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Abstract: Aim of this study is to propose a control strategy based on Simulated Annealing (SA) as a metaheuristic 
algorithm and Fuzzy Logic Controller (FLC) for semi-active nonlinear control of structures equipped with 
Magnetorheological (MR) dampers to prevent damage from severe dynamic loads such as earthquakes. MR dampers 
as promising semi-active control mechanisms are focus of attention for reducing seismic response of structures in 
the world of structural engineering. A fuzzy controller is applied to establish interactive relationships between 
structural responses and input voltages to the MR damper. A modified simulated annealing algorithm is employed as 
an evolutionary algorithm to design the fuzzy controller, which is herein described as a Modified Simulated 
Annealing-Fuzzy Logic Controller (MSA-FLC). Results of numerical simulations demonstrated the efficiency of the 
proposed smart strategy compared to similar methodologies recommended by other researchers. 
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INTRODUCTION 
 

Mitigating damage induced by severe dynamic 
loads, such as earthquake and strong wind is the central 
issue in structural engineering. Semi-active control 
devices which offer the best features of both passive 
and active control systems including reliability, 
versatility and adaptability, have attracted considerable 
attention in recent years. One of such innovative and 
most promising semi-active control devices is the 
Magneto-Rheological (MR) damper which employs 
MR fluids to provide control capability. 

Since an MR damper is a semi-active control 
device with highly nonlinear dynamics and civil 
infrastructures are also replete with nonlinearities and 
uncertainties, it is a challenging task to develop 
effective control strategies that are implementable and 
can fully utilize the capabilities of MR dampers. Esteki 
et al. (2015) innovatively proposed the idea of applying 
a magnetorheological fluid based semi-active tuned 
mass damper which actually integrates characteristics 
of tuned mass dampers with semi-active control system 
for obtaining a more efficient performance in 
suppressing vibration of tall buildings.   

Various semi-active control algorithms have been 
proposed for use with the MR dampers in which, first, a 
conventional optimal control algorithm such as 
LQR/LQG (Dyke et al., 1996) is employed to calculate 

the ideal target force which is regarded as an active 
control force, using selected structural responses and 
then, through an active to semi-active converter 
(ASAC) unit, the desired control force produced by the 
controller is converted to a desired control force from 
an  MR  damper  (Schurter and Roschke, 2000). Zhou 
et al. (2012) focused on the vibration control of long-
span reticulated steel structures under multidimensional 
earthquake excitation. They adopted the LQR and 
Hrovat controlling algorithm to determine optimal MR 
damping force, while the Modified Bingham Model 
(MBM) and Inverse Neural Network (INN) were 
proposed to solve the real-time controlling current. 
Several algorithms, such as clipped-optimal control 
algorithm (Dyke et al., 1996) and neural networks 
Chang and Zhou (2002) and Zhou and Chang (2003) 
have been developed to effectively command voltage to 
an MR damper to generate a damping force that is 
much the same as the desired control force in the ASAC 
unit. Huang et al. (2015) conducted a full-scale 
experimental test to verify the effectiveness of the MR 
damper for mitigating cable vibration using a semi-
active control strategy derived based on the universal 
design curve of dampers and a bilinear mechanical 
model of the MR damper. Sheikh et al. (2012) 
investigated analytically the efficiency of MR damper 
in reducing adverse seismic pounding effects of base-
isolated multi-span RC highway bridges. In their study 
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three control strategies including passive off, passive on 
and bang control were employed for controlling MR 
damper. However, there are difficulties such as, 
establishing an accurate mathematical model of a real 
structure in order to calculate the optimal control force 
under severe dynamic loads, handling the nonlinear 
dynamics of an MR damper and increased complexities 
that ASAC unit may introduce into the control system. 
Fuzzy Logic Control (FLC) theory due to its inherent 
robustness and its ability in handling nonlinearities and 
uncertainties has attracted much of attention in the field 
of structural vibration control in recent years (Battaini 
et al., 1998; Symans and Kelly, 1999; Schurter and 
Roschke, 2001). Kim et al. (2009) applied a Semi-
active Nonlinear Fuzzy Controller (SNFC) based on the 
Parallel Distributed Compensation (PDC) approach for 
vibration control of building structures equipped with a 
nonlinear semi-active device subjected to destructive 
environmental forces such as earthquake and strong 
wind loadings. Nevertheless, there are drawbacks in 
these FLC systems. The fuzzy sets and rules that 
require a full understanding of the system dynamics 
must be correctly pre-determined for the system to 
function properly. A number of approaches have been 
proposed for development, tuning and optimization of 
fuzzy models. Wang (1994) described an adaptive 
fuzzy control strategy that (Zhou et al., 2003) 
successfully applied for control of linear and nonlinear 
structures. They demonstrated that the adaptive feature 
of a fuzzy controller has multiple advantages in 
controlling a building equipped with an MR damper 
system. Yan and Zhou (2006) applied a genetic 
adaptive fuzzy (GAF) controller for single and multiple 
damper cases. Makhmalbaf et al. (2011) modified a 
fuzzy controller optimized by particle swarm 
optimization (PSO) technique for semi-active control of 
a 3-story benchmark building. Gu and Oyadiji (2008) 
proposed application of an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) controller for reduction of 
environmentally induced vibration in Multiple-Degree-
of-Freedom (MDOF) building structure with MR 
damper. Wilson (2012) evaluated the effects of multiple 
individually tuned fuzzy-controlled MR dampers in 
reducing responses of a multi-degree-of-freedom 
structure subjected to seismic motions. In the study 
conducted by Wilson (2012) two different fuzzy-control 
algorithms are considered, including a traditional 
controller in which all parameters are kept constant and 
a gain-scheduling control strategy. 

Traditional local search methodologies or some 
mathematical classic techniques generally progress 
based on improving the response and toward decreasing 
cost function. But these approaches often converge to a 
solution in local minimum and miss absolute optimum. 
Simulated Annealing (SA) is a kind of stochastic 
method that is well known for its effective capability of 
escaping local optimum through “Hill up” strategy. 

In this study, a Modified Simulated Annealing (MSA) 
algorithm is employed to determine optimum values of 
membership functions for fuzzy controller. The 
proposed controller described in this study as MSA-
FLC has been applied for semi-active control of a 3-
story test structure with shear and linear behavior 
equipped with a single MR damper in the first story and 
has the responsibility of generating a proper control 
signal for MR damper to mitigate destructive seismic-
induced vibrations, efficiently. The proposed smart 
controller has been verified through numerical results 
presented and its efficiency has been demonstrated as 
well, through comparison of obtained results by that of 
similar tests conducted by other researchers. 
 

MATERIALS AND METHODS 
 

This research works was conducted by authors in 
Iran during 2017-2019. 

One of such innovative and most promising semi-
active control devices is the magneto-rheological (MR) 
damper which employs MR fluids to provide control 
capability. Adequate modelling of the control devices is 
essential for sufficient prediction of behavior of the 
controlled system. Among mechanical models proposed 
for MR damper, modified Bouc-Wen mechanical model 
has been shown to accurately predict the behavior of a 
prototype shear-mode MR damper over a wide range of 
inputs in a set of experiments (Dyke et al., 1996). This 
model is also expected to be appropriate for modelling 
of a full-scale MR damper. Equations governing the 
force f produced by modified Bouc-Wen model are as 
below: 

 
𝑓 = 𝑐$𝑦̇ + 𝑘$(𝑥 − 𝑥,)                        (1) 

 
𝑦̇ = $

(./0.1)
{𝛼𝑧 + 𝑐,𝑥̇ + 𝑘,(𝑥 − 𝑦)}            (2)  

 
where the evolutionary variable z is given by (Wen, 
1976):  
 
𝑧̇ = −𝛾|𝑥̇ − 𝑦̇|𝑧|𝑧|89$ − 𝛽(𝑥̇ − 𝑦̇)|𝑧|8 + 𝐴(𝑥̇ − 𝑦̇) 

   (3) 
where x is the displacement of the device and z is an 
evolutionary variable that accounts for the history 
dependence of the response (Wen, 1976). The 
accumulator stiffness is presented by k1 and the viscous 
damping observed at large velocities by c0. While, c1 is 
a dashpot included in the model to introduce the 
nonlinear roll-off in the force-velocity loops observed 
in the experimental data at low velocities. k0 is included 
to control the stiffness at large velocities and x0 is the 
initial displacement of spring k1 associated with the 
nominal damper force due to the accumulator. By 
adjusting the parameters of the model 𝛾, 𝛽 and A, one 
can control the shape of the hysteretic loops for the 
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yielding element (Dyke et al., 1996). To account for 
functional dependence of the device parameters on the 
voltage applied to the current driver and the resulting 
magnetic current, Spencer et al. (1997) have suggested 
below relations: 
 

𝛼 = 𝛼(𝑢) = 𝛼= + 𝛼>𝑢                                    (4) 
 
𝑐$ = 𝑐$(𝑢) = 𝑐$= + 𝑐$>𝑢                                (5) 
 
𝑐, = 𝑐,(𝑢) = 𝑐,= + 𝑐,>𝑢                                (6) 

 
Moreover, the current driver circuit of MR damper 

introduces dynamics into the system. These dynamics 
are typically considered to be a first-order time lag in 
the response of the device to changes in the command 
input. These dynamics are accounted for with the first-
order filter on the control input given as below 
(Yoshida and Dyke, 2004): 
 

𝑢̇ = −𝜂(𝑢 − 𝜈)                 (7) 
 
where 𝜈 the commanded voltage sent to the current 
driver and 𝜂 is the time constant of this first-order filter. 
 

SIMULATED ANNEALING ALGORITHM 
 

The idea which forms the basis for Simulated 
Annealing (SA) algorithm was first published by 
Metropolis et al. (1953). They offered an algorithm for 
refrigerating materials in a heat bath. When a solid 
material is warmed up to its melting point and then is 
cooled till reaching to freezing state, structural 
characteristics of the frozen material depends on speed 
and manner of refrigeration process. 30 years later, 
Kirkpatrick et al. (1983) proposed application of this 
simulation for searching justified responses of an 
optimization problem with the objective of converging 
to an optimum solution. This approach is known as 
Simulated Annealing (SA) algorithm in which a set of 
justified solutions are searched by moving from current 
response toward an amount in the neighborhood of the 
solutions set. Traditional local search approaches 
generally develop on the basis of improving the 
response and progress toward decreasing cost function. 
But these approaches often converge to a response in 
local minimum and miss absolute optimum. In contrast, 
meta-heuristic strategies, such as SA algorithm escape 
local optima by allowing hill-climbing moves, i.e., 
moves which worsen the objective function value, in 
the hope of finding a global optimum (Henderson et al., 
2003). However, since the objective is obtaining 
absolute minimum, these upward movements have to be 
controlled. For this purpose, the frequencies of these 
movements are determined using a possibility function 
which changes with the progress of the algorithm. SA 
algorithm can be applied to address discrete and, to a 

lesser extent, continuous optimization problems 
(Henderson et al., 2003). For discrete optimization 
purposes, one can mention TSP (Shakouri et al., 2009), 
as well as 0/1 Knapsack problems (Liu et al., 2006), 
among others. This algorithm has also been utilized in 
continuous problems and solving test functions (Siarry 
et al., 1997; Ventresca and Tizhoosh, 2007; Yuen and 
Chow, 2008). 

Provided metals during melting process go through 
the refrigeration process gradually while their 
temperatures decrease with time according to a 
particular curve, resultant crystal networks are set at the 
minimum energy level. SA algorithm inspired by 
gradual refrigeration phenomenon of metals, searches 
for absolute minimum in different problems. In this 
algorithm, temperature parameter determines capability 
of displacing network elements in inter-molecular space 
and during the search process of the algorithm 
decreases based on a specific schedule. Should 
material’s temperature decrease according to below 
relation, the consequent crystal network converges to 
absolute minimum (Aarts and Korst, 1988): 

 
𝑇B =

C/
$0DEF	(B)

                                (8) 
 
𝑇B =

C/
$0DEF	(B)

                      (9) 
 

T0  :  initial temperature 
Tk  :  temperature in each step 
K :  step of iteration 
 

At high temperatures, molecules displace more 
rapidly and with decreasing temperature, they become 
more limited and displace slower. This fact indicates 
that at the initial stage of SA algorithm which 
temperature is high, variables can change more while at 
the end stage of the algorithm in which temperature 
decreases, change of variables become more limited. In 
continuous problems, production of new variables is 
based on the neighborhood radius and previous 
variables and is accomplish by being affected by a 
random amount. During the search process of the 
algorithm and in low temperatures, neighborhood 
radius should shrink while temperature decreases so 
that molecules become more restricted in relation to the 
crystal network. Indeed, reducing the neighborhood 
radius controls the range of changes of the variables. In 
this algorithm acceptance condition of new variables is 
according to below distribution function: 

 

𝑃(𝑥I → 𝑥I0$) = K𝑒
M∆O(PQ)
RSQ Δ𝐸(𝑥I) ≥ 0
1 ∆𝐸(𝑥I) < 0

Z     (10) 

 
Δ𝐸(𝑥I) = 𝐸(𝑥I0$) − 𝐸(𝑥I)                 (11) 
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The advantage of SA algorithm is that stochastically 
accepts responses with worse objective functions as 
well as variables which produce proper responses. 
Owing to the fact that the objective is minimization, 
should the amount of energy be improved, i.e., the new 
energy level, E(xi+1), is lower than that of previous one, 
E(xi), the related variable is accepted. However, SA 
algorithm, through hill-up ability, can also accept 
variables with the possibility of “Exp((-∆E (xi))/(kTi))”, 
when the response deteriorates or in other words new 
energy amount increases. This ability causes the 
algorithm to escape local optima. In this algorithm, the 
possibility of accepting a false state is compared to a 
random amount in the range of [0 1]. Thus, the 
greater the temperature, the more acceptances are 
gained and with decreasing the temperature the 
possibility of accepting false states is reduced. When 
the temperature touches 0, only best movements are 
accepted. 
 

MODIFIED SIMULATED ANNEALING  
(MSA) ALGORITHM 

 
In literature, basic concepts of optimization have 

been determined quantitatively and researchers have 
preferred to modify and define algorithms to acquire 
maximum speed and accuracy. In SA approach, 
temperature is the controlling parameter of the 
algorithm and reveals the state of problem in the stages 
of refrigeration process simulation. In fact, a high 
temperature indicates that a considerable change in cost 
function can occur and moving in the search space with 
large steps or along positive tangent of objective 
function is possible. In this research a Modified 
Simulated Annealing (MSA) algorithm based on 
optimum initial temperature, acceptance ratio and 
dynamic Markov chain is proposed in which the final 
search stage of the algorithm results in obtaining values 
close to the global optimum while convergence speed 
will also improve significantly. The amount of search in 
the algorithm is related to the temperature and 
acceptance ratio so that the search process is optimized 
efficiently. In traditional SA algorithm, initial 
temperature determination is not related to the type of 
the problem and hence the search process is prolonged 
and in some cases the algorithm does not even converge 
to the desired optimum value. While applying SA 
algorithm, a reconciliation is achieved between 
accuracy and speed which is very important. In this 
study, to eliminate this drawback, the initial 
temperature has been related to the ratio of accepted 
states to all states at the start of the algorithm. 

As mentioned above, in case SA algorithm follows 
the decreasing rate of the temperature according to the 
basic rate presented by (8), convergence of the 
algorithm is lengthened which in most control 
applications, employment of such a slow algorithm 

would be impossible. To resolve this problem, in this 
study, a dynamic Markov Chain has been applied which 
its length in each temperature is different and in 
proportion to that temperature. 
 
Initial temperature and defining markov chain: 
Initial temperature plays a prominent role in the speed 
and convergence of SA algorithm so that provided the 
selected value of this factor is very high, the algorithm 
would be long-running. On the other hand, should this 
temperature be chosen very low, the accuracy of the 
algorithm in search process may decrease. Yip and Pao 
(1995) and Cho et al. (1998) selected initial 
temperature as 1000 and 0.5, respectively just as a 
constant value. Nevertheless, to increase the efficiency 
of SA algorithm in a wider range of applications, a 
rational balance tailored to the needs of the 
optimization problem should be kept between speed 
and accuracy. Therefore, generally steeper curves are 
utilized in which temperature is decreased faster to 
decrease running time of the algorithm. To accelerate 
reduction process, in most research works, linear 
reduction of temperature according to below 
relationships has been employed (Goffe et al., 1994): 
 

𝑇B0$ = 𝛼 ∗ 𝑇B																			0 < 𝛼 < 1     (12)     
 
or    
   
𝑇B0$ =

CR	
$0DEF	(B)

                               (13) 
 

On the other hand, changing temperature reduction 
curve results in a smaller range to be searched and may 
cause the algorithm to miss the optimum. To increase 
the search opportunity, in each temperature reduction 
step, a number of iterations for internal loop of the SA 
algorithm is considered for a given constant 
temperature which is called Markov chain. Indeed, 
Markov chain provides more chances for the algorithm 
while temperature is steady. To optimize the algorithm 
efforts in different temperature ranges and also 
determine length of Markov chain considering the type 
of optimization problem, dynamic Markov chain is 
defined.  
 
Acceptance ratio, length of markov chain and 
dynamic markov chain: Concerning the fact that 
material’s temperature establishes molecules’ 
movement capability, with increasing temperature, 
molecules gain more freedom and so entropy increases. 
In this study, to eliminate this problem, an optimum 
initial temperature is obtained at the beginning of the 
algorithm and increases from a small value according to 
the problem’s type. This increase continues as long as 
the ratio of number of accepted states to the total states 
(γ′) along a Markov chain is equal to a defined ratio and 
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in this very case the resultant temperature is equivalent 
to   the  melting   point, i.e., initial temperature (Dashti 
et al., 2010). The operation utilized to find the initial 
value is the same as existing operation in the searching 
engine. First, the algorithm is started with a random 
variable and after producing a new variable, acceptance 
condition is examined and in case satisfies the 
condition, the new variable is substituted the previous 
value and this operation will continue until the end of 
Markov chain and finally γ′ is the ratio of number of 
accepted states to the total states (length of Markov 
chain). Provided this ratio is sufficient, continuing the 
algorithm in the loop will cease otherwise with 
increasing temperature and repeating abovementioned 
steps, new ratio (γ′) will be calculated for increased 
temperature. This increase will carry on as long as the 
initial determined value for γ in Markov chain is equal 
to its value in the algorithm. 

Pao et al. (1999) and Thompson and Bilbro (2005) 
adopted a constant amount along length of Markov 
chain which implies the algorithm at all temperatures 
needed the same amount of effort, whereas SA 
algorithm requires different efforts at different 
temperatures. At high temperatures which entropy is 
high and molecules have more capability for 
movement, generally less appropriate responses are 
found. While, at low temperatures which acceptances 
are fewer and algorithm should converge, not so much 
effort is required. As a matter of fact, middle domain of 
temperature is the best range for the search process and 
most efforts should be made in this region which is 
algorithm’s effective domain. 

In this study, a relationship has been established 
between length of Markov chain and temperature so 
that number of made efforts in the algorithm is 
proportional to its working temperature and thus most 
efforts for finding the optimum value are made in 
intermediate range of temperature. For this purpose, 
herein, length of Markov chain will be defined in 
proportion to number of acceptances occurred in the 
loop. Number of acceptances while the algorithm is 
running, could be decreased linearly or based on a 
curve. Maximum number of acceptances in Markov 
chain is indicative of its length. With decreasing length 
of Markov chain, number of iterations would increase 
according to the temperature reduction in the effective 
domain of the algorithm. Consequently, with defining 
dynamic Markov chain, required efforts for the search 
process are optimized and opportunities in the 
intermediate range, i.e., the effective range, will 
increase. 

After passing the intermediate range of 
temperature, due to reduction of number of acceptances 
at low temperatures, number of efforts for searching 
will decrease and terms of convergence will be 
satisfied. In Markov chain, reduction factor of 
acceptance is linearly changed and its maximum value 

is regarded as 0.9. Procedure of decreasing temperature 
follows an exponential curve which in fact has three 
different domains. First domain is the initial section of 
the curve which has a steep slope. Second part is the 
intermediate range that is the effective domain of 
algorithm’s performance, in which slope of the curve 
decreases. Eventually, third part or final part is the one 
that satisfies terms of algorithm’s convergence in which 
temperature changes with a gentle slope. As a result, by 
defining dynamic length of Markov chain, it can be 
seen that the amount of algorithm’s effort will decrease 
and most efforts for searching would be done in the 
middle range. Thus, after passing the effective 
temperature, due to a significant reduction in maximum 
number of acceptances in the Markov chain and 
reaching the gentle slope of temperature’s curve, 
number of required efforts for obtaining the desired 
maximum acceptance will decrease considerably. 

 
PROPOSED CONTROL STRATEGY 

 
Fuzzy systems have been recently employed for 

modelling and control of physical processes. These 
systems through their ability in developing a general 
but systematic frame for controlling nonlinear systems 
have attracted much of attention in different 
applications. Fuzzy logic controllers, due to their 
significant ability, have been made as one of the most 
favorite available tools for modelling and controlling 
nonlinear systems with complicated dynamics. In a 
fuzzy control system, controlling process is 
accomplished through a set of fuzzy rules. These rules 
govern fuzzy sets with definite membership functions. 

In this research, a fuzzy controller optimized by 
MSA algorithm was considered to semi-actively control 
an MR damper. Indeed, in this approach, the command 
voltage to the MR damper is produced by this 
controller. Modified Simulated Annealing (MSA) 
algorithm is in charge of optimizing parameters of 
membership functions of fuzzy controller to minimize 
seismic-induced structural responses by commanding 
an optimal voltage to the MR damper. Figure 1 depicts 
a schematic diagram of the proposed MSA-FLC control 
system applied in this study. 

 
Fuzzy Logic Controller (FLC): A fuzzy system is a 
nonlinear mapping between crisp inputs and crisp 
outputs using fuzzy sets theory. The fuzzification block 
converts the crisp inputs to fuzzy sets, i.e., membership 
functions and the inference mechanism uses the fuzzy 
rules in the rule-base to produce fuzzy conclusions. 
Finally, the defuzzification block converts these fuzzy 
conclusions into crisp outputs. 

In this study, effect, shape and parameters of 
membership functions have been investigated. In 
problems in which parameters of membership functions 
are examined, problem’s constraints cause 
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Fig. 1: Block diagram of MSA-FLC control system 
 
corresponding matrix inequalities to exit from convex 
state while ordinary algorithms cannot be employed to 
search for their response anymore. Fuzzy control has no 
need of exact mathematical model of the problem and 
increasing resistance against uncertainties is its most 
prominent feature. However, fuzzy systems are 
incapable of completely presenting human knowledge 
in the form of fuzzy rules, hence controllers designed 
by fuzzy logic are not optimum necessarily. Thus, to 
obviate this drawback fuzzy systems are combined with 
evolutionary algorithms. But this combination, on the 
other hand, suffers from either non-convergence or 
early convergence. Proposed MSA algorithm can be an 
efficient approach to eliminate this obstacle. To fulfil 
this aim, in this investigation, a fuzzy controller 
optimized by the proposed MSA technique is 
introduced. A fuzzy controller generally consists of a 
set of rules which relate conditions of inputs to the 
outputs of the controller and fuzzy logic is a tool for 
processing these rules. Inputs of control rules include 
real variables such as measured responses of the 
process to be controlled, such as acceleration, velocity 
and relative displacement and desired amounts or set-
points. 

Fuzzy inference method developed by Mamdani 
and Assilian (1975) is the most commonly used fuzzy 
methodology. The approach proposed by them was 
among the first control systems developed using theory 
of fuzzy sets. They suggested as an attempt to control a 
steam engine and boiler combination by synthesizing a 
set of linguistic control rules obtained from experienced 
human operators. Their effort was based on research of 
Zadeh (1975) on fuzzy algorithms for complex systems 
and decision processes. After the aggregation process, 
there is a fuzzy set for each output variable that needs 
defuzzification.  

In this study, an MR damper was utilized as the 
controlling mechanism and for determining the input 
voltage to the damper, a fuzzy controller based on the 

developed MSA algorithm which is herein called 
(MSA-FLC) controller is employed. To accomplish this 
aim, MSA technique is used to optimize the function of 
the system and establish membership function 
parameters of the fuzzy controller. Aim of this research 
is to design a structural vibration control system which 
reduces earthquake-induced structural responses 
including accelerations and displacements through 
controlling MR damper and resultant damages to the 
structure due to seismic forces are controlled and 
minimized. To satisfy desired requirements of the 
system equipped with MR damper, parameters of 
membership function utilized in the fuzzy controller are 
adjusted by the smart MSA algorithm and defining a 
proper cost function. 

 
MSA-based Fuzzy Logic Controller (MSAFLC): 
From optimization point of view, a fuzzy logic control 
(FLC) system can be divided into two parts of data base 
and rule base. The information of membership function 
parameters of input and output variables is stored in the 
data base and rule base includes a collection of fuzzy 
rules. Thus, there are four different states for 
optimization of an FLC system using evolutionary 
algorithms. This study aims to optimize data base of 
fuzzy controller using MSA algorithm to control 
seismic-induced vibrations of structures equipped with 
MR dampers. To design an optimal fuzzy system, 
membership functions and fuzzy rules should be 
defined appropriately. Various membership functions 
can be regarded for inputs and outputs of an FLC 
system which by changing their number and type, 
different responses can be obtained for the function of 
the system. In defining membership functions, each 
variable of inputs and outputs has been considered to be 
in the range of [+XW XW\ and [W _\, respectively. In 
designing fuzzy controllers, different membership 
functions including Triangular-shaped, Gaussian and 
Generalized  bell-shaped can be employed for input and  
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Table 1: MSA fuzzy pseudo code 
Step Procedures to be taken 

Step 1 
Determining optimal initial temperature according to variable 
producing mechanism of the algorithm main loop and in proportion 
to 20% acceptance with 100 times repetition range 

Step 2 
Random determination of input variables of the problem (FLC 
parameters), defining initial values and reduction coefficient of 
neighborhood radius 

Step 3 
Defining Dynamic Markov Chain in proportion to number of 
occurred acceptances which equals to the acceptance coefficient of 
initial temperature in internal loop iteration 

Step 4 Stochastic determination of new variables around previous accepted 
variables and in proportion to neighborhood radius 

Step 5 Determining cost function of new variables 

Step 6 Examining Metropolis acceptance conditions and determining 
current variables. 

Step 7 Determining maximum and minimum of internal loop, amount and 
vector of minimum variables of external loop 

Step 8 Returning to Step 4, in proportion to definition of Dynamic Markov 
Chain (Step 3), in case iteration of internal loop is not complete 

Step 9 A 90% reduction in Dynamic Markov Chain (required number of 
acceptances for internal loop iteration) 

Step 10 Determining new temperature based on Eq. (12) 

Step 11 
Examining stop condition in search procedure of internal loop as a 
convergence condition of the algorithm and getting back to Step 4, 
if the convergence condition is not satisfied 

 
Table 2: MSA-fuzzy parameters 
Membership function  
---------------------------- Type 

 Parameters 
----------------------------- Range 

Input  
(Error) NL Gaussian 2.26 -10.14  

[-
10,10] 

 NS Generalized 
bell-shaped 1.46 2.65 -4.33  

 Z Generalized 
bell-shaped 0.73 2.64 0  

 PS Generalized 
bell-shaped 1.69 2.53 4.48  

 PL Generalized 
bell-shaped 1.68 2.91 10.22  

Output 
(Voltage) VVS Generalized 

bell-shaped 0.95 2.37 -0.06 [0,5] 

 VS Gaussian 0.21 1.23   

 S Generalized 
bell-shaped 0.27 2.81 1.95  

 SM Gaussian 0.06 2.33   

 M Triangular-
shaped 2.10 2.49 2.98  

 SL Generalized 
bell-shaped 0.1 3.13 2.71  

 L Generalized 
bell-shaped 0.24 2.53 3.02  

 VL Generalized 
bell-shaped 0.26 2.54 3.78  

 VVL Generalized 
bell-shaped 0.53 2.66 5.03  

 
output variables. Generalized bell-shaped function is as 
follows (Verbruggen et al., 1999): 
 

𝑓(𝑥; 𝑎, 𝑏, 𝑐) = $

$0dPMef d
gh                           (14) 

 
where the parameters a and b vary the width of the 
curve and the parameter c locates the center of the 
curve. The parameter b should be positive. Triangular-
shaped function is stated as bellow: 
 

𝑓(𝑥; 𝑎, 𝑏, 𝑐) =

⎩
⎪
⎨

⎪
⎧ 0 𝑥 ≤ 𝑎
n9=
>9=

𝑎 ≤ 𝑥 ≤ 𝑏
.9n
.9>
0

𝑏 ≤ 𝑥 ≤ 𝑐
𝑐 ≤ 𝑥 ⎭

⎪
⎬

⎪
⎫

        (15) 

The parameters a and c set the left and right sides 
or base points of the triangle. The parameter b sets the 
location of the vertex. Gaussian function is defined as: 
 

𝑓(𝑥; 𝜎, 𝑐) = 𝑒
M(PMe)g

gsg               (16) 
 
which c is the average parameter and σ is the variation. 
Regarding the main aim of this study which is 
optimizing parameters of FLC to control the structure 
equipped with an MR damper, all three above-
mentioned membership functions have been used. MSA 
algorithm, using modified techniques, makes a sensible 
compromise between accuracy and speed of the 
algorithm’s convergence. Steps to be taken in the 
proposed  MSA  algorithm have been presented in 
Table 1. By applying MSA algorithm and regulating its 
parameters according to Table 1, optimum parameters 
of membership functions for the fuzzy controller have 
been determined and given in Table 2. 

In the next section, a numerical example is 
considered and obtained results using the proposed 
approach are presented to verify the performance of the 
proposed vibration control system which is based on 
fuzzy controller optimized by MSA technique for semi-
active control of structures equipped with MR dampers 
to optimally mitigate seismic-induced structural 
responses. 
 

RESULTS AND DISCUSSION 
 

A simple model of the scaled, three-story, test-
structure, described in Wang (1994), Dyke et al. (1996) 
and Kim et al. (2009), which has been used in previous 
active control studies at the Structural Dynamics and 
Control/Earthquake Engineering Laboratory 
(SDC/EEL) at the University of Notre Dame, has been 
considered for numerical simulations to verify and 
examine the effectiveness of the designed control 
system. In this model elastic stiffness, mass and 
damping of stories are as follows: 

 
M1=M2=M3= 98.3 kg, k1 = 5.16×105 N/m, k2=k3= 
6.84 N/m, C1= 125 N.sec/m, C2 = C3 = 50 N.sec/m 
 
This test structure was designed to be a scale model 

of the prototype building discussed in Zhou et al. 
(2012). This structure was modelled as a shear frame 
with linear behavior configured with a single MR 
damper which is rigidly connected between the ground 
and the first floor of the structure. The model of the 
structure was subjected to the full-scale El Centro 
(1940, PGA = 0.349g) earthquake. Since the considered 
structure is a scaled model, this record was reproduced 
at five times the recorded rate. The model of the 
structure equipped with MR damper as the semi-active 
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(a)                                                                      (b)  
 
Fig. 2: (a) Optimized membership functions using MSA algorithm for input (Error), (b) Optimized membership functions using 

MSA algorithm for output (Voltage) 
 
Table 3: Maximum structural responses under EL-Centro earthquake 
Strategy Uncontrolled structure    
Story Dis. (cm) Drift (cm) Acc. (cm/s2) f (N) 
1 0.538 0.538 856 - 
2 0.820 0.319 1030  
3 0.962 0.201 1400  
Strategy Passive-Off    
Story Dis. (cm) Drift (cm) Acc. (cm/s2) f (N) 
1 0.211 0.211 420 258 
2 0.357 0.153 480  
3 0.455 0.103 717  
Strategy Passive-On    
Story Dis. (cm) Drift (cm) Acc. (cm/s2) f (N) 
1 0.076 0.076 281 979 
2 0.196 0.158 494  
3 0.306 0.110 767  
Strategy Clipped-optimal controller (H2/LQG+COC) (Dyke et al., 1996))    
Story Dis. (cm) Drift (cm) Acc. (cm/s2) f (N) 
1 0.114 0.114 696 941 
2 0.185 0.090 739  
3 0.212 0.101 703  
Strategy GAF (Yan and Zhou, 2006)    

Story Dis. (cm) Drift 
(cm) 

Acc. 
(cm/s2) f (N) 

1 0.100 0.100 499 867 
2 0.169 0.120 586  
3 0.255 0.102 709  
Strategy SNFC (Kim et al., 2009)    
Story Dis. (cm) Drift (cm) Acc. (cm/s2) f (N) 
1 0.112 0.112 577 798 
2 0.169 0.109 722  
3 0.212 0.099 817  
Strategy SA-FLC    
Story Dis. (cm) Drift (cm) Acc. (cm/s2) f (N) 
1 0.110 0.110 503 898 
2 0.180 0.090 581  
3 0.260 0.100 821  
Strategy Proposed MSA-FLC    
Story Dis. (cm) Drift (cm) Acc. (cm/s2) f (N) 
1 0.079 0.079 287 1001 
2 0.197 0.160 504  
3 0.309 0.113 785  
 
mechanism and fuzzy controller optimized with MSA 
algorithm as the selected controller were implemented 
in MATLAB.  Modified Bouc-Wen model was 
considered for modelling dynamics of MR damper 
while its parameters were selected based on the 
identified model of a shear-mode prototype MR damper 
presented by Dyke et al. (1996) as follows: 

αa = 140 N/cm, αb = 695 N/cm.V, γ = 363 cm-2, β = 
363 cm-2, A = 301, n = 2, η = 190 sec-1, Coa = 21 
N.sec/cm, Cob = 3.5 N.sec/cm.V, ko = 46.9 N/cm, 
C1a = 283 N.sec/cm, C1b = 2.95N.sec/cm.V, k1 = 5 
N/cm, xo = 14.3 cm 
Forces of up to 3000 N with maximum command 

voltage Vmax = 2.25 V can be generated with the device. 



 
 

Res. J. App. Sci. Eng. Technol., 17(3): 94-105, 2020 
 

102 

 
 

Fig. 3: Acceleration time history of all floors of the structure 
 

 
 
Fig. 4: Displacement time history of all floors of the structure 
 
In Table 2, values of input and output membership 
functions of control system along with their types and 
amounts of parameters have been presented. Indeed, 
input of fuzzy controller is the error between the 
desired and real values and its output is the commanded 
voltage sent to the current driver. Error membership 
functions have five curves including NL, NS, Z, PS and 
PL presented in Table 2 and shown in Fig. 2a as well as 

obtained parameters from MSA algorithm. To obtain a 
better accuracy in producing output voltage by FLC, its 
membership functions includes 9 curves as VVS, VS, 
S, SM, M, SL, L, VL and VVL depicted in Fig. 2b. 
Each of these functions has been selected from one of 
the before-mentioned membership functions. In 
designing this fuzzy controller, Mamdani’s fuzzy 
inference (Mamdani and Assilian, 1975), Min inference  
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Fig. 5: MR damper force time history 
 
engine (Wang, 1997), Mamdani’s minimum 
implication, Minimum T-norm and Centroid based 
defuzzification have been employed. 

The maximum structural responses to the 
considered earthquake excitations are presented in 
Table 3. In this Table, Dis. is the displacement of the ith 
floor relative to the ground, Drift is the inter story drift 
(i.e., xi- xi-1) and Acc. is the absolute acceleration of the 
ith floor and f is the applied control force. Results of 
conducted simulations have been compared by that of 
other researchers to verify the proposed methodology 
and demonstrate its efficiency. Results of simulating the 
system in two modes of Passive-on and Passive-off 
have also been presented for performance comparison 
purposes. According to Table 3, using MSA-FLC 
technique, the peak first floor relative displacement has 
decreased by 85% of the uncontrolled value which is 
the most reduction compared to that of other controllers 
mentioned in this table. Proposed MSA-FLC method 
has also reduced the first-floor absolute acceleration of 
the uncontrolled structure by an additional 24%, 
compared to the corresponding value obtained by GAF 
approach. The same reduction for the case of SNFC 
technique has raised to 200%, which is substantial. To 
estimate the efficiency of the proposed technique, 
results obtained by the fuzzy controller based on the 
traditional SA algorithm have also been presented in 
Table 3. 

It is obvious from Table 3, that proposed MSA-
FLC technique has decreased accelerations of all stories 
more effectively than SNFC approach. MSA-FLC 
system has also reduced the second-floor absolute 
acceleration of the structure 21% more than SNFC 
method. It is worth mentioning that the main focus in 
designing the proposed controller in this research has 
been on simultaneous minimization of absolute 
accelerations of all stories and error function. Figure 3 
and 4 show acceleration and relative displacement time 
histories of all stories of the controlled structure using 
the proposed technique superimposed on the 
corresponding responses of the uncontrolled case, for 
first 5 seconds of the excitation record while Fig. 5 
depicts the MR damper’s force using the commanded 
voltage produced by the MSA-FLC controller. 
 

CONCLUSION 
 

In this study, an MR damper as a semi-active 
mechanism with non-linear dynamics modelled by 

modified Bouc-Wen mechanical model was employed 
to semi-actively control seismic vibrations of a 3-story 
shear frame with linear behavior. To optimally control 
this damper, a fuzzy controller integrated with a 
Modified Simulated Annealing (MSA) optimization 
algorithm was applied. The objective function for the 
optimized fuzzy controller was set to minimize absolute 
accelerations of all stories. Considering the fact that 
parameters of a nonlinear fuzzy controller play an 
essential role in improving the response of the system, 
these parameters were properly determined using MSA 
technique as a meta-heuristic approach widely used for 
optimization purposes. MSA algorithm was actually 
employed to determine parameters of the membership 
functions of the fuzzy controller optimally. Results of 
the numerical simulations verified and demonstrated the 
efficiency of the proposed smart strategy through a 
comparison with other proposed techniques by other 
studies, including Semi-active Nonlinear Fuzzy 
Controller (SNFC), genetic adaptive fuzzy controller 
(GAF), H2/LQG integrated with Clipped-optimal 
algorithm (H2/LQG+COC) and traditional-SA-based 
fuzzy controller as well,  for mitigation and control of 
structural vibrations especially in terms of maximum 
relative displacement and absolute acceleration of the 
story which contains the damper. The proposed 
technique showed a higher efficiency over other 
strategies in reducing peak absolute accelerations of 
first and second floor of the structure, more effectively. 
It is suggested for future investigations to apply the 
proposed approach in this study for different 
configurations of the MR damper for multi-objective 
control of structures with hysteretic nonlinear behavior, 
subjected to far field and near field excitations to 
examine the effect of earthquake frequency content as 
well as structural nonlinearities on the efficiency of the 
proposed technique. 
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