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Abstract: Aim of this study is to present two optimal methods for adjusting parameters of PID controllers using
Sinmmlated Annealing (SA) and Particle Swarm Optimization (PS0) algorithms to achieve the desired goal intended
for application of these controllers. Through adding intelligent techniques fo the SA algorithm it will lead to a
higher speed and the reduction of the error in the PID controller. Available mles for setting PID parameters are
commonly trial and error which inveolve various issues like being very time consuming, imprecise and facing a
significant number of errors. Using performance measurement criteria and integrating them an attainable method
has been presented for setfing these parameters which has a very high accuracy as wells as a significant speed, with
a very low rate of error. Results obtained in this research demonstrate a considerable efficiency compared with that
of other proposed methodologies

Kevwords: Modified SA alporithm PID controller, PSO

INTRODUCTION

The proportional-intepral-denivative (PIDY)
controllers are among the most commonly used ones
available in industry which meet various requirements
of complex industrial parts. A vanety of applications
including networked control of a large pressurized
heavy water reactor (PHWR) (Dasgupta ef al., 2013),
automatic voltage regulator (AVR) (Hasamien 2013;
Kim ef al_ , 2012), power plants (Glickman ef al_, 2004),
Load Frequency Control (LFC) of power systems (Tan,
2010), temperature controllers such as temperature
controllers used in tunable semiconductor laser modules
for optical commmunication systems (Wang and Yu,
2012) or temperature controllers for a Polymerase
Chain Reaction (PCR) (Dinca ef al, 2009,
compensation of a SVC load (Wang ef al., 2008) and
Variable-Speed Motor Drives (Shin and Park, 2012)
can be named for these controllers, among others.
Capability of these controllers in ufilization in
mmerous applications is their great advantage In
addition, in conditions where the mathematical model
of the process is unknown, usually these controllers are
applied. Although finding an efficient and optimal
method of designing PID controllers which could be
applied in variety of processes with a very low error
rate, is highly challenging Therefore, researchers
continually work on finding the most optimal method

for adjusting these controllers’ parameters. Methods
used for setting these parameters can be divided into
two general groups of classic and metaheuristic.

Approaches proposed by Ziegler and Nichols
(1942) and Cohen and Coon (1953) are among
experimental and classical ones, based on
approximation Fuzzy inference (Chang ef al, 2009;
Harinath and Mann, 2008), fuzzy simulated annealing
{(Ho et al, 2006), simulated annealing (Hung et al,
2008). Particle Swarm Optimization (PSO) (Gaing,
2004), genetic algorithm (MNeath et al | 2014) and ant
colony neural network (Cao ef al, 2007) can be
mentioned as metaheunstic techniques ufilized for
adjustment of PID controllers in literature.

Aim of this research is to provide an efficient
optimal methodology that could be employed for all
systems in most of processes and desired response
could be obtained with a very low rate of error. In this
study, to design and adjust a PID controller, two
metaheuristic algorithms including Particle Swarm
Optimization (PSO) and Developed Simulated
Annealing (DSA) have been deployed. PSO algorithm
is one of metaheuristic algonthms which deals with
finding optimal response based on collective
intelligence with inspiration from nature. Birds flying
or fishes swimming in groups, are examples of this
collective intelligence. Based on the desired search
space, this algorithm has been used in both continous
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and discrete fields (Kennedy and Eberhart. 1995;
Vlachogiannis and Lee, 2006; Jin ef al, 2007).
Simmlated annealing algonthm (SA) was first used in
1983 for optimization issues with Inspiration from
solidification of molten metal (Kirkpatrick ef al , 1983).
First, an introduction on these two metaheuristic
algonthms and then the way they are applied to obtain
optimal responses would be discussed in herein
Moreover, some techniques will be presented in order
to develop and increase the efficiency of these
algonthms. General structure of PID controllers has
been discussed accompanying with some explanations
on application of PID digital controllers. A digital PID
controller was adjusted using DSA and PSO algonthms
and simmlations of this controller have been presented
for sample systems of Surface Mount Technology
(SMT) and Automatic Voltage Repulator (AVE).
Results obtained from sinmlations compared with that
of other researchers demonstrated superior finction of
suggested strategies.

MATERIALS AND METHODS

Artificial intelligence applied in scientific
applications 15 an inspiration from natural intelligence
showed by humans as well as animals. Many
researchers have tried to present algonthms inspired
from processes in nature, which could replace classical
techniques in engineering applications that are based on
complex mathematical analysis. Widely used fields of
artificial intelligence applications include soft
computing and optimizafion problems among others.
Genetic Algorithm (GA) (Mashhadi ef al, 2003), Ant
Colony Optimization (ACO) (Dorigo et al, 1996),
Tabu Search (TS) (Glover, 1990), Simulated Annealing
(SA) (Vecchi and Kirkpatrick, 1983). Particle Swarm
Algorithm (PSO) (Kennedy and Eberhart, 1995) and
Neural Network (NN) (Taghanni ef al., 1991). can be
cited among the most popular metaheuristic algorithms.

Standard SA algorithm: Simulated Annealing (SA) is
the behavior of a molten metal in its cooling process
and is considered as one of metaheuristic algorithms. In
the molten metal with the gradual decrease of
temperature, the metal crystal forms a regular network
and the final solid matenial will have the mininmum level
of energy. The idea of simulated annealing was first
expressed by Metropolis ef al_ (1953). If one heats up a
solid material and lets its temperature reach the melting
point, then cools it down again defails of the result
molecular stracture will depend on the method and how
it cools down In gradual refrigeration for any given
temperature, the probability of material particles having
a certain level of energy is computed according to the
Boltzmann distribution in statistical mechanics. This
probability P, also called the transition probability is
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high at first and then decreases in proportion to
temperature while the process progresses and is
determined as per below relation-

yaf
=)
Where kg is the Boltzmann's constant, T is the
temperature for controlling the annealing process and
AE is change of the energy level The simplest way to
link AE with the change of the objective function Af is
to use AE = yAf where y is a real constant For

simplicity, one can use k3 = 1 and y = 1. Thus, the
probability P becomes (Yang, 2013):

P(y) = exp (— 1)

P=exp(-%) @)

SA algonthm by dominating local minimums
would be able to find the absolute optimum answer. As
well as approaching the better answer, this method
accepts worse solutions, ie, objective functions (Af >
0) with a non-zero probability in every repetifion
unlike other common search methods. Provided the slop
of temperature reduction curve is less than that of:

To

T 1+log{ k+1) ®

SA algorithm will be convergent to the absolute
minmimmum (Aarts and Korst, 1989), where 7o is inifial
temperature, I is temperature in each step and £ is step
of iterafion.

The current acceptance condition in SA technique
15 Metropolis criterion in which provided the change
rate of energy level be low, AF would be negative and
“exp (-AE/T)” would be bigger than 1 and hence the
current mode would be accepted Howewer, if AE is
positive, the probability of accepting this variafion
would depend on the amount of positive changes,
temperature and the Boltzmann distribution finction.

SA technique, which has its roots in Metropolis
algonithm, first was presented by Kirkpatnck ef al
{1983) for optimization purposes. Generating answers
in the neighborhood of the cument answer and
calculating the effective wanation in the objective
function (Af) is the main idea in this method In
continuous problems, new variables are produced based
on defining the neighborhood radius and the previous
variable. In the production of new wvariables, random
movement in the search space will be limited by a
radius called neighborhood radius. This radius is
decreased simultaneous with the temperature reduction
and controls the variation range of vanables. The best
answer has been obtained, provided the new answer is
definitely accepted. Otherwise the new answer would

be accepted considening a probability and hence the
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movement would be towards increase of the objective
fonction In SA algonthm, movement capability of
network elements in the space between molecules is
determined by temperature. As search process goes on,
temperature decreases in a specific manmer. Actually, in
every repetition of the algorithm it is the system
temperature that determines the acceptable subspace to
be searched Almost all of produced answers will be
accepted regardless of the objective function value in
high temperatures. On the other hand, inappropriate
answers have a less chance of acceptance, as the
algonthm progresses and temperature decreases.
Actually, in any temperature, the acceptance probability
of an answer depends on the increase amount of the
cost function If the slope of the temperature reduction
curve is not small enough, crystal network of the metal
faces an immediate cooling-off which in furn would
result in an erratic crystal structure that could not have
the minimum energy level To increase search
opportunity in algorithms where temperature reduction
rate 15 more than the marginal rate, algorithm repetition
in the temperature reduction process has been
considered for every stage and the mumbers of this
repetition is called Markov chain length.

Developed SA (DSA) algorithm: Initial temperature is
a crucial factor in SA approach which can affect rate
and convergence of the algonthm In Yip and Pao
(1995), the simplest method, i e, choosing a constant
amount for the initial temperature, has been used for
determining the mitial temperature. In this research
initial temperature at the beginning of the algonthm
based on the y which is indicative of probability of the
accepted modes through Boltzmann probability
function (Pao ef al., 1999), has been determuned in
proportion fo the PID parameters. When v equals to
20%, it implies there is a chance of 20 percent
acceptance for all states. The new variable that is
generated in the initial temperature will be produced
similar to its generation during the main algorithm This
monitoring tactic for determining the initial temperature
has more efficiency compared to vanable random
production method for determination of a specific
mumber of accepted states. In this study, percentages
from 10% to 90% have been examined which revealed
20% is the optimal percentage for y. In addition to
maintaiming accuracy in the convergence of the
algonithm this percentage will have a higher speed
compared to other values for determiming the imitial
temperature.

DYNAMIC DEFINITION OF MARKOV CHANIN

Another charactenstic that determines the cooling
schedule is length of Markov chain Provided this
length is too short it will result in losing the
opportunity. On the other hand if it is too long

76

optimization fime increases considerably. This wvalue
and its importance have not been discussed enough in
literature and often is considered as a constant value. In
Kirkpatrick ef al. (1983), while defining the cooling
function, the following relation has been considered:

T, =aTy_,.a=09 (E))]

Number of iterations in internal loop in proposed
algorithm herein is considered in a way that number of
attempts for each temperature in average is equivalent
to 10 acceptances per each internal loop, provided that
the total number of efforts do not exceed 100 times the
number of internal loop iterations. Pao et al. (1999) in
their research study suggested that number of iterations
in internal loop is dependent to the problem and
recommended constant values 5000 and 20000 as
Markov chain length Sohn (1995) expressed that the
number of iterations in internal loop is fixed but related
to the problem Wong and Constantimides (1996) for
TSP problem, proposed the number of iterations per
each temperature to be equal to the square of the
number of cities. Wu and Chow (2007) has considered
the number of iterations in constant temperature for
continuous test functions as a fixed amount that can be
selected in a range of 10 to 4000. The number of
iterations in a temperature for the SA and self-
organizing and self-evolving neurons (SOSENs) is set
to five for all the TSP problems (Wu and Chow, 2007).
Lin ef al. (1993) is one of few researches in which
using an inteprated Simmlated Annealing (SA) and
Genetic Algonithm (GA) methodology called AG, a
variable length for Markov chain has been considered.
In Lin ef al (1993), length of Markov chain was
assumed according to the population size in GA
algorithm and in each step, proportionate to the
equilibnum conditions of SA algorithm Then it was
calculated and put in search process as different values.
He (2002) in a combined approach, designed by neural
network, has used an iteration mumber at any fixed
temperature which is proportional to the production,
evaluation and updating all neurons according to the
Metropolis criterion.

In this study, a particular perspective on the
number of iterations at each temperature is proposed.
Indeed, increased length of Markov chain provides a
sufficient opportunity for search algorithm at a specific
temperature, that is so close to the optimal point as
much as possible For optimmm use of appropriate
temperature, chain’s length can be revised to obtain the
optimal value according to the temperature at which the
search takes place. While having a defined fixed
number of iterations in the search loop at constant
temperature conditions, Markov chain’s length reflects
the same need for having an equal effort at different
temperatures for the search algorithm that does not
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Fig. 2: Temperature decay, trial mumber, maxinmm acceptance and freezing condition in sinmlated annealing process

seem logical SA algponthm to achieve an optimal
solution, requires an effort that is proportionate to the
temperature of search process, as it is possible to be
close fo the optimal energy point more quickly at a
certain temperature In other words, the Markov chain’s
length nmst be defined differently for each working
temperature. Accordingly, in the proposed algorithm in
this study, the number of iterations at a temperature,
instead of being defined as proportional to the mumber
of iterations in the ioner loop, has been taken
proportional to the number of acceptances happened in
the inner loop. Number of desired acceptances can be
reduced dunng implementation of the algorithm
linearly according to the temperature decline. With
linear decline of the maxinmm acceptance in Markov
chain which is indicative of chain’s length again in
practice, the number of iterafions increases in the
effective interval of search process and commensurate
with temperature decrease. Certainly, it 1s expected that
the number of acceptances decreases according to the
temperatire reduction while approaching toward
freezing point, or in other word, creation of the low-
energy crystalline forms In fact, the Markov chain’s
length to snit what is happening at any temperature, has
found a dynamic defimition, so that at the middle
temperature, interval (mmshy state temperature)
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becomes longer and searching opportunity increases in
this interval.

Proper wvalue of linear reduction factor for
maxinmm acceptance in Markov chain regarding
comparative studies, has been considered as 0.9, in this
research Fig 1, for instance, demonstrates that
temperature decreases through an exponential curve
that can be divided into three different intervals. The
First interval that is the mitial part of the curve indicates
a very high temperature state and it should be passed
with a steep slope. The second interval is the middle
part of the curve in which the gradient decreases and is
considered as the effective range of the algorithm's
performance. Finally, the third interval is the final part
that provides the conditions of convergence and also
helps achieve optimal energy at a low temperature. In
this interval changes of temperature occur with a low
slope. The Algorithm proposed in this study emphasizes
on an effective range in optimal performance of search
algorithm that is the middle interval Therefore, by
dynamic definition of the Markov chain’s length, search
operations in the algonithm are improved and hence in
the middle part there would be more effort. As shown
in Fig 2 with reduction of temperature from its inifial
value, the mumber of required efforts for successful
search in a Markov cham increases. Obviously, this
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increase in the middle range of temperature would be
appropniate. However, according to a new and dynamic
defimition of Markov chain after passing the effective
temperature, due to dramatic declines in the maximum
mmber of acceptances in a Markov chain and to reach
a pgentle gradient of temperature, the number of
attempts required to achieve the maximmm desired
acceptance will be reduced intensively. This approach
provides a proper distribution of iterations in the search
process, in which the amount of algonithm's effort will
be distnbuted according to the interval of activity. As a
result, this algorithm increases the number of iterations
for optimal search in the middle part and modifies the
fixed definiion of Markov chain’s length through
decreased effort at the initiation as well as final
temperature range and increases the middle range.

In this study, Markov chain’s length has been taken
equal to 20 times of v, which has been determined at the
beginning of the search process and will be reduced
during the algorithm with a 95% coefficient. This kind
of definition for the Markov chain not only improves
the convergence rate substantially, but also enhances
accuracy of the algorithm by the optimal distibution of
the number of efforts in the search process. In this
study, the convergence condition of the algorithm or the
freezing temperature has been considered as the state in
which the mininmm and the maxinmm energy in the
Markov chain’s length would be equal to three decimal
places.

PARTICLE SWARM OPTIMIZATION (PS0O)

Particle Swarm Optimization (PSO) algorithm, as a
novel method by an inspiration from birds flying or fish
swimming in groups to search for food, aims to find the
optimal answer. At the beginning, the particles are
scattered in the search space randomly and that is how
this algonthm works basically. Every particle in the
search space is an agent to find a possible answer and
all particles approach the optimal answer as time goes
on, while they will benefit not only from their own
search results, but also from that of the group. An
efficient and effective search by the group of particles
in the search space is the goal in this algomthm
Particles approach to the best and most suitable answer.
The change of each parficle’s posiion will be
calculated by the cinematic equations while each
particle’s velocity is considered constant in this
algonithm The particle’s welocity is affected by its
velocity in the prior moment, particle’s deviation
amount from its best position ever obtained and the
distance from the best position ever obtained by the
whole group. This algorithm was first applied by
Kennedy and Fberhart (1995). N particles move ina D
dimensional search space in this algomthm Ewvery
Particle modifies its movement using its own and other
particles’ experience and regulates its position in order
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to approach the best answer. The position of the ith
parficle in the D dimensional space and its velocity are
determined with the X; = (%, Xz, -, Xp) and Vi =
(Viy, Vi, -, Vip) vectors, respectively. While particles
are moving in the search space, every particle calculates
the required velocity vector for the next stage to move
towards the optimal position by comparnng its best
position ever obfained to ifts current position while
considering the best position ever obtained in the whole
group of parficles. Personal best (Pbest) is the best
position the fth parficle has reached so far and is
presented as below:

Pbest; = (Pbest;,, Pbest,, ..., Pbest;p) (5)

Also, the position of the best answer obtained by
the whole group is determined by global best (Gbest) as
follows:

Gbest = (Gbest,, Gbest,, ..., Gbesty) {6)

Therefore, the ith particle’s velocity for the new
movement is calculated by equation (7), which depends
on its velocity in the prior step, its own experience and
the orientation towards the best answer in the group:

_le.’kl)_'_
O]

V& = o™ + ;. rand( Pbest,
Ez_rand( Gbest — xlm)

The constants C; and C; determine the particle’s
own effect and the effect of collective intelligence on
velocity, respectively. These constants are known as
acceleration or cognition coefficients and determine
how the effective factors influence the welocity
production and have been determined in some research
works in a way that at the beginning of the algorithm
the particle’s own effect overcomes that of the group
and as the search process progresses, the collective
intelligence will have more effect on the particle’s
orientation (Franken and Engelbrecht, 2005; Seo ef al_,
2006).

In this study C; and C; have been chosen as 2 and
0, respectively at the beginning of the algorithm But as
the search process continues, Ci decreases while C:
increases, both linearly and finally reach amounts of 0
and 2, respectively. The Co constant which is for the
impact of the prior moment’s velocity on the curmrent
velocity, is set to 1 at the beginning of the algorithm
and linearly falls to 0 at the end of the search process.
Considering the cumrent velocity vector and the prior
position, the parficle moves towards the destination
according to the following equation:

x:."“-‘l} — “{K*‘l} + xjﬂf] (8)
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Considering equations (7) and (8), it can be seen
that the particles’ movement in the search space can be
possible with the aid of a snitable definition of velocity
as the controlling parameter in this algonithm As it can
be seen the particles’ velocity in the PSO algorithm
determines the orientation towards the optimal position
in every step.

Digital and analog PID controllers: PID controllers
are among the most practical as well as ndustnial
controllers. These controllers operate based on three
proportional, integral and derivative control actions.
The proportional operator multiplies the error signal by
a smtable gain and provides the controller’s output. The
integral and denvative operators, conduct the
integration and derivation on the eror signal
respectively and provide separate ouiput for the
controller. Thus, in the PID controller, a triple control
command is generated as follows:

de(t)
dt

u(t) =K, e(t) +K; [e(mdt + K4 @
in which Kp, i and Ky are the proportional integral and
derivative coefficients, respectively.

Basic features of PID confrollers, including
reduction of costs and high speed in processing digital
systems, among others, make them substantially
valuable. Therefore, a digital PID controller has been
utilized in this sudy to employ the optimal proposed
method by two metaheuristic algornithms.

The digital form of this confroller in the fime
domain is as below (Ogata, 2002):

e(k)-e(k-1)
T
(10)

Zero order hold and the Nyquist theorem: In order to
use the digital PID controller in analogue mndustrial
processes, it is required to use a conservator and a
sampler (Ogata, 1995), so that the digital signal related
to the output of the PID controller can enter the system
while on the other hand a digital input is provided for
the PID controller In this stody, a zero-order

U(k) = Kpe(t) + K; Tioe()T + Kg

conservator and a sampler have been ufilized In
addition, the Nyquist theorem (Oppenheim &f al | 1996)
should be considered and hence the sampling frequency
must be more than twice of the highest frequency in the
system so the system does not get in trouble while
sampling in the closed loop.

Performance criteria: To measure the performance of
a PID controller, there have been some critenia defined
as equations (11)-(14) (Oviedo ef al., 2006), namely,
integrated absolute error (IAF), integrated of time-
weighted-absolute-error (ITAE), integral of squared-
error (ISE) and inteprated of fime-weighted-squared-
error (ITSE):

IAE = [ leldt (11)
ITAE = |, tleldt (12)
ISE = [, e*dt (13)
ITSE = [ tedt (14)

In this study, percent of overshoot and above-
mentioned parameters have been considered either
separately or collectively when the cost function hits
the mininmm  to optimize performance of PID
controller using metaheuristic algorithms.

PROPOSED METHOD

In this study, a digital PID controller with a zero-
order hold has been employed. Regarding explanations
presented for two metaheunstic algonthms, e SA and
PS0, the process is as Fig 3. As it can be seen in this
fipure, with the input of the system which is a unit step
function, the output is produced every instance and
based on that, the metaheuristic algonithm using
performance criteria as the objective function, searches
for the PID controller’s coefficients to reach the optimal
TESpOnSE.

metahenristic method ]

F 3

V.

Digital PID

I_[ Zero-order-hold (ZOH)

Plant

Sensor ]

Fig. 3: Schematic diagram of digital FID controller’s optimization process
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Fig. 4: Block diagram of an SMT system with disturbance
Proposed PSO-PID controller: Step 6: Check the Metropolis acceptance condition
and determine the current variables.
Step 1: Determine the number of particles and  Step 70 Determine the minimum and the maximum of
acceleration coefficients the inner loop and determine the ammmt and
Step 2: Random determination of initial position and the vector of the outer loop’s minimum
particles’ cost function variables. . e
Step 3: Determine vector of best position obtained by  Step 8. Go to Step 4 if the inner loop’s iteration has
every particle (Pbest) not come to an end yet. proportionate to the
Step 4: Determine the best position obtained by all Markov chain’s dynamic definition in Step 3.
particles (Gbest) Step 9 Reduce the Markov chain’s length (number of
Step 5: Determine particles’ new velocity vector based acceptances required for the inner loop’s
on £ (7) particles based Stcp 10: Deferan e o based on the
- ; iolag’ S tep 10: EIMne new temperature based on
Step 6: ]{Z;e}t new position on Eq. temperature reduction function,

Step 7: Check the condition for stopping the search
process and contime the algonithm from Step 3,
if it has not been safisfied.

Proposed SA-PID controller:

SA algonithm has been applied with techniques
proposed above to adjust the PID controller, while
design of this controller i1s based on the following
stages:

Step 1: Determine optimal initial temperature according

to the algonthm’s main loop variable

ion mechanism and equal to 20%
acceptance and 100 times number of internal
loop iterations.

Step 2: Randomly determine the problem’s input
variables (PID controller's parameters) and
define the imifial amount of the neighborhood
radius and reduction  coefficient of
neighborhood radims.

Step 3: Determine the Markov chain’s length
dynamically, proportional to the mumber of
acceptances occurred and equivalent to the
initial temperature’s acceptance coefficient for
the number of iterations of the inner loop.

Step 4: Determine the new vanables around the
previous accepted variables, proportionate fo
the neighborhood radius.

Step 5: Determine the new vanable’s cost function.

“Te1=Tw/(1+log(k))”, which k= Outer Loop
Counter.

Step 11: Check the equality of the miminmm and the
maximum of the cost function to three decimal
points in the inner loop search process, as the
algorithm’s convergence condition and
continue the algorithm from Step 4, if the
convergence condition has not been met.

SMT Motion system: The purpose of Surface Mount
Technology (SMT) system is to move the head of
instruments from one point to another. This system has
been modeled differently in literature. This system
contains a servo driver with a motor. In Du (2004), a
model for the pmlt axis SMT motion system has been
presented. The block diagram of a motion system with
disturbance is presented in Fig 4.

Automatic Voltage Regulator (AVE): The voltage of
synchronic generators’ terminals can vary, provided the
nature of the load changes Thus, maintaining the
voltage in a specific range is desirable. In order to fix
the synchromic pgenerator’'s terminal voltage with
different loads, the automatic voltage regulator (AVER)
is applied A simple block diagram of this system is
shown in Fig 5.

This system has four main parts including an
amplifier, a driver/exciter, a generator and a sensor. To
control this system, a PID controller adjusted by two
proposed methods in this siudy has been applied and
simulation results thereof have been presented below.
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Table 1: Comparmg results for the SMT process for the proposed methods of SA and PSO with the results of Yachen et al. (2007)
Result of proposed method
Flant Yachen et al.
FS0 sS4 007)
X axmis PID) Controller coefficient Ep 15.04 843 116
Ei 128 282 15.66
Ed 0.013 0.015 0.01
Chershoot (%a) Min 0 0 019
Max 02531 0.1485 87
Mean 0.1031 0.0517 498
ITAE Min 324E-07 9 27E-07 191E-05
Max T2IE-06 6.75E-06 9 27E-05
Mean 2 4TE-D6 2 72E-D6 5.59E-05
Y axms PID) Controller coefficient Ep 438 463 186
Ei 1.90 0 122
Ed 0.01 0.01 0.02
Chershoot (%a) Min 0 0.0022 01
Max 04809 09413 3493
Mean 02808 03161 196
ITAE Min T7.T0E-07 53T7E-07 3 40E-06
Max 9 BEE-D6 T736E-06 3.61E-05
Mean 2 37E-D6 6.77E-D6 1. 95E-05

RESULTS AND DISCUSSION

Simulation of PSO-PID and DSA-PID controllers
for SMT: To simulate a digital PID controller and
optimally adjust it using PSO and DSA algonthms and
search for the best coefficients for the confroller, an
SMT mofion process (Yachen ef al, 2007) has been
applied herein as the controlled system

SMT’s transform functions for X and Y axes are as
follows:

46.78
0.001926 S2+0.1549 5

Gy (s) =
Gy(s) =

(13)
(16)

0.002651 ST40.2486 5

A constant disturbance torque of Tr=2 has been
taken in this process. It should be stated that the SMT
system does not limit the proposed method in this study
and the given steps for SA and PSO approaches are
independent from the kind of process. Simulation and
optimization of SMT process has been performed in
MATILAB 7.0 software while using a computer with
2GHZ of CPU and 512Mb of RAM. Results presented
in Yachen et al. (2007) are for a digital controller which
1s used for obtaining the miminmm amount of ITAE in
the SMT motion process which has been designed by
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the common SA algonthm In this study, PSO and DSA
algorithms have been deployed. To compare resulis
obtained by these two proposed algorithms in this study
with that of presented by Yachen et al. (2007), the same
approach in the objective function and the controlled
process has been considered. Simmulation results have
been given in Table 1.

To complete simulation and present the proposed
algorithm’s capabilities in optimization of the PID
controller, different objective functions have been
considered separately or in a combination with the
percent of overshoot. Results are for 20 mns for every
objective function and the best, worst and the average
have been presented in Table 1 and 2.

As it can be seen in Table 1. for the ITAE for X
axis, the minimum amount of 3.24E-7 with PSO and
9 27E-7 with DSA have been acquired, respectively.
While the result presented by Yachen et al. (2007) is
1.91E-5, which demonstrates results obtained in this
research using both proposed methods are well better
than that of Yachen ef al. (2007). Of course, according
to Table 2. overshoot for SA-PID controller is 0.930
and for PSO-PID controller is 0.423 which are well
better than the overshoot of the coniroller in Yachen
et al. (2007). Actually, by maintaining the overshoot in
a desirable as well as a reasonable range, a very lower



Res. J App. 5ci. Eng. Technol, 17(3): 74-87, 2020

Tahble 2: Results of AVE. system with the proposed P50 and 54 methods compared to that of Gaing (2004)

Proposed method
Gaing (2004)
PO S5A
PSSO GA
B=1 B=1.5 B=1 B=135 =1 B=1.5
FID Controller coefficients  Ej 045 0.589 0.548 0.624 0675 0.394
E; 0299 0422 0352 0.449 0.598 0.646
K4 0.129 0.192 0.166 0210 0283 0.401
Orvershoot (%) Min 0 0423 0.025 0.930 1.710 7480
Max 0955 0.560 0.691 1.104 - -
Mean 0.340 0.510 0.103 0.949 - -
ITAE Min 4 649 3991 6.107 3842 4708 4 068
Max 4904 4106 6.735 6516 - -
Mean 4715 4017 6.125 4731 - -
t:(5) Min 0.750 0415 0.602 0489 0380 0982
Max 0.825 0.602 0.749 0.642 - -
Mean 0.769 0.578 0.680 0.503 - -
t-(s) Min 0491 0.343 0.407 0314 0285 0175
Max 0.589 0491 0485 0375 - -
Mean 0.537 0448 0438 0351 - -
W {Assessment function) Min 1047 2232 1212 1318 1.480 0985
Max 1345 5.605 1445 7833 - -
Mean 11.75 3.126 12.72 4156 - -
Stan Response
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Fig. 6: Block diagram of a motion system with disturbance Step response obtained for SA and PSO compared to that of Yachen

et al. (2007) for X axis

amount of error and ITAE have been obtained. The
system’s oufput step response is presented in Fig 6.

As it is obvious from Fig 6, results of proposed
methods in this study are very close to each other and
are almost the umit step. But results of Yachen ef al
(2007) are very different from the unit step and because
of this difference between the reference input and the
output, they show a higher emor rate and therefore
higher ITAE. Figure 7 shows Fig. 6 in a zoomed-in
state, so the percent of overshoot resulted from
proposed methods can be compared with that of Yachen
et al. (2007).

According to Table 1. for the ITAE for Y axis,
mininmm amounts of 7.7E-7 and 5.37E-7 have been
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obtained by PSO-PID and DSA-PID controllers,
respectively. While Yachen ef al. (2007) has gained the
minimum amount of 340E-6 for ITAE for Y axis.
Figure 6 shows response of controlled SMT process for
Y axis.

As illustrated in Fig 8, system’s responses with
PSO-PID and DSA-PID controllers. have reached the
unif step very fast with pinpoint accuracy and low and
reasonable overshoots which are 0.9886 and 0.6062 for
DSA-PID and PSO-PID controllers, respectively, in
contrast to that of presented by Yachen ef al. (2007),
that shows a considerable deviation from the umit step
and a slow convergence to the final amount.
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Fig. 7: Step response resulted from PSO-PID and DSA-PID compared to that of Yachen ef al. (2007), with zoom, for X axis
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Fig. 8: Step response resulted from PSO-PID and DSA-PID compared to that of Yachen ef al. (2007), with zoom, for Y axis

Simulation of PSO-PID and DSA-PID conirollers  using the nise time, settling time percent of overshoot
for AVR system: Herein digital PID controller  and the steady-state error as per equation (17) and the
adjusted by PS50 and DSA approaches has been  pgoal is to minimize or maximize it as a performance
employed to sinmlate the Automatic Voltage Regulator  critenion:

(AVR) system (Gaing, 2004) and the goal is to adjust it

as desired. Gaing (2004) has considered a criterion W =(1—e~F)(M, + E;;) + e F(t; — t,) (17
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Fig. 9: Step response obtained by the two proposed method compared to that of Gaing (2004) for the AVE system for =1
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Which § is the weighting factor, Mp 15 the overshoot,
15 the nise time, #; 15 the settling fime, Fx is the steady-
state error and e is the error.

Considering this critenon for the proposed
algonthms, unsuitable fluctuating damped responses
can be found Therefore, by taking this assessment
criterion into account, the stability of the system has to
be checked using Routh-Hurwitz cniterion Some parts
of the response with amounts more or less than 1 that
are located in the middle time range will be obtained by
this criterion which are actually local minimmms or
maximums of the response in different peniods and for
removing these undesired responses a compound
assessment criterion should be used. In this siudy, the
assessment criferion of Gaing (2004) along with the
Integrated of Time-weighted-Absolute-Error (ITAE)
have been ufilized as the compound assessment
function to reach the mininmm. In this case, responses
that have unsuitable status in the middle time range,
cannot be regarded desirable due to high ITAE and
hence are not accepted as answers of the problem
Simmlation results of the digital PID controller using
both proposed methods compared to that of Gaing
(2004) are presented in Table 2.

Gaing (2004) has gained 171 and 748 as
overshoots for B = 1 and B = 135, respectively
According to Table 2, corresponding overshoots using
PS0-PID controller are 0 and 0.423, respectively, with
reasonable amounts of ITAE, which demonstrates a
substantial improvement.

Amounts of the assessment function obtained in
this study which was set to reach the maximum amount
considered by Gaing (2004), for B = 1, have reached
1272 and 1175 using DSA-PID and PSO-PID
controllers, respectively. In other words, the proposed
techniques have produced very much desirable answers
to increase the assessment fimection According to Table
2, these responses have been obtained while, £ and #
are both reasonable. Figure 9, illustrates the step
response obtained by both proposed approaches
compared to that of Gamng (2004), for p=1.

As it 15 apparent from Fig 9, results obtained by
PS0-PID and DSA-PID have very lower overshoots
and ITAF total errors without any undershoots and have
reached desirable amount of 1, very fast.

As per Table 2, overshoots for both amounts of .
ie, 1 and 15, are 0.025 and 0930, respectively for
DSA-PID controller. Obtained results show a
sipgnificant improvement in terms of a considerable
reduction of overshoots, compared to results presented
in Gaing (2004).

Figure 10 depicts step responses generated by
DSA-PID and PSO-PID. in comparison with that of
Gaing (2004) for § = 1.5, in which overshoot has fallen
very nmch in this case and the response has a very
lower error rate and has converged the adjusted amount
faster.
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When § is 1.5, ITAE is 3.991 and 3 842 for PSO-
PIDD and DSA-PID respectively, which proves a major
improvement in comparison with results presented in
Gaing (2004). Responses of proposed techniques have
reasonable seftling time (f:) and rise time () and their
overshoots decline substantially with wvery lower
undershoots. The assessment function (W) while § is
1.5, has reached amounts of 4.156 and 3.126 for DSA-
PID and PSO-PID, respectively which shows a
significant increase comparing to that of Gaing (2004).
Thus, proposed methods for the AVR system with the
purpose of fixing the response on a specific level have
been able fo obtain results which have lower amounts
for total error and overshoot and hence are more
desirable.

CONCLUSION

In this study, a digital PID controller has been
designed and adjusted for sample systems of SMT and
AVE using Particle Swarm Optimization (PS0) and
Developed Simulated Annealing (DSA) algorithms.
Determining the controller’'s optimal coefficients using
PSO and DSA algorithms shows that these algonthms
have high capabilities in adjusting the controller’s
coefficients as obtained results have been improved
considerably compared to that of other researchers. The
authors® suggestion for future work on this topic is to
adjust the PSO algonthm with a more precise
inspiration of the collective intelligence. Movement of
the group based on the leader’s movement or a more
precise  definition of the cinematic equations
considering concepts such as accelerated motion of the
parficles could be suggested, among others. Moreover,
test and implementation of a PID controller for more
complex systems can be followed on this research topic
while considering disturbances that could be regarded
as inputs to the system.
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