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Abstract: Independent Component Analysis (ICA) separates spatial and temporal components of fMRI data which 
may consist of activation patterns, cardiac and respiratory tasks and other artifacts. In this study sources of (fMRI) 
data are separated using ICA based on simple fixed point iteration method and steepest ascent method. Both are the 
simplest methods used in optimization. However in this study complete matrix W (un-mixing matrix) is updated in 
each iteration instead of vector based updating of W. This makes the source separation process very fast. Simulated 
fMRI data is processed using the proposed method and the results are compared with other ICA approaches in terms 
of speed and accuracy. 
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INTRODUCTION 

 
Functional fMRI is a tool used for measuring the 

functionality of the brain by measuring the oxygenation 
in the blood flow (Pekar, 2006). Usually experiments 
are performed for fMRI data acquisition, which are 
based on a block design comprising cycles of activity 
and non-activity. During such experiments signals from 
thousands of brain voxels are taken every few seconds, 
thus forming a complicated time series of mixtures 
comprising of task activated, non-activated, transiently 
task activated, respiratory and cardiac functions 
activated voxels (Martin et al., 1998). Also the intensity 
of the activated voxels is too low, normally in the range 
of 10-15% of variance at 1.5T scanner. This low SNR 
data is normally first de-noised using some special 
techniques (Amir et al., 2012). Thus extraction of 
activated voxels from this complicated mixture of data 
is a very challenging statistical task. 

Changes in fMRI signal, including Blood Oxygen 
Level Dependent (BOLD) are detected using different 
techniques including subtraction, correlation, time 
frequency analysis, Principal component analysis 
(PCA) and ICA etc. 

In subtraction or in general correlation based 
techniques (Bandettini et al., 1993), the voxels which 
are responsible for activation of the experimental task 
are extracted using a priori knowledge of the task 
related model. A correlation of the experimental model 
and each time course is performed and the spatial 
contents are termed as active regions in case of strong 
correlation results. Other approaches including 

Statistical Parametric Mapping (SPM) (Friston, 1995) 
uses t-test and f-tests which are uni-variate methods. In 
time frequency analysis (Mitra et al., 1997), fMRI 
signals are recorded in frequency domain. This type of 
analysis is based on the fact that different experimental 
task related and function related voxels time courses 
exhibit different frequencies and thus can be 
distinguished. PCA is another technique used for fMRI 
analysis (Moeller and Strother, 1991). This technique 
finds the orthogonal Eigen-images having the greatest 
variance in the data. Normally the numbers of principal 
components representing the data with a specific 
accuracy are less than the actual dimension of the data. 
Thus PCA can be used for dimension reduction as well. 
ICA is another technique which is also used for source 
separation of fMRI as suggested by (Martin et al., 
1998; McKeown et al., 1998) and others. ICA is a 
statistical method which can convert a multi-
dimensional vector into components which are 
statistically independent (McKeown, 1998), thus 
making it useful for blind source separation problem 
and is widely used in other fields as well (Zhiguo et al., 
2006; Hong-Bin et al., 2008; Yu and Cheng, 2012). 

In this study fMRI data sources are separated using 
ICA with a matrix based updating rule which makes the 
updating process very fast. The proposed techniques 
prove to be efficient in terms of processing time and 
accuracy on simulated fMRI data. 

 

ICA model: ICA model can be described as: 

 

X = AS                 (1) 
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in which X is the observed data of dimension n×m, A is 

a mixing matrix of dimension n×k and  S consist of 

independent sources of dimension k×m. 

ICA problem can now be described as finding the 

mixing matrix A such that S can be calculated as: 

 

�� = Y = W X                            (2) 

 

and  W = A
-1 

 

where, W is the un-mixing matrix. W can be obtained 

by optimizing a cost function with some constraint. 

Commonly used cost functions are based on info-max, 

maximum likelihood, mutual information and kurtosis 

etc. 

For example if kurtosis is used as a cost function 

(Aapo et al., 2001), then the cost function needs to be 

maximized with the constraint W
T
W = I. Since the 

sources are independent and the kurtosis of non 

Gaussian sources is non-zero, therefore we need to 

maximize the kurtosis which is given by: 

 

f(W) = E[Y]
4
 – 3[E[Y]

2
 = E[W X]

4
 – 3 [E[WX]

2
]

2
        (3) 

 

Different flavors of ICA have been proposed in 
literature; some of them are Fast-ICA (Aapo and Oja, 
1997), JADE (Cardoso, 1999), Extended Info-Max (Lee 
et al., 1999) and RADICAL ICA (Miller and Fisher, 
2003). Further details of these algorithms can be found 
in the referred literature. 
 
Pre-processing of the data: For implementation of 
most of the ICA algorithms the observed data needs to 
be centered (zero mean) and whitened. Centering of the 
observed data is done by subtracting mean from the 
observed data Z: 
 

�
� = Z – E[Z]                 (4) 

 

where, Z the raw is observed data and � ′is the centered 
data. 

Similarly whitening is done by multiplying the 

observed data with some whitening matrix V so that the 

correlation and covariance matrix of Y  becomes 

identity matrix ie E[YY
T
] = I. This process is done 

using the Eigen-decomposition (Aapo et al., 2001) and 

is given as. 
 

                  
Fig. 1: Sources and corresponding time courses 
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Fig. 2: Sources and time courses extracted by DICA 
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Fig. 3: Sources and time courses extracted by radical based ICA 

 

 

 

 
 
Fig. 4: Extracted sources and time courses by ICAMS 
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Fig. 5: Extracted sources and time courses by Fast ICA 

 

 

 

 
 
Fig. 6: Extracted sources and Time courses by the steepest ascent (matrix based) method 
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Fig. 7: Extracted sources and time courses by the fixed point (matrix based) method 

 

X=V� ′                                      (5) 
 

where, V = ED
-1/2

E
T
  and EDE

T
 = E[� ′ � ′T]  

Another preprocessing step which is specifically 
done in case of fMRI due to its high dimensional data is 
the dimension reduction step. Here we have used 
Singular Value Decomposition (SVD) as a dimension 
reduction technique (Aapo et al., 2001). 
 
Fourth order contrast function ICA: In this study we 
are using to maximize the fourth moment of  Y as the 
cost function as suggested by Aapo et al. (2001): 
 

f(W) = E[Y
4
]                     (6)  

 
For further simplification the expectation operator E 

is also omitted and it becomes: 
 

f(W) = [Y]
4
 = [W X]

4
                      (7) 

 
The steepest ascent approach to maximize this 

function with constraint of W
T
W= I is given by: 

 
W(n+1) = W(n) + ∂ [WX]

4
/∂W             (8a) 

 
where, 
W(n)  =  The old value of the un-mixing matrix W  
W(n+1)  =  The new value of the un-mixing matrix W 
X = The observed data matrix 

W(n+1) = W(n)+4[WA]
3
 X

T
              (8b)  

 

Another approach is using fixed point iteration 

method (Aapo, 1999). In the same way as above the 

method can be implemented on matrices. 

To proceed with fixed point iteration method let 

f(W) = [Y
4
] = 0. Now adding W on both sides leads to 

W(n+1) = W(n) +[Y
4
]. But since we are dealing with 

matrices therefore care should be taken about the 

dimensions of the matrices. It is evident in the above 

equation that we are updating the matrix W while the 

last term is basically the multiplication of the matrix W  

with the data i.e., X. Since we need that specific W  

which gives us f(W), therefore we must multiply the 

last term by X
T
 thus getting the required form of the 

update equation: 

 

W(n+1) = W(n) + [WX]
4
 X

T
                       (9)  

 

It should be noted that +ve sign here indicates that 

we are maximizing the function. 

It should also be noted that W and X are matrices 

and not vectors and all iteration are performed on 

matrices which makes the process very fast. Otherwise 

in case of vectors based iteration we have to iterate 

vector by vector, which is the case in most of the ICA 

algorithms and thus making them slow. 
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(a) 

 

 
 

(b) 

 
Fig. 8: (a) Kurtosis of sources vs iteration and (b) Error tolerance vs iteration (steepest ascent matrix based) 
 

SIMULATION AND RESULTS 

 

For the validity of the proposed schemes, simulated 

fMRI data of Machine Learning and Signal Processing 

lab (MLSP) is used which is freely available on the web 

(Correa et al., 2005). Sources and corresponding time 

courses are shown in Fig. 1, the corresponding data 

matrix X consist of 100 images each having 3600 

pixels. This makes a 100×3600 data matrix X. 

Dimension of the data is reduced to 8×3600 using SVD 

while 

Pre-processing (centering and whitening) of this 

data is done using Eq. (4) and (5). This simulated data 

is first processed using the depletion based ICA (Ruck 

et al., 1998) and the extracted sources and time courses 

are shown in Fig. 2. It can be seen that the quality of the 

sources extracted is not bad, but the quality of time 

courses is poor. Figure 3 and 4 shows the sources and 

extracted time courses by Radical (Miller and Fisher, 

2003) and MS based ICA (Molgedey and Schuste, 

1994) algorithms. Both these methods results are 

moderate and took execution time 38 seconds and one 

second respectively.  

Finally the simulated fMRI data is processed using 

Fast ICA (Aapo and Oja, 1997). 

Proposed steepest ascent (matrix based) and Fixed 

point iteration (matrix based) algorithms respectively. 

Results are shown in Fig. 5, 6 and 7 having the 

execution time of 5, 0.8 and 0.6 sec, respectively. 

Figure 8a and 8b shows the kurtosis vs. iterations and 

error tolerance vs iterations respectively of the steepest 

ascent (matrix based) method, while Fig. 9a and 9b 

shows the kurtosis vs. iterations and error tolerance vs. 

iterations respectively of Fixed point (matrix based) 

method. Execution time and correlation analysis of 

extracted sources and time courses of all the methods 

are presented in Table 1, which shows that average 

performance of both steepest ascent (matrix based) and 

Fixed point (matrix based) is better than ICA methods 

which are compared in this study. 
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(a) 

 

 
 
Fig. 9: (a) Kurtosis of sources vs iteration and (b) error tolerance vs iteration (fixed point matrix based) 

 
Table 1: Execution time and correlations of (S/T) Sources/Time courses with the actual (S/T) Sources/Time courses 

Sources/Algorithm Time(sec) S1/T.C S2/TC S3/TC S4/TC S5/TC S6/TC S7/TC S8/TC 

Dica 7.6 0.97/0.35 0.89/0.51 0.68/0.63 0.97/0.24 0.97/0.03 0.19/0.02 0.61/0.48 0.83/0.38 

Radicalica 38 0.96/0.66 0.96/0.47 0.05/0.90 0.35/0.86 0.99/0.42 0.87/0.14 0.89/0.53 0.98/0.24 

Icams 1.0 0.59/0.20 0.13/0.51 0.99/0.91 0.06/0.46 0.78/0.09 0.43/0.04 0.04/0.09 0.62/0.13 
Fastica 5 0.99/0.55 0.97/0.47 0.60/0.93 0.67/0.60 0.97/0.42 0.96/0.32 0.94/0.56 0.97/0.10 

Steepest ascent 

Matrix based) 

0.8 0.96/0.95 0.99/0.80 0.61/0.98 0.98/0.99 0.98/0.59 0.98/0.93 0.70/0.81 0.97/0.29 

Fixed point (Matrix 

based) 

0.6 0.93/0.95 0.98/0.81 0.70/0.99 0.90/0.97 0.97/0.97 0.98/0.89 0.70/0.83 0.98/0.84 

Legend S sources, TC = time courses 

 

CONCLUSION 

 

In this study we have presented simple ICA 

methods (based on steepest ascent and fixed point 

iteration matrix Based) for the analysis of fMRI data. 

These methods are simple and can be implemented on 

high dimensional data since a dimension reduction step 

is used before its implementation. Also its convergence 

time is very less due to its mathematical simplicity and 

its matrix based updating rules as compared to other 
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conventional ICA methods. Quality performance of 

these algorithms is also comparatively good as can be 

seen from Table 1. These method have been tested on 

simulated fMRI data, however they can be tested on 

other similar problems. 
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