
Research Journal of Applied Sciences, Engineering and Technology 5(24): 5561-5565, 2013

DOI:10.19026/rjaset.5.4236

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: September 30, 2012 Accepted: December 12, 2012 Published: May 30, 2013

Corresponding Author: Junfeng Man, College of Computer and Communication, Hunan University of Technology, Zhuzhou
412007, China

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

5561

Research Article
Research on Incomplete Transaction Footprints in Networked Software

1
Junfeng Man,

2
Cheng Peng,

3
Qianqian Li and

 1
Changyun Li

1
College of Computer and Communication, Hunan University of Technology, Zhuzhou 412007,
2
School of Information Science and Engineering, Central South University, Changsha 410083,

3
Department of Information and Engineer, Hunan Chemical Vocation Technology College,

Zhuzhou 412004, China

Abstract: In networked software, interactive behaviors of software entities generate lots of behavioral footprints,
some of them may lose tokens or tokens are useless. The paper studies the constructing process of State Transition
Model (STM) in which the process of incomplete transactions are satisfied with Markov property, it is pointed that
the STM are originally extracted from behavior log files generated by the runtime behaviors of networked software.
The contributions of this paper are to mark the partly tokenized behavior footprints in the STM through Maximum
Flow (MF) algorithm, then find the original source for each behavior footprint. The experiment results indicate that
the maximum flow algorithm can accurately turn the partly tokenized behavior into complete footprint sequences.

Keywords: Behavior footprints, incomplete transaction maximum flow algorithm, networked software, state

transition model

INTRODUCTION

The emergence of the Internet has made software

from the static, closed and controllable environment
into open, dynamic and uncontrollable condition, in
order to adapt to this trend, traditional centralized
software system gradually turns into the distributed
networked software (Yang et al., 2002); the dynamic
changes of self state and interactive environment of the
runtime networked software is called dynamic
evolution. Software dynamic evolution is the process of
online adjustment in order to reach the hope state,
which happens in runtime, consists of a series of
complex activities, e.g., dynamic updating, adding or
deleting software components, system structure
dynamic configuration etc (Kramer and Magee, 1990).

However, we only consider the changes of
software entities structure, seldom notice the running
state of software entities as individuals in interactive
activities and the interaction behaviors they generate.
At present, the software failure and fault are becoming
more and more serious, not only increase the cost of use
and maintenance, but also make people lost the
confidence for software (Chen et al., 2003). The recent
studies show that fault and failure of software are
largely due to the software behaviors can not meet the
user’ expectation.

We can get the original message of software
behavior (Li et al., 2009) through monitoring, but
current monitoring technology cannot enhance the

software reliability at once, still need further effectively
analysis of the software interaction. Generally, we can
use the correlator which is the open-group ARM
instrumentation or token to track transaction
circulation. But, many transactions are often executed
in parallel in networked environment, such events
generated by these transactions mix together, which
results in the tokens of transaction behavior footprints
lost or can not be used, thus software system may not
accurately and correctly identify the only source of
every footprint. These partly tokenized behavior
footprints cause great obstacles for subsequent behavior
analysis, behavior prediction and other operation.
Therefore, tokenizing the interaction entity behavior is
in the important position for guaranteeing the reliability
of networked software.

STATE TRANSACTION MODEL

The concept and definition: Let fx(x) be the
Probability Density Function (PDF) of a continuous
random variable X and () : []

X
F x P X x= > its

complementary cumulative distribution function
(CCDF).

For an undirected graph G(V, E), if V X Y= ∪

and X ∩ Y = Φ, such that every edge E connects a
vertex in X to one in Y, G is bigraph, denoted as G = (X,
Y, E).

For a directed acyclic graph G = (V, E, C), V
denotes vertex set, E denotes directed edge set and

Res. J. Appl. Sci. Eng. Technol., 5(24): 5561-5565, 2013

5562

Fig. 1: Discover state transition model

denotes capacity, then G is called network flow graph

(Zhang et al., 2003). If Cij denotes the allowed

maximum flow from Vi to Vj, xij denotes the real flow

at this arc, there is 0 ≤ xij ≤ Cij. In the network, except

for the start and the end vertices, any other vertices, the

total of inflow is equal to the total of the outflow,

namely, , ,ij jix x i s t= ≠∑ ∑ . At this time, f = xij is

known as feasible flow. The maximum network flow

can be described as:













≤≤









=

≠

=−

=−∑∑

ijij

i

ij

j

ji

Cx

tif

tsi

sif

xx
tfs

0

,

,,0

,

..max
 (1)

A Markov chain is a sequence of random variables

X1, X2, X3, ... with the Markov property, namely that,

given the present state, the future and past states are

independent (Lee and Ho, 2006).

Let Si , I = 0 , … , Ns denote the i
th

state of the

process and let Ti,j denote the (random) time to

transition from state Si to state Sj . A process is said to

be semi-Markov if the sequence of states visited is a

Markov chain, with transition probability matrix P =

[P(i, j)] and each transition time Ti, j is a random

variable that depends only on the states Si and Sj

involved in the transition.

Discover state transition model: Figure 1 depicts the

process of discovering state transition model from the

history log files. Our approach consists of two phases:

off-line processing and online monitoring, the latter

refers to on online monitoring of transaction instances.

The monitoring information is inputs for:

• Online system log files, where footprints left by

ongoing transaction instances are being recorded

• The transaction model discovered through offline

processing. Using these inputs, the monitoring

system generates dynamic execution profiles of

ongoing transaction instances that allow their status

to be tracked at individual and aggregate levels.

State creation: Analyzing the records in the log files

and creating candidate states will typically involve

some form of clustering. For each new log record to be

processed, the record is tokenized and placed in a

“bucket” of records with the same number of words; we

refer to this number as the dimensionality n of the

record. This process creates a partitioning of the sample

space of log records into sample subspaces Ωn n = 1,

…, N, of log records. As shown in Fig. 2.

Model discovery: State transition follows Markov,

that’s to say, the transition probability of each

transaction instance under each state, only depends on

the current state and the next state. As shown in Fig. 3,

except the behavior footprints at state A has tokens

(express by different pictures), others behavior

footprints at the intermediate state only partly

tokenized, the aim of the paper is to find the original

source for each behavior footprint that lost token.

The transition model is a directed acyclic graph

(DAG), which consists of a start states set and an end

states set. At start state, the transaction goes into the

model; at the end state, the transaction quits the model.

The transition time between each state is Independent

Res. J. Appl. Sci. Eng. Technol., 5(24): 5561-5565, 2013

5563

Fig. 2: State creation

Fig. 3: The instance of state transition model

and Identically Distributed (I.I.D.). Each state Sk in the

model, any valid matching can be denoted by the set of

permutation vector πk. Set Yk denote footprint timestamp

vector of state Sk. When the monitoring engine received

behavior footprints by the correct time order, Yk

ordered by the ascending, so the latest events arranged

at the rear. According to permutation vector πk, let Y
πk

k

denote the permutation of Yk. For convenience, at start

state, we assign tokens to footprints Y0.

When the Probability Density Function (PDF) of

transaction transition time fT is known, we could

transfer the problem of quantitative tracking into figure

out the probability of all instances properly match their

footprints by MLR. So, for NS+1 states, transaction ML

tracing simplified as finding the Ns sets of permutation

vector:

1

1

1 1 0

,...,

ˆ ˆ[, ...,] : (, ..., |)arg max Ns

s s

Ns

ML ML

N NP Y Y Y
ππ

π π

π π = (2)

As the transition time of each transaction is Semi-

Markov Process (SMP), the transition time of different

transactions is also independent, that is to say, the

transition time between states only depends on the

current state and the next state, according to this, we

can splice the multi-state system into two parts: the first

one is the set of predecessors and the other one is the

set of successors, So the multi-state system model

described in the formula (1) can be transformed in:

()
()











=

∈ ∈>
∏ U U

mk ml

lkSN

S

BS BPS

lk

m

N YYPYYYP
ππππ ||,...,

0

01
1

 (3)

Here define a partition of states (B1 , … , Bm) , m ≥

0 and B0 = S0. States in any two sets in the partition do

not share a common immediate predecessor, it is p(Sk)

∩ p(Sl) = Φ, 0,,, ≠∈∈∀ jmBSBS jlmk
. So, bipartite

graph can be described as (p(Bm), Bm), where start state

is p(Bm), end state is Bm. According to the definition of

state partition, all bipartite graphs are disjoint, a state

cannot occur in two systems.

IDENTIFY PARTLY TOKENIZED

TRANSACTION

It’s easy to prove that the maximal matching of

bigraph G = (X, Y, E). is corresponding to the maximal

network flow of graph �� = (s, t, X, Y, E, C)., C is

capacity set, as is shown in Fig. 4. When the network

flow achieve maximum, if the capacity at (xi, yj) is one,

which means xi and yj is the perfect matching. We

Res. J. Appl. Sci. Eng. Technol., 5(24): 5561-5565, 2013

5564

Fig. 4: Transfer bipartite into network flow diagram

adopt the algorithm of Ford-Fulkerson to solve the

problem of bigraph maximal matching, this algorithm is

introduced in literature 9.

Note the start time and end time in the two state

sets of bigraph subsystem as tout and tin separately and

expressed by node vout and vin, we get node set Vout =

{vouti /i = 1, n} when departing state and node set Vin =

{vini /i = 1, n} when entering state, n is the total

number of all behavior footprints in a single state set of

bigraph subsystem. For any node vouti and vin j, if

satisfied with the transition time limit between two

states, which means footprint i and footprint j form the

matching, link the node vouti and vin,j with directed arc,

we get connection arc set:

(){ }jijittttvveeE outiinjinjoutiijijc ≠∀≤−≤== ,,,,,| maxmin
 (4)

Combining with the three bipartite subsystems and

Table 1 mentioned above, we construct three network

flow diagrams. Constructing arc sets Ec according to

formula (4), the state transition time lower limit is tmin =

5sec, upper limit is tmax, we calculate the state transition

time obey index distribution, uniform distribution and

normal distribution situation, finally, we get a network

flow diagram corresponding to the bipartite matching.

Table 1: Footprints and corresponding timestamp

Time stamp

Footprints

TP01 TP02 TP03 TP04 TP05 TP06 TP07 TP08

Start time 204018 204015 204010 204032 204035 204030 204208 204210

End time 204030 204023 204020 204140 204130 204120 204220 204221

 TP09 TP10 TP11 TP12 TP13 TP14 TP015 TP16

Start time 204230 204233 204218 204410 204400 204603 204340 204610
End time 204340 204322 204350 204523 204510 204710 204520 204715

Fig. 5: Maximum network flow matching

Res. J. Appl. Sci. Eng. Technol., 5(24): 5561-5565, 2013

5565

Fig. 6: Algorithm performance comparison

We adopt the network flow method to deal with the

matching of the bipartite subsystems in the state

transition model; finally, splice the matching results of

the three subsystems and form three complete behavior

footprint sequences, FP01-FP05-FP08-FP10-FP15,

FP02-FP06- FP11-FP12-FP14 and FP03-FP04-FP07-

FP09-FP13-FP16. In this way, we find the original

source of the footprints that are not tokenized. The

simulation experiment results are showed in Fig. 5.

The best time complexity is O(n(m+n log n)),

which is strongly polynomial algorithm, n and m denote

nodes and edges separately. By adopting maximum

weight matching algorithm, no matter the time

complexity and space complexity can get the good

results. In this paper, we use the algorithm of maximum

network flow, the time complexity is O(nm), the two

algorithms performance comparison is showed in

Fig. 6. Under the same experiment environment, with

the nodes in the state transition model increasing, the

algorithm we proposed is better than the traditional

bipartite maximum weight matching algorithm in

dealing with the problem of tokenizing partly tokenized

behavior footprints.

CONCLUSION

This study researches on the problem of extracting

state transition model from E-commerce trade platform

instance under networked environment, combined with

monitored log files from the interaction, then remark

the partly tokenized footprints generated by each state.

Using the state splitting algorithm to divide the state

transition model into several bigraph subsystems and

transfer each subsystem into network flow graph,

matching every footprint under each state, finally,

forming the complete footprint sequences. The results

of simulation analysis show that our method is feasible.

ACKNOWLEDGMENT

This study is supported by the National Natural

Science Foundation of China under grant No. 61171192

and 61170102, the Natural Science Foundation of

Hunan province in China under grant No. 11JJ4050 and

11JJ3070, the Education Department Foundation of

Hunan Province under the grant No. 11B039, 11W002

and 11C0400.

REFERENCES

Chen, H.W., J. Wang and W. Dong, 2003. High

confidence software engineering technologies [J].

Acta Electron. Sinica, 31(12): 1933-1938.

Kramer, J. and J. Magee, 1990. The evolving

philosophers problem: Dynamic change

management [J]. IEEE T. Software Eng., 16(11):

1-33.

Lee, C.K.M. and G.T.S. Ho, 2006. A dynamic

information schema for supporting product life

cycle management [J]. Expert Syst. Appl., 31(1):

30-40.

Li, R.J., Z.X. Zhang, H.Y. Jiang and H.M. Wang, 2009.

Research and implementation of trusted software

constitution based on monitoring [J]. Appl. Res.

Comp., 26(21): 4585-4588.

Yang, F.Q., H. Mei, J. Lv and Z. Jin, 2002. Some

discussion on the development of software

technology [J]. Acta Electron. Sinica, 30(z1):

1901-1906.

Zhang, X.C., G.L. Chen and Y.Y. Wan, 2003. Research

on the maximum network flow problem [J]. J.

Comput. Res. Dev., 40(9): 1281-1291.

