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Abstract: In networked software, interactive behaviors of software entities generate lots of behavioral footprints, 
some of them may lose tokens or tokens are useless. The paper studies the constructing process of State Transition 
Model (STM) in which the process of incomplete transactions are satisfied with Markov property, it is pointed that 
the STM are originally extracted from behavior log files generated by the runtime behaviors of networked software. 
The contributions of this paper are to mark the partly tokenized behavior footprints in the STM through Maximum 
Flow (MF) algorithm, then find the original source for each behavior footprint. The experiment results indicate that 
the maximum flow algorithm can accurately turn the partly tokenized behavior into complete footprint sequences. 
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INTRODUCTION 

 
The emergence of the Internet has made software 

from the static, closed and controllable environment 
into open, dynamic and uncontrollable condition, in 
order to adapt to this trend, traditional centralized 
software system gradually turns into the distributed 
networked software (Yang et al., 2002); the dynamic 
changes of self state and interactive environment of the 
runtime networked software is called dynamic 
evolution. Software dynamic evolution is the process of 
online adjustment in order to reach the hope state, 
which happens in runtime, consists of a series of 
complex activities, e.g., dynamic updating, adding or 
deleting software components, system structure 
dynamic configuration etc (Kramer and Magee, 1990). 

However, we only consider the changes of 
software entities structure, seldom notice the running 
state of software entities as individuals in interactive 
activities and the interaction behaviors they generate. 
At present, the software failure and fault are becoming 
more and more serious, not only increase the cost of use 
and maintenance, but also make people lost the 
confidence for software (Chen et al., 2003). The recent 
studies show that fault and failure of software are 
largely due to the software behaviors can not meet the 
user’ expectation. 

We can get the original message of software 
behavior (Li et al., 2009) through monitoring, but 
current monitoring technology cannot enhance the 

software reliability at once, still need further effectively 
analysis of the software interaction. Generally, we can 
use the correlator which is the open-group ARM 
instrumentation or token to track transaction 
circulation. But, many transactions are often executed 
in parallel in networked environment, such events 
generated by these transactions mix together, which 
results in the tokens of transaction behavior footprints 
lost or can not be used, thus software system may not 
accurately and correctly identify the only source of 
every footprint. These partly tokenized behavior 
footprints cause great obstacles for subsequent behavior 
analysis, behavior prediction and other operation. 
Therefore, tokenizing the interaction entity behavior is 
in the important position for guaranteeing the reliability 
of networked software. 
 

STATE TRANSACTION MODEL 
 
The concept and definition: Let fx(x) be the 
Probability Density Function (PDF) of a continuous 
random variable X and ( ) : [ ]

X
F x P X x= >  its 

complementary cumulative distribution function 
(CCDF). 

For an undirected graph G(V, E), if V X Y= ∪  

and X ∩ Y = Φ, such that every edge E connects a 
vertex in X to one in Y, G is bigraph, denoted as G = (X, 
Y, E). 

For a directed acyclic graph G = (V, E, C), V 
denotes vertex set, E denotes directed edge set and
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Fig. 1: Discover state transition model 

 

denotes capacity, then G is called network flow graph 

(Zhang et al., 2003). If Cij  denotes the allowed 

maximum flow from Vi  to Vj,  xij  denotes the real flow 

at this arc, there is  0 ≤ xij  ≤ Cij. In the network, except 

for the start and the end vertices, any other vertices, the 

total of inflow is equal to the total of the outflow, 

namely, , ,ij jix x i s t= ≠∑ ∑ . At this time, f = xij is 

known as feasible flow. The maximum network flow 

can be described as: 
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A Markov chain is a sequence of random variables 

X1, X2, X3, ... with the Markov property, namely that, 

given the present state, the future and past states are 

independent (Lee and Ho, 2006). 

Let Si , I = 0 , … , Ns denote the i
th 

state of the 

process and let Ti,j  denote the (random) time to 

transition from state Si  to state Sj . A process is said to 

be semi-Markov if the sequence of states visited is a 

Markov chain, with transition probability matrix P = 

[P(i, j)] and each transition time  Ti, j  is a random 

variable that depends only on the states  Si  and  Sj  

involved in the transition. 

 

Discover state transition model: Figure 1 depicts the 

process of discovering state transition model from the 

history log files. Our approach consists of two phases: 

off-line processing and online monitoring, the latter 

refers to on online monitoring of transaction instances.  

The monitoring information is inputs for:  

 

• Online system log files, where footprints left by 

ongoing transaction instances are being recorded  

• The transaction model discovered through offline 

processing. Using these inputs, the monitoring 

system generates dynamic execution profiles of 

ongoing transaction instances that allow their status 

to be tracked at individual and aggregate levels. 

 

State creation: Analyzing the records in the log files 

and creating candidate states will typically involve 

some form of clustering. For each new log record to be 

processed, the record is tokenized and placed in a 

“bucket” of records with the same number of words; we 

refer to this number as the dimensionality n of the 

record. This process creates a partitioning of the sample 

space of log records into sample subspaces Ωn n = 1, 

…, N,  of log records. As shown in Fig. 2. 

 

Model discovery: State transition follows Markov, 

that’s to say, the transition probability of each 

transaction instance under each state, only depends on 

the current state and the next state. As shown in Fig. 3, 

except the behavior footprints at state A has tokens 

(express by different pictures), others behavior 

footprints at the intermediate state only partly 

tokenized, the aim of the paper is to find the original 

source for each behavior footprint that lost token. 

The transition model is a directed acyclic graph 

(DAG), which consists of a start states set and an end 

states set. At start state, the transaction goes into the 

model; at the end state, the transaction quits the model. 

The  transition time  between  each  state is Independent  
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Fig. 2: State creation 

 

 
 

Fig. 3: The instance of state transition model 

 

and Identically Distributed (I.I.D.). Each state Sk  in the 

model, any valid matching can be denoted by the set of 

permutation vector πk. Set Yk denote footprint timestamp 

vector of state Sk. When the monitoring engine received 

behavior footprints by the correct time order,  Yk 

ordered by the ascending, so the latest events arranged 

at the rear. According to permutation vector πk, let  Y
πk

k 

denote the permutation of  Yk. For convenience, at start 

state, we assign tokens to footprints Y0. 

When the Probability Density Function (PDF) of 

transaction transition time fT is known, we could 

transfer the problem of quantitative tracking into figure 

out the probability of all instances properly match their 

footprints by MLR. So, for NS+1 states, transaction ML 

tracing simplified as finding the Ns sets of permutation 

vector: 

 

1

1

1 1 0

,...,

ˆ ˆ[ ,  ...,  ] : ( ,  ...,  | )arg max Ns
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As the transition time of each transaction is Semi-

Markov Process (SMP), the transition time of different 

transactions is also independent, that is to say, the 

transition time between states only depends on the 

current state and the next state, according to this, we 

can splice the multi-state system into two parts: the first 

one is the set of predecessors and the other one is the 

set of successors, So the multi-state system model 

described in the formula (1) can be transformed in: 
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Here define a partition of states (B1 , … , Bm) , m ≥ 

0 and B0 = S0. States in any two sets in the partition do 

not share a common immediate predecessor, it is p(Sk) 

∩ p(Sl) = Φ, 0,,, ≠∈∈∀ jmBSBS jlmk
. So, bipartite 

graph can be described as (p(Bm), Bm), where start state 

is p(Bm), end state is Bm. According to the definition of 

state partition, all bipartite graphs are disjoint, a state 

cannot occur in two systems. 

 

IDENTIFY PARTLY TOKENIZED 

TRANSACTION 

 

It’s easy to prove that the maximal matching of 

bigraph G =  (X, Y, E). is corresponding to the maximal 

network flow of graph ��  = (s, t, X, Y, E, C)., C is 

capacity set, as is shown in Fig. 4. When the network 

flow achieve maximum, if the capacity at (xi, yj) is one, 

which  means  xi   and  yj   is  the  perfect matching. We  
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Fig. 4: Transfer bipartite into network flow diagram 

 

adopt the algorithm of Ford-Fulkerson to solve the 

problem of bigraph maximal matching, this algorithm is 

introduced in literature 9. 

Note the start time and end time in the two state 

sets of bigraph subsystem as tout and tin separately and 

expressed  by  node  vout  and vin, we get node set Vout  =   

 

{vouti /i = 1, n}  when departing state and node set Vin  = 

{vini /i = 1, n}   when entering state, n is the total 

number of all behavior footprints in a single state set of 

bigraph subsystem. For any node vouti and vin j, if 

satisfied with the transition time limit between two 

states, which means footprint i and footprint j  form the 

matching, link the node  vouti  and vin,j with directed arc, 

we get connection arc set: 

 

( ){ }jijittttvveeE outiinjinjoutiijijc ≠∀≤−≤== ,,,,,| maxmin
    (4) 

 

Combining with the three bipartite subsystems and 

Table 1 mentioned above, we construct three network 

flow diagrams. Constructing arc sets Ec according to 

formula (4), the state transition time lower limit is tmin = 

5sec, upper limit is tmax, we calculate the state transition 

time obey index distribution, uniform distribution and 

normal distribution situation, finally, we get a network 

flow diagram corresponding to the bipartite matching. 

Table 1: Footprints and corresponding timestamp 

Time stamp 

Footprints 

-----------------------------------------------------------------------------------------------------------------------------------------------------------

TP01 TP02 TP03 TP04 TP05 TP06 TP07 TP08 

Start time 204018 204015 204010 204032 204035 204030 204208 204210 

End time 204030 204023 204020 204140 204130 204120 204220 204221 

 TP09 TP10 TP11 TP12 TP13 TP14 TP015 TP16 

Start time 204230 204233 204218 204410 204400 204603 204340 204610 
End time 204340 204322 204350 204523 204510 204710 204520 204715 

 

 
 

Fig. 5: Maximum network flow matching 
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Fig. 6: Algorithm performance comparison 

 

We adopt the network flow method to deal with the 

matching of the bipartite subsystems in the state 

transition model; finally, splice the matching results of 

the three subsystems and form three complete behavior 

footprint sequences, FP01-FP05-FP08-FP10-FP15, 

FP02-FP06- FP11-FP12-FP14 and FP03-FP04-FP07-

FP09-FP13-FP16. In this way, we find the original 

source of the footprints that are not tokenized. The 

simulation experiment results are showed in Fig. 5. 

The best time complexity is O(n(m+n log n)), 

which is strongly polynomial algorithm, n and m denote 

nodes and edges separately. By adopting maximum 

weight matching algorithm, no matter the time 

complexity and space complexity can get the good 

results. In this paper, we use the algorithm of maximum 

network flow, the time complexity is O(nm), the two 

algorithms  performance  comparison  is  showed in 

Fig. 6. Under the same experiment environment, with 

the nodes in the state transition model increasing, the 

algorithm we proposed is better than the traditional 

bipartite maximum weight matching algorithm in 

dealing with the problem of tokenizing partly tokenized 

behavior footprints. 

 

CONCLUSION 

 

This study researches on the problem of extracting 

state transition model from E-commerce trade platform 

instance under networked environment, combined with 

monitored log files from the interaction, then remark 

the partly tokenized footprints generated by each state. 

Using the state splitting algorithm to divide the state 

transition model into several bigraph subsystems and 

transfer each subsystem into network flow graph, 

matching every footprint under each state, finally, 

forming the complete footprint sequences. The results 

of simulation analysis show that our method is feasible. 
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