
et al. (200
= 5. Six 
demonstrat
(0.001, 0.0

Two 
database i
performanc
obtained 
repository 
(Dheeru an

nced grids new B

All the algo
ogramming la
n.d., 2018) a ja
client/server ne
s were deploye
r node and two
GHz Intel Cor
SSD hard dis
5 GHz Intel C
sk and the othe
G memory and
aluate the prop
idered: 

taken to calcul
of data that was
racy in calcula

alculation of L
0). All the resu
boarder perc

ted to evalua
005, 0.01, 0.1, 0

real datasets 
s 10,000 tupl
ce for all the 
from the M

at UCI 
nd Karra Tanis

Res. J.

BBGP 

orithms were 
anguage and w
ava library that
etwork commu
ed in a cluster
o slave nodes. 
re i5 CPU, 8G
sk. The other 
Core i7 CPU, 
er slave has 2.5

d 1T hard disk. 
posed algorithm

late the LOF 
s transmitted ov
ating the righ

OF was done b
ults were demo
centages of g
ate the propo
0.2, 0.25). 

Shuttle and 
le) were used 
algorithms. Th
Machine Lea

(http://archive
kidou, 2017).  

 Appl. Sci. Eng

implemented 
we use kryon
t is used for TC
unication. All t
r that consists 
The master no

G memory DDR
two slave nod
4G memory a
5 GHz Intel Co
 

ms three criter

ver the network
ht LOF for ea

based on Breun
onstrated using

grid width we
osed algorithm

Covtype (ea
to evaluate t

hese datasets a
arning databa
e.ics.uci.edu/m

 
 

g. Technol., 16
 

83 

in 
net 
CP 
the 
of 

ode 
R3 
des 
and 
ore 

rias 

k 
ach 

nig 
g k 
ere 
ms 

ach 
the 
are 
ase 

ml/) 

 

 
Fig. 6: P

c
 
Time t
illustrat
BGP a
GBP+D
BBGP 
algorith

Th
transmi
but in 
network
GBP+D

Th
than th
tuples a
most  o

6(2): 77-87, 201

Processing time
covtype data set 

taken to calc
tes that for co

algorithm takes
DLC algorithm
algorithm take

hm and GBP+D
he GBP+DLC 
ission for the c
BGP there is

k. That’s why
DLC algorithm
he BGP and GB
he BBGP alg
across the gird

of  the  tuples a

19 

e for GBP+DLC
 

culate the LO
ovtype dataset 
s much smalle

m in Bai et al. 
es a much sma
DLC algorithm

algorithm ta
cross-grid tupl
s no tuples tra
y the BGP take
m. 
BP+DLC algor
gorithm as wh
ds (4 grids as m
about 70% of th

C, BGP and BB

OF: Figure 6 
and shuttle d

er time than t
(2016). In add

aller time than
m. 
akes time in 
les over the ne
ansmission ov
es less time th

rithm take mor
hen partitionin
mentioned in F
hem were distr

 

GP for 

and 7 
dataset, 
that of 
dition, 
n BGP 

tuples 
etwork 
ver the 
an the 

re time 
ng the 
Fig. 4) 
ributed  



 
 

Res. J. Appl. Sci. Eng. Technol., 16(2): 77-87, 2019 
 

84 

 
 
Fig. 7: Processing time for GBP+DLC, BGP and BBGP for 

shuttle data set 
 

 
 
Fig. 8: Size of data over the network for GBP+DLC, BGP 

and BBGP for CovType data set 
 
in one grid which is processed by only one slave. While 
slave A is processing the 70% of tuples, the other slave 
B is processing only 30% of them. Slave B after 
finishing processing the 30% of tuples it waits idle till 
slave A finish it's processing which takes a lot of time 
and don’t consume all the resources. On the other hand, 
the BBGP algorithm takes less time as when portioning 
the tuples each one of the four grids has almost the 
same number of tuples. So, every slave has almost the 
same number of tuples which utilize all the resources. 

For the time and boarder percentage we notice that 
when we increase the border the time for processing is 
increased a little (or stable in comparing with the total 
number of tuples to be processed) as there are extra 
redundant tuples that will be processed. 
 
Size of data that was transmitted over the network: 
Figure 8 illustrates that, the data size transmitted over 
the network for the covtype dataset for the GBP+DLC 
algorithm is more than the size of the data for the BGP 
and BBGP algorithms. But when we reach border 
percentage of 0.2 the data size of the BBGP algorithm 
is more than the BGP and GBP+DLC algorithm this is 
because that number of redundant tuples increases 
when increasing the border percentage.  

For the shuttle dataset the data size transmitted 
over  the  network is illustrated in Fig. 9. The size of the  

 
 
Fig. 9: Size of data over the network for GBP+DLC, BGP 

and BBGP for shuttle data set 
 
data transmitted over the network for BBGP algorithm 
is always much bigger than the other two algorithms. 
That’s because of the distribution of the tuples around 
the boarders is high in compared to covType dataset. 

We notice that the data size over the network for 
our BBGP algorithm is larger than the data for 
GBP+DLC. But the time for processing the data for the 
BBGP is less than the time for the GBP+DLC 
algorithm. This is due to that the GBP+DLC algorithm 
takes time to calculate the k-distance neighbors and 
sends a request to the slaves which has these neighbors. 
Then the slaves send these tuples. After that, it takes 
time to calculate the LOF for these tuples. This request 
and response take time which is more than the 
processing time for the LOF for each tuple. That’s why 
the data size over the network is larger for the BBGP 
algorithm but the time is smaller than the GBP+DLC 
algorithm. 
 
Accuracy in calculating the right LOF for each 
tuple: In evaluating the accuracy of the algorithms, we 
calculated the LOF for the tuples in both datasets 
covtype and shuttle. The GBP+DLC algorithm 
calculated the LOF for all the tuples correctly as any 
tuple that is needed in the slave it will be sent to it from 
the other slave so its accuracy is 100%. 

For the BGP and BBGP algorithm, each slave node 
sends a LOF value for each tuple it has. The tuples 
replicated in both slaves have two values one from each 
slave node. The master node has the choice to select the 
LOF with the ssmallest value, biggest or average value 
between the two slaves. For each tuples, we subtracts 
the LOF of our algorithm and that of the original LOF 
and found that for each border of the six borders (0.001, 
0.005, 0.01, 0.1, 0.2, 0.25) the master can selects LOF 
with the minimum, maximum or average value. 
 
BGP algorithm: For the covtype dataset, if the master 
selects the LOF with the minimum value, about 90.5-
91.5% of the tuples are equal to zero and about 98.5-
98.7% of  the   tuples are less than or equal to 0.1. If the  



 
 

Res. J. Appl. Sci. Eng. Technol., 16(2): 77-87, 2019 
 

85 

Table 1: Accuracy of the algorithms for the two datasets 

Data set Border 

BGP 
-----------------------------------------------------------------------------------------------------------------------------------
Min. 
---------------------------------------- 

Max. 
---------------------------------------- 

Avg 
-----------------------------------------

= 0 <0.1 = 0 <0.1 = 0 <0.1 
Covtype 0.001 91.52 98.71 91.52 98.71 91.52 98.71 

0.005 91.52 98.71 91.52 98.71 91.52 98.71 
0.01 91.52 98.71 91.52 98.71 91.52 98.71 
0.1 91.36 98.69 91.33 98.62 91.17 98.71 
0.2 90.56 98.6 90.91 98.53 89.95 98.58 
0.25 90.5 98.58 90.74 98.44 89.72 98.52 

Shuttle 0.001 98.12 99.88 98.12 99.88 98.12 99.88 
 0.005 98.12 99.88 98.12 99.88 98.12 99.88 
 0.01 98.12 99.88 98.12 99.88 98.12 99.88 
 0.1 98.12 99.88 98.13 99.89 98.12 99.88 
 0.2 98.12 99.88 98.13 99.89 98.12 99.88 
 0.25 98.12 99.88 98.13 99.89 98.12 99.88 

Data set Border 

BBGP 
-----------------------------------------------------------------------------------------------------------------------------------
Min 
---------------------------------------- 

Max 
---------------------------------------- 

Avg 
-----------------------------------------

= 0 <0.1 = 0 <0.1 = 0 <0.1 
Covtype 0.001 88.25 98.48 88.25 98.47 88.25 98.47 

0.005 88.26 98.49 88.26 98.47 88.26 98.47 
0.01 88.25 98.49 88.25 98.46 86 98.31 
0.1 87.1 98.41 87.14 98.13 86 98.31 
0.2 87.01 98.45 87.03 98.16 85.79 98.28 
0.25 86.98 98.36 87.29 98.27 86.02 98.32 

Shuttle 0.001 76.81 92.39 76.4 92.14 75.43 92.24 
0.005 77.36 92.53 77.16 92.41 76.65 92.42 

 0.01 77.24 92.54 77.12 92.44 76.56 92.47 
 0.1 77.42 92.55 77.32 92.52 76.92 92.53 
 0.2 77.43 92.55 77.31 92.52 77.05 92.53 
 0.25 77.49 92.55 77.34 92.52 77.05 92.53 

Min.: Minimum; Max.: Maximum 
 
master selects the LOF with the maximum value, about 
90.7-91.5% of the tuples are equal to zero and about 
98.4-98.7% of the tuples are less than or equal to 0.1. If 
the master selects the LOF with the average value, 
about 89.7-91.5% of the tuples are equal to zero and 
about 98.5-98.7% of the tuples are less than or equal to 
0.1. 

For the shuttle dataset, if the master selects the 
LOF with the minimum value, about 98.12% of the 
tuples are equal to zero and about 99.88% of the tuples 
are less than or equal to 0.1. If the master selects the 
LOF with the maximum value, about 98.12% of the 
tuples are equal to zero and about 99.88% of the tuples 
are less than or equal to 0.1. If the master selects the 
LOF with the average value, about 98.12% of the tuples 
are equal to zero and about 99.88% of the tuples are 
less than or equal to 0.1 as shown in Table 1. 
 
BBGP algorithm: For the covtype dataset, if the 
master selects the LOF with the minimum value, about 
86.9-88.25% of the tuples are equal to zero and about 
98.3-98.5% of the tuples are less than or equal to 0.1. If 
the master selects the LOF with the maximum value, 
about 87-88.25% of the tuples are equal to zero and 
about 98.1-98.5% of the tuples are less than or equal to 
0.1. If the master selects the LOF with the average 
value, about 85.7-88.25% of the tuples are equal to zero 

and about 98.2-98.4% of the tuples are less than or 
equal to 0.1  

For the shuttle dataset if the master selects the LOF 
with the minimum value, about 76.8-77.4% of the 
tuples are equal to zero and about 92.5% of the tuples 
are less than or equal to 0.1. If the master selects the 
LOF with the maximum value, about 76.4-77.3% of the 
tuples are equal to zero and about 92.1-92.5% of the 
tuples are less than or equal to 0.1. If the master selects 
the LOF with the average value, about 75.4-77% of the 
tuples are equal to zero and about 92.2-92.5% of the 
tuples are less than or equal to 0.1 as shown in Table 1. 

This can be summarized in Fig. 10 and 11 for both 
the datasets and the two algorithms (BGP and BBGP) 
using the two comparison techniques mentioned above 
(zero and below 0.1). 
 

CONCLUSION 
 

This study focuses on the problem of calculating 
the outliers for big data sets in a distributed 
environment processed. We discussed the existing 
algorithms that calculate the outliers from the dataset 
and mentioned the LOF to represent the degree of the 
outlierness for each tuple in the data set. We also 
discussed the existing algorithms for calculating the 
LOF    for    large-scale    data   sets   in   a    distributed  



 
 

Res. J. Appl. Sci. Eng. Technol., 16(2): 77-87, 2019 
 

86 

 
 
Fig. 10: Percentage of true positive outliers detected for BGP 

and BBGP algorithm for CovType data set 
 

 
 
Fig. 11: Percentage of true positive outliers detected for BGP 

and BBGP algorithm for shuttle data set 
 
environment and mentioned its weakness. Then we 
propose two algorithms boarder-based Gird Partition 
(BGP) and Balanced boarder-based Gird Partition 
algorithm (BBGP). BGP uses a safe border to copy 
tuples between grids to be processed with each grid and 
discussed the impact of border size change on the 
results. BBGP algorithm solves the problem of 
unbalanced grids distributed between processing nodes. 
Finally, we evaluate our algorithms by time, data size 
over network and accuracy of the output over two real 
data sets shuttle and covtype. The evaluation results 
show that our two algorithms BGP and BBGP take less 
time than GBP+DLC algorithm. And the accuracy of 
our algorithms in calculating LOF is about 90-92% for 
BGP and 87-88.3% for BBGP. 
 

REFERENCES 
 
Aggarwal, C.C. and P.S. Yu, 2001. Outlier detection for 

high dimensional data. Proceeding of the 2001 
ACM SIGMOD International Conference on 
Management of Data, pp: 37-46. 

Aggarwal, C.C. and P.S. Yu, 2008. Outlier detection 
with uncertain data. Proceeding of the 2008 SIAM 
International Conference on Data Mining, pp: 483-
493. 

Aggarwal, C.C., J. Han, J. Wang and P.S. Yu, 2003. A 
framework for clustering evolving data streams. 
Proceeding of the 29th International Conference on 
Very Large Data Bases (VLDB '03), 29: 81-92. 

Bai, M., X. Wang, J. Xin and G. Wang, 2016. An 
efficient algorithm for distributed density-based 
outlier detection on big data. Neurocomputing, 
181: 19-28. 

Breunig, M.M., H.P. Kriegel, R.T. Ng and J. Sander, 
2000. LOF: Identifying density-based local 
outliers. Proceeding of the 2000 ACM SIGMOD 
International Conference on Management of Data 
(SIGMOD '00), pp: 93-104. 

Cao, F., M. Ester, W. Qian and A. Zhou, 2006. Density-
based clustering over an evolving data stream with 
noise. Proceeding of the 6th SIAM International 
Conference on Data Mining, pp: 328-339. 

Dheeru, D. and E. Karra Taniskidou, 2017. UCI 
Machine Learning Repository.  

Esoteric, n.d. 2018. Kryonet. [Online]  
Retrieved form: 
https://github.com/EsotericSoftware/kryonet 
(Accessed on: January 1, 2018) 

Guha, S., A. Meyerson, N. Mishra, R. Motwani and L. 
O'Callaghan, 2003. Clustering data streams: 
Theory and practice. IEEE T. Knowl. Data En., 15: 
515-528. 

Hawkins, D.M., 1980. Identification of Outliers. 
Chapman and Hall, London, Vol. 11. 

Jin, W., A.K.H. Tung, J. Han and W. Wang, 2006. 
Ranking outliers using symmetric neighborhood 
relationship. In: Ng, W.K., M. Kitsuregawa, J. Li 
and K. Chang, (Eds.): Advances in Knowledge 
Discovery and Data Mining. PAKDD, 2006. 
Lecture Notes in Computer Science, Springer, 
Berlin, Heidelberg, 3918: 577-593. 

Knox, E.M. and R.T. Ng, 1998. Algorithms for mining 
distance-based outliers in large datasets. 
Proceeding of the 24th International Conference on 
Very Large Data Bases (VLDB '98), pp: 392-403. 

Kontaki, M., A. Gounaris, A.N. Papadopoulos, K. 
Tsichlas and Y. Manolopoulos, 2011. Continuous 
monitoring of distance-based outliers over data 
streams. Proceeding of the IEEE 27th International 
Conference on Data Engineering, pp: 135-146. 

Lozano, E. and E. Acufia, 2005. Parallel algorithms for 
distance-based and density-based outliers. 
Proceeding of the 5th IEEE International 
Conference on Data Mining (ICDM'05), pp: 4. 

Rajasegarar, S., C. Leckie and M. Palaniswami, 2008. 
Anomaly detection in wireless sensor networks. 
IEEE Wirel. Commun., 15(4): 34-40. 



 
 

Res. J. Appl. Sci. Eng. Technol., 16(2): 77-87, 2019 
 

87 

Ramaswamy, S., R. Rastogi and K. Shim, 2000. 
Efficient algorithms for mining outliers from large 
data sets. Proceeding of the 2000 ACM SIGMOD 
International Conference on Management of Data 
(SIGMOD '00), pp: 427-438. 

 
 

Tang, J., Z. Chen, A.W.C. Fu and D.W. Cheung, 2002. 
Enhancing effectiveness of outlier detections for 
low density patterns. In: Chen, M.S., P.S. Yu and 
B. Liu (Eds.), Advances in Knowledge Discovery 
and Data Mining. PAKDD, 2002. Lecture Notes in 
Computer Science, Springer, Berlin, Heidelberg, 
2336: 535-548. 

 
 


