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INTRODUCTION 

 
Mobile robots are increasingly used in industrial and 

house-hold applications, especially when flexible 
motions are required on smooth surfaces. Several 
configurations exist. One distinguishes unicycle, tricycle 
and omnidirectional mobile robots (Alexander and 

Maddocks, 1989). An omnidirectional mobile platform 
is more suitable than a conventional mobile robot with 
ordinary wheels, for instance for homecare, office and 
nursing robots. Compared to two or fourth-wheels 
conventional mobile platforms, it is ease for an 
omnidirectional mobile robot with three degrees of 
freedom to move toward the desired direction and the 
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Abstract 
This study presents a complete model for RobotinoMD an omnidirectional 
mobile robot. This model includes the kinematics and dynamics. It is used for 
the simulation and design of an adaptive nonlinear control system. The 
hierarchical control system that is proposed has three levels. The level-one 
which is the inner loop is used to control the DC motors that drive the robot 
wheels. A control design method combining an adaptive feedback 
linearization technique and the Backstepping approach is used to find the 
controller equation. The adaptation module that is included in the control 
system maintains the performance of the system in the presence of 
uncertainties on the inertia, weight and other parameters in the robot 
dynamics. The level-one controller receives its reference signal from the 
level-two controller which converts the linear and rotational speeds into 
desired speeds. This level-two controller receives its reference signal from the 
level-three controller which is the outer loop controller. The level-three 
controller equation is found so that the robot can follow a desired path 
described in a Cartesian space. The proposed control system is evaluated in 
simulation in the MATLAB-SIMULINK environment. It is compared to a 
PID controller. Simulation results show that the nonlinear adaptive controller 
has better performances. 
 
Keywords: Adaptive nonlinear control, backstepping control, modelling, 

omnidirectional mobile robot, PID control, RobotinoMD 
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desired orientation (Campion et al., 1996) 
simultaneously. 

The Research Laboratory LARTESY of ENSET-
Gabon has recently acquired a Robotino® an 
omnidirectional mobile robot. The robot is equipped 
with a manipulator arm which allows it to perform 
several industrial tasks. The aim of this acquisition is to 
develop a domestic expertise in advanced robotics. It is 
within this agenda that the work presented in this study 
focuses on the modeling and design of an effective 
control system for Robotino. We will limit ourselves to 
a validation by simulations. An experimental validation 
will follow in a near future. 

The literature review reveals that several 
laboratories are working on similar robots. Indeed 
(Paromtchik and Rembold, 1994) proposes a control 
system based exclusively on the kinematic model. PID 
controllers are used to move the robot at a desired speed. 
In (Kalmár-Nagy et al., 2002), authors take into account 
both kinematics and dynamics for the design. However, 
they ignore the coupling between the linear velocity and 
the rotational speed. A simplified model is therefore used 
for the robot model. Samani et al. (2004) proposes a 
control system for an optimal trajectory tracking. 
However, the angular orientation is not considered in the 
paper. In (Kalmár-Nagy et al., 2004) authors use two 
PIDs to control the robot position and orientation 
simultaneously. A simplified model is also used for the 
robot model. Watanabe et al. (1998) uses PI and PD to 
control the speed and orientation of the robot. The 
control system is tested in practice. Dixon et al. (2000) 
proposes a variable- structure control system for the 
omnidirectional mobile robot. 

This study presents a complete modeling of an 
omnidirectional mobile robot. The model includes the 
robot kinematics and dynamics. It will be used to 
develop the simulation file and to design the control 
system for the robot. A hierarchical control system is 
proposed. It has three levels. The level one directly 
controls DC motors that rotate robot wheels. The level 
two is used to convert the desired robot linear and 
rotational speeds into desired wheel speeds. The level 
three is used to generate the desired robot linear and 
rotational speeds so that the robot can follow a desired 
path specified in a Cartesian space. It will be assumed 
that parameters that appear in the robot model are not 
known. This assumption is realistic since the model 
depends on inertia and mass. These parameter values are 
generally not provided by the manufacture. A module 
that will automatically adjust controller parameters will 
be integrated to the control system so that good 
performances can be achieved even though robot 
parameters are unknown. The contribution of paper is the 

design of a multivariable adaptive nonlinear control law 
for the controller at the level 1 of the proposed 
hierarchical control system. 
 

MATERIALS AND METHODS 
 

This study was conducted at the Research 
Laboratory LARTESY of ENSET-Gabon. The paper 
proposes a novel control system for the wheels of an 
omnidirectional mobile robot. The controller is at the 
level one of a three-level hierarchical control system. As 
a consequence, the design of the hierarchical control 
system is also given. A model-based design approach is 
used. Therefore, controller equations are obtained using 
the mathematical model for the mobile robot. 

Figure 1 shows RobotinoMD an omnidirectional 
robot. Figure 2 presents one of the robot wheels. The 
robot is equipped with a microcomputer that is mainly 
used to control the wheels. It has three wheels located at 
120º apart as illustrated at Fig. 3. Each wheel is driven 
by a DC motor. Equations that describe the robot 
position and motion in the Cartesian space will be 
presented. These equations will be used to find controller 
equation and to simulate the system in closed loop. It is 
shown in Angeles (2003) that linear and rotational 
speeds for the robot can be written in terms of wheel 
speeds as follows: 
 

3

R i i
i=1

2aV = - ω f
3 

            (1) 

 
3

R i
i=1

aω = - ω
3r

   (2) 

 

 
 

Fig. 1: RobotinoMD an omnidirectional mobile robot (Weber 
and Bellenberg, 2010) 
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Fig. 2: The robot wheel and motor configuration 
 

 
 
Fig. 3: Bottom view of the mobile robot 
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where the variables V̅R and ωR designate the linear and 
rotational speed for the robot, respectively. ωi is the 
rotational speed for the wheel number i. φ is the angle of 
orientation for the robot, as indicated in Fig. 3. 
Parameters r and a represent the radius for the mobile 
platform and the wheel, respectively. It should be noted 
that the rotational speed vector for each wheel i (i.e., ω̅i) 
is oriented in the direction of the unit vector e̅i as 
illustrated at Fig. 3. 

The linear and rotational speeds can be written in 
terms of the robot position and orientation in the plane, 
as follows: 

 
( )

T
R R R RV = x y ω = φ                        (4) 

where, 
xR and yR : The coordinates of the centre of the robot in 

the Cartesian plane 
 
Equation (1) and (2) can therefore be rewritten in a 
matrix form as follows: 
 

( ) ( ) ( )
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Equation (5) is the robot kinematics. Since the robot 

displacement is significantly impacted by its mass and 
inertia, its dynamic model is considered for the design of 
the controller. The following are the robot dynamic 
equations. They show the relationships between wheel 
accelerations and applied torques: 
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              (6) 

 
where,  
JR and DR : The inertia and the friction coefficient 

for the wheels, respectively  
C(ωR) : Includes Coriolis terms and it is given 

below 
τii = 1, 2 and 3 : Electric torques applied to the wheels 

by the DC motors 
 
Torque equations will be obtained later in this section: 
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where, 
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   (8) 

 
Numerical values for parameters that appear in (8) 

are provided in Table 1. Equation (6) is detailed as 
follows: 

file:///D:/projects%20and%20documents/AppData/Local/Microsoft/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/QW5TNUK6/Documentation%20CTC%20Robotino/Videos/Antrieb_V07-2.avi
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Table 1: Robot parameters 
Physical variables Values 
Robot radius r = 0.175 m 
Wheel radius a = 0.04 m 
Robot mass Mp = 11 kg 
Motor mass Mm = 0.39 kh 
Wheel mass Mr = 1.11 kg 
Wheel inertia I = 0.0018 
Motor inertia J = 0.0853 
Robot inertia H = 0.3369 
Damping coefficient D = 0 
Torque coefficient Kt = 0.8 
Resistance R = 26.67 Ω 
Inductance L = 0.0011 H 
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The variable Ii is the current for the DC motor i. The 

DC motor can be described by the following model: 
 

( )i i ti s i
dL I + RI =V - K ω i = 1,2.3
dt

 (10) 

 
The relationship between the DC motor current and 

torque is clarified below. L, R and Ks are the inductance 
for the motor coil, the resistance, and the magneto 
motive force coefficient respectively. Vti(t) is the 
armature voltage. The electric torque is denoted τi. It is 
proportional to the current according to the following 
relationship: 
 

( )i t iτ = K I i = 1,2,3  (11) 
 
Kt is the torque coefficient. It is equal to Ks. The 
omnidirectional robot model consists of Eq. (6), (9) and 
(10). 

The inductance L is usually very small. Therefore, it 
can be neglected. Equation (10) reduces to the following 
algebraic equation: 
 

( )ω
i ti i

1 KI = V - ω i = 1,2,3
R R

 (12) 

 
Mobile robot control system: This section discusses the 
structure of the control system for RobotinoMD an 

omnidirectional mobile. This control system can be 
divided into three levels. It is therefore a hierarchical 
system in which the output of an upper level is the input 
of the following lower level.  

The level three consists of a module that will allow 
the robot to follow a desired path. This path is described 
in the Cartesian plane. The output of the level three are 
the linear and rotational speeds that the robot should 
have to follow the desired path. These desired speeds are 
then converted into desired rotational wheel speeds. This 
conversion takes place at level two of the hierarchical 
structure. Desired wheel speeds are references for the 
level one controller which directly controls three DC 
motors. The main contribution of this paper is the design 
of the level one controller. It is assumed that parameters 
that appear in Eq. (6) and (10) are unknown or may 
change when the robot operates. This makes the problem 
very challenging. The so-called state feedback 
linearization methodology coupled with the adaptive 
Backstepping control design method is used to obtain the 
control and adaptation laws for the level one controller 
parameters. The following sections present the design of 
the proposed hierarchical control system. 
 
Equations for the trajectory tracking controller: The 
level three of the hierarchical control system allows the 
mobile robot to follow a desired path. This path is given 
in the Cartesian coordinates in terms of the desired 
position and orientation of the robot at a given time 
instance. The output signals of this level three controller 
are the linear and rotational speeds that the robot should 
have to accurately follow the desired path. 

If xR
d  (t) and yR

d  (t) denote the x-coordinate and y-
coordinate for the robot position in the Cartesian plane 
and φd(t) is the robot orientation; the linear and rotational 
speeds that the robot should have to follow the path are: 
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y x - y ,xφ t = atan2 y ,x φ t =
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            (13) 

 
where, 
Vx

d (t), Vy
d (t) : Desired linear speed coordinates  

ωd : The  desired  rotational  speed for  the  
robot 

 
The gains Kx, Ky and Kφ are positive real numbers. 

Equations (13) are control equations for the level three 
controller. Next section discusses the equation used to 
convert the desired robot linear speeds into desired 
rotational wheel speeds. 
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Equations for the module to converter linear speeds 
into rotational speeds: The desired linear and rotational 
robot speeds are converted into wheel speeds that each 
motor should have for the robot to be able to follow the 
desired path. This conversion takes place at the level two 
of the hierarchical control system. The robot kinematics  
described  at  Eq. (5) is used to perform this conversion. 
For a given robot speed vector, the wheel speed vector is 
obtained by inverting the robot kinematics. This yields 
to the following desired wheel speed expressions: 
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1 3 1 3
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2 2 2 2

2a 1 3 1 3
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3 2 2 2 2
1 (2r) 1 (2r) 1 (2r)

(15) 

 
Equation (14) is the control equation for the level two 
controller. The next section discusses how the control 
system at the level one uses the desired wheel speed 
information to effectively control the three DC motors. 
 
Equations for DC motor controllers: The last level of 
the hierarchical control system consists of controllers for 
each of the three robot wheels. The objective of these 
controllers is to ensure that each wheel rotates at its 
desired speed which is provided by the level two of the 
hierarchical structure. It is worth mentioning that the 
desired speed is a time varying signal. A model-based 
control design method that uses the robot dynamic 
equations is proposed to find the controller equation. The 
advantage of this design approach is that it takes into 
consideration interactions between different components 
of the mobile robot. As a consequence, the performance 
of the control system is excellent. 

Dynamic equations for the wheels and motors are 
described by Eq. (9) and (10) respectively. A 
Backstepping control design method is used to find the 
equation for Vti(t) that will ensure that the speed ωi(t) 
follows its desired value. This design scheme has two 
steps. First, the expression for Ii

*(t) is obtained. It’s the 
value the DC motor current Ii(t) should have to guarantee 
that the DC motor speed ωi(t) converges asymptotically  
to its desired value ωid(t). Next, the motor input voltage 
equation Vti(t) is obtained. The voltage is such that the 
motor current Ii(t) converges asymptotically to its 
reference Ii

*(t). The system dynamics can be written into 
a closed form as follows: 
 

ω 1 ω 1ω= f (ω,θ )+ g (ω,θ )I                                 (16) 

I 2 I 2 tI = f (ω,I,θ )+ g (θ )V                                  (17) 

 
Where functions and variables that appear in above 

equations are defined as follows: 
 

T T T
1 2 3 1 2 3 t t1 t2 t3

T T
1 c c t t 2 s

ω= (ω ,ω ,ω ) I = (I ,I ,I ) V = (V ,V ,V )

θ = (AC ,BC ,AD,BD,AK ,BK ) θ = ( R L,K L,1 L,)
 

( )  

( )  

( )  

c 1 2 3 1 1 2 3

ω c 1 2 3 2 1 2 3 ω k

c 1 2 3 3 1 2 3

C ω + ω + ω Δ - D Aω + Bω + Bω A B B
f = C ω + ω + ω Δ - D Bω + Aω + Bω g = K B A B

C ω + ω + ω Δ - D Bω + Bω + Aω B B A

   
   
   

  
  

 

 
1 s 1

I 2 s 2 I

3 s 3

- R L I - K Lω 1 L 0 0
f = - R L I - K Lω g = 0 1 L 0

- R L I - K Lω 0 0 1 L

   
   
   

  
  

 

 
It will be assumed that parameter vectors θ̅1 and θ̅2 

are constant but their values are unknown to the control 
designer. For design purposes, let us consider ω̃̅=ω̅-ω̅d 
the error between wheel speeds vector and its reference 
ω̅d=(ω1d,ω2d,ω3d)T The dynamic equation for the error 
has therefore the following form: 

 
ˆ ˆ

ω 1 ω 1 d ω 1ω= f (ω,θ )+ g (ω,θ )I - ω (t)+ h (ω,I)θ         (18) 

 
Where θ̃̅1=θ̅1-θ̂̅1 is the error between the vector of 

unknown parameters θ̅1 and its estimate θ̂̅1. It’s worth 
mentioning that θ̂̅1 a vector of controller parameters. If 
the motor currents vector I ̅(t) were the control signal, it 
would suffice to choose its expression, as follows, for the 
velocity error vector ω̃̅ to converge to zero 
asymptotically: 
 

 ˆ ˆ* -1
ω 1 ω 1 d ωI = g (ω,θ ) -f (ω,θ )+ω (t)+ A ω           (19) 

 
Aω is a Hurwitz diagonal matrix. Equation (19) is 

such that it compensates the nonlinear terms in Eq. (18) 
and it stabilizes the speed error dynamic equation. Note 
that Eq. (19) includes θ̂̅1 which is provided by the 
adaptation module yet to be designed. The equation that 
describes how θ̂̅1 is computed will be discussed later. 

However, I(̅t) is not the true control signal. As a 
consequence, Eq. (19) will be used to define a new 
variable I ̅̂(t) which is the difference between I(̅t) and its 
reference Ii

*(t). Substituting Eq. (19) in (18) and defining 
the new current error variable I ̅̃(t) yields, Eq. (20). This 
equation is important to show the stability of the closed 
loop system and to find the equation for the adaptation 
module: 

 
ˆ

ω ω 1 ω 1ω = A ω+ g (ω,θ )I + h (ω, I)θ                     (20) 
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The dynamic equation for the new variable has the 
following form: 
 

 
1

ˆ ˆ

ˆ ˆ ˆ  ˆ
 
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I 2 I 2 t I 2
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I I
- θ f (ω,θ ) + g (ω,θ )I + h (ω, I)θ

ωθ

         (21) 

 
Equation (21) is used to find the expression for the 

true control signal so that the error variable converges to 
zero asymptotically. The equation for the level one is 
therefore: 
 

( )

( ) 

ˆ ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

* *
-1

t I 2 1 ω 1 ω 1

1

-1 -1
I 2 I 2 1 ω 1 I 2

I IV g θ θ f (ω,θ )+ g (ω,θ )I
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    = +       (22) 

 
The matrix AI is a Hurwitz diagonal matrix. 

Substituting Eq. (22) in (21), we obtain the following 
equation which is useful to show the stability of the 
system in closed loop: 

 

( ) ( )

( )

2
ˆ

  

-1
I 2 1 ω 1 ω

*

ω 1

I = A I - P P g ω,θ ω h ω,I θ

I h ω,I θ
ω


−


+
              (23) 

 
Equation (23) includes the estimated parameter θ̂̅2. 

This parameter is provided by the adaptation module. It 
is proposed to compute θ̂̅1 and θ̂̅2 from the Eq. (24) 
which is the adaptation law: 
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ˆ

T*T
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T
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The adaptation law is the equation for the adaptation 

module. It is possible to  show  that  Eq. (24)  along  with  
Eq. (22) ensure that robot wheel speeds converge to their 
desired values. For this purpose, we define the following 
Lyapunov candidate function: 
 

T T T -1 T -1
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where,  
Г1 and Г2 : Positive definite matrices 
P1 and P2 : Positive definite matrices that satisfy the 

following relationships Aω
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AI
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The Lyapunov function is positive definite and its 
derivative has the following form: 
 

 

( ) ( )  

T T T -1 T
1 2 2 2 2 I 2

TT -1
1 1 1 ω 1 ω 2

V = -ω Q ω - I Q I + 2θ Γ θ + h (ω,I) P I

+ 2θ Γ θ + h ω,I Pω h ω,I P I
   
  

   

T*I
-

ω

          (26) 

 
Substituting Eq. (24) in (26) yields: 
 

T T
1 2V = -ω Q ω - I Q I 0                                       (27) 

 
The derivative of the Lyapunov candidate function 

is therefore semi-negative definite. One can conclude 
that the system represented by Eq. (20), (21) and (24) is 
stable (Marino and Tomei, 1996). The quadratic function 
represented by Eq. (25) is a Lyapunov function for the 
system. As a consequent, system variables are bounded. 
The Barbalat Lemma can be used to show that the system 
state variables converge to zero asymptotically (Marino 
and Tomei, 1996). The proposed control system allows 
the robot to follow (after a short transient period) a 
desired path. The proposed controller is evaluated in 
simulation in the next section. It should be noted that the 
adaptive control law proposed for the level one control 
system has never been proposed before for an 
omnidirectional robot. This adaptive controller is the 
main contribution of the paper. 
 

RESULTS AND DISCUSSION 
 
Parameters for Robotino from the LARTESY laboratory 
of ENSET-Gabon are used to develop the mathematical 
model for an omnidirectional mobile robot. The model is 
used to design an adaptive nonlinear controller that will 
be simulated in this section. The objective is to validate 
that the control system effectively allows the robot to 
follow a given trajectory. The performance of the 
proposed controller will be compared to that of a three-
level hierarchical control system consisting of PIDs at 
levels one and three. The control module at level 2 in 
both control systems are the same. This module is used 
to convert robot speeds into wheel speeds. First, we 
assume that robot parameters are known. Therefore, the 
adaptation module is turned off and the level one 
controller is a non-adaptive nonlinear controller. The 
simulation file is developed in MATLAB-SIMULINK. 
Figure 4 below shows the components of this simulation 
file. The module representing the mobile robot can easily 
be identified. It is the 'Robotino' module. This module 
contains Eq. (5), (9) and (10). The path to be followed is 
generated by the  'Desired Path' module. The hierarchical 
control system is represented by the 'Kinematic 
Controller' module for level three controller, the 
'OMNIDRIVE' module for level two controller and the 
'Adaptive Nonlinear Controller' module for level on 
control system. 
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Fig. 4: Simulation file of the mobile robot and its three-level hierarchical control system 
 
Table 2: Nonlinear controller gains 
Gains Values 
Level 3 controller gain Kx = Ky = Kφ = 10 

Level 1 controller gain matrix 
-100 0 0

A = 0 -100 0ω
0 0 -100

 
 
 
  

 

Level 1 controller gain matrix 
-1000 0 0

A = 0 -1000 0I
0 0 -1000

 
 
 
  

 

 
Table 3: PID gains 
Gains Values 
Proportinal gain Kp 10 
Integral gain Ki 100 
Derivative gain Kd 1 
 

Robot parameters and controller gains are given in 
Table 1 to 3. The desired path that the robot needs to 
follow is a circle with a radius Rt = 1 m. The robot is 
initially located at (x = 0.5 m and y = 0.5 m). The desired 
trajectory begins at t = 0 at (x = 0, y = 0). The 
performance criterion is the capability of the robot to 
reach the desired trajectory quickly. The circular 
trajectory equation is: 
 

( ) 

( )

d t

d t

x (t)= R 1- cos 2πt T

y (t)= R sin 2πt T
φ(t)= 0

 (28) 

 
where, 
Rt : The path radius  
T : The time required to travel the path 
 

Simulation results are given in Fig. 5 to 8 for the 
non-linear control system and in Fig. 9 to 11 for the PID 
controller. Figure 5 illustrates the x-coordinate positions 
for the robot and the desired trajectory. It is easy to see 
that  the  robot  reaches  the  desired trajectory in 0.5 sec 

 
 
Fig. 5: X-coordinates when the nonlinear controller is used 
 

 
 
Fig. 6: Y-coordinates when the nonlinear controller is used 
 
without overshoot. The steady-state error is negligible. 
The trajectory tracking performance for the proposed 
controller is therefore perfect after 0.5 sec. Figure 6 
illustrates the y-coordinate positions for the robot and 
desired trajectory. The same conclusion regarding the 
tracking   performance  can  be  made  for  the nonlinear 
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Fig. 7: Robot position in the X-Y plane when the nonlinear 

controller is used 
 

 
 
Fig. 8: Wheel speed when the nonlinear controller is used 
 

 
 
Fig. 9: Robot position in the X-Y plane when the PID 

controller is used 

control system. Figure 7 represents the robot position in 
the x-y plane. This figure is a picture of the robot when 
it is moving in a two-dimensional space. It shows clearly 
that the circle drawn by the robot and the desired circle 
are identical. Fig. 8 shows the wheel speed waveform. It 
should be noted that this speed remains within the limits 
allowed by the robot. 
Figure 9 to 11 illustrate the waveforms when level one 
and three  controllers  are  PIDs. Figure 9 represents the 
robot position and the desired circular path in the x-y 
plane. One can see that the robot can barely follow the 
desired trajectory. This underperformance can be seen in 
Fig. 10 and 11 which show the x-coordinate and y-
coordinate for the robot and the desired path. 

 One can conclude that the proposed nonlinear 
control   system  for  the  omnidirectional  robot  is  much 
 

 
 
Fig. 10: X-coordinates when the PID controller is used 
 

 
 
Fig. 11: Y-coordinates when the PID controller is used 
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better than the conventional PID controller. The main 
reason for this performance is that the robot has a highly 
coupled nonlinear model and the best control system for 
these dynamics is a nonlinear controller which takes into 
consideration the coupling between robot components. 
The proposed control system decouples these dynamics 
to be able to control the robot efficiently. 

Next, capabilities of the proposed control system to 
maintain the same good performance despite changes on 
robot parameters are tested. For this test, the robot moves 
from a smooth surface to a rough surface. As a 
consequence, the parameter D in the Eq. (9) changes 
significantly. This causes an uncertainty on the value for 
third and fourth elements in the parameter vector 1θ . 
The other parameters remain constant and known. A 
comparative study will be carried out between the 
adaptive control system and its non-adaptive version. 
The robot will travel the desired trajectory when it is 
controlled by the nonlinear control system with the 
adaptation module activated, and when the adaptive 
module is not activated. The desired trajectory is a circle 
which begins at the (x = 0, y = 0). The robot is initially 
positioned at (x = 0.5 m, y = 0.5 m). 

Simulation results when the adaptive module is 
activated are shown in Fig. 12 to 15. Figure 12 illustrates 
the robot position and the desired trajectory in the x-y 
plan. It is easy to see that the robot follows the desired 
trajectory after a short transient period. The performance 
is almost identical to the previous case. It can therefore 
be concluded that the adaptive module allows the control 
system to maintain its performance despite uncertainties 
in robot model parameters. Figure 13 and 14 show the x-
coordinate and y-coordinate waveforms for the robot and 
the desired path. It can be noted that the tracking error is 
almost zero. Figure 15 shows   one    of   the   waveforms 
for    an  estimated parameter. It’s the waveform for the 
third element  in  the  parameter  vector 1θ . This  figure  

 

 
 

Fig. 12: Robot position in the X-Y plane when the nonlinear 
controller with adaptive module activated 

 
 

Fig. 13: X-coordinates when the nonlinear controller with 
adaptive module activated. Desired path 

 
 

 
 
Fig. 14: X-coordinates when the nonlinear controller with 

adaptive module activated 
 
 

 
 
Fig. 15: Estimated parameter waveform 
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Fig. 16: X-coordinates when the nonlinear controller with 

deactivated adaptive module 
 

 
 
Fig. 17: Y-coordinates when the nonlinear controller 
 

 
 

Fig. 18: Robot position in the X-Y plane when the nonlinear 
controller with deactivated adaptive module 

 
demonstrates that the estimated parameter remains bounded.   
Simulation   results    show    that   the   main objective of this 
study is met. Indeed, the proposed controller is nonlinear 

and it is able to control the robot although robot 
parameters are completely unknown. 

Figure 16 to 18 illustrate the simulation result when 
the adaptive module is deactivated. In this context, 
controller parameters are initialized with values that are 
not necessarily the true values. Figure 16 shows the x-
coordinate waveform and Fig. 17 illustrates the y-
coordinate waveform. It can easily be noted that the 
robot has some difficulties in following the desired 
coordinates. Tracking errors are much bigger. Figure 18 
shows the two-dimensional movement of the robot. It 
provides an overview of the control system performance 
when model parameters are not perfectly known. This 
figure demonstrates that an adaptive module is necessary 
for the control system to have a good performance when 
model parameters are uncertain. 
 

CONCLUSION 
 

A three-level hierarchical adaptive nonlinear control 
system is proposed for an omnidirectional mobile robot. 
The advantage of the proposed approach is that it allows 
taking into account robot highly coupled nonlinear 
dynamic equations to design suitable and therefore 
efficient control laws. A module that updates controller 
parameters is used to significantly reduced the sensitive 
of the proposed control system to parameter 
uncertainties. The performance of the proposed control 
system is evaluated in simulation. It is also compared to 
a conventional PID controller. Simulation results show 
that that the adaptive nonlinear control system allows the 
mobile robot to follow almost perfectly a desired path. 
The controller keeps the same performance despite 
significant uncertainties on robot parameters. A practical 
implementation of this control system is foreseen at the 
LARTESY laboratory at ENSET-Gabon. The laboratory 
has recently acquired a RobotinoMD an Omnidirectional 
mobile robot. 
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