
Research Journal of Applied Sciences, Engineering and Technology 5(24): 5614-5618, 2013

DOI:10.19026/rjaset.5.4245

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: October 17, 2012 Accepted: December 19, 2012 Published: May 30, 2013

Corresponding Author: Li Zhongwen, College of Polytechnic, Hunan Normal University, Changsha 410081, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

5614

Research Article

Study on Real-time Task Scheduling Policy for Automated Testing of Spacecraft

1
Li Zhongwen,

2
Li Long and

3
Li Guoxin

1
College of Polytechnic, Hunan Normal University, Changsha 410081, China

2
China Patent Technology Development Company,

3
Computer Lab, China University of Political Science and Law, Beijing 100088, China

Abstract: Spacecraft testing is an important phase of developing a spacecraft. As the test task requests in spacecraft
testing have dynamic, real-time and resource constraints characteristics, it need further research on requests
scheduling policy. Based on the EDF scheduling model, this study apprehends the dynamic, real timing and
communicating resource limitation in automated testing of application-level device gateway in spacecraft subsystem
in its design of a multiple-factor based PRI ascertain method and put forward a scheduling policy of multithreading
under resource limitation. Test results show that this policy better assures scheduling effect with effectivescheduling
of each parallel testing task under different task densities.

Keywords: Automated testing, EDF, spacecraft testing, real-time task scheduling

INTRODUCTION

In automated testing of the spacecraft, the

application-level device gateway connects to each

downstream device-level device gateway that

corresponds to spacecraft subsystem and through

sending various control commands to the device-level

device gateway, realized functions of power supply,

management, data loading, measurement and incentive

for test devices; on the other hand, provided services of

sending instructions and data acquisition for the upper

layer test task ends and shielded the communication

protocol differences between the device-level device

gateway and application-level device gateway, to

provide more versatility for upper layer test task

interpretation and implementation system, while the

entire test system has better scalability.
Task requests that are scheduled in application-

level device gateway have the following characteristics:

• Dynamic character of task requests: In test task

ends, a number of test units perform tests in

parallel and within each test task there are also

parallel test operations, so for the application-level

device gateway, the instruction of request sending

or data acquisition issued by each test unit

dynamically changes with the execution of test.

• Real-time character of task requests: During
test, the spacecraft state is constantly changing in
accordance with transmit of remote control
instructions and the change of state has strict
timing relationship with transmit of the remote

control commands, so the test process of spacecraft
is a real-time monitoring and controlling process.

• Resource constraints: Application-level device
gateway connects to a number of spacecraft
subsystems through the channel of device-level
device gateway. Given parallel task requests, once
a channel is occupied by a certain task request, the
channel resources will not be released until the task
request is completed. And this kind of
communication channel resources is limited.

Therefore, we need research the scheduling policy

of task requests, according to the task requests above
characteristics.

TASK REQUEST SCHEDULING
MODEL BASED ON EDF

The most widely used real-time task scheduling

policy of uniprocessor is priority-based scheduling
policy and the scheduling priority is divided into fixed-
priority scheduling and dynamic priority scheduling
(Liu and Layland, 1973). A typical fixed-priority
scheduling includes RMS algorithm (Rate-Monotonic
Scheduling) (Leung and Whitehead, 1982) and DMS
algorithm (Deadlines-Monotonic Scheduling) (Narlikar
et al., 2010). A typical dynamic priority scheduling
algorithm includes EDF (Earliest-Deadline First)
scheduling algorithm (Hei and Tsang, 2002) and LSF
(Least Slack, First) (Jin et al., 2004) scheduling
algorithm.

Since the task priority is fixed before scheduling in
fixed priority scheduling algorithm, fixed priority

Res. J. App. Sci. Eng. Technol., 5(24): 5614-5618, 2013

5615

algorithm is not applicable to task requests in
application-level device gateway because of they have
the character of dynamically changing. Among
dynamic priority strategies, the EDF scheduling
algorithm has a wide range of application (Zhu and
Mueller, 2006; Choi and Kim, 2007), which assigns the
priority of a certain task according to its absolute
deadline. Liu and Layland (1973) have already proven
that EDF scheduling algorithm is an optimal scheduling
algorithm when the schedulable utilization rate is less
than or equal to 1(Leung and Whitehead, 1982).

In EDF scheduling algorithm, task priority is
entirely determined by the time attribute of the task, but
in application-level device gateway, each test task
requests come from test task end have their own value
attribute, which represents the importance level of the
task, therefore, in this hybrid task scheduling model, the
task with smaller deadline is not necessarily scheduled
and executed with higher priority and at this point, the
task request’s variety of attributes is needed to be
considered in order to determine the task’s final
priority. Without loss of generality, in this study we do
scheduling analysis according to the deadline attribute
and value attribute of the task requests and for the other
attributes, or three or more attributes can be deduced
from this.

• The formal definition of a task request:

Firstly, the definition of task requests is given as
follows:

Suppose that at time t, there is a set of task requests
Г = {τi|1≤i≤n}, which contains n real-time task requests,
with a definition of τi = {ai, ci, di, vi, qi}, in which:

• ai represents the arrival time of the task request,
i.e., the time when the task request is activated and
ready to be performed

• ci represents the length of execution time of the
task request

• di represents the absolute deadline of the task
request, i.e., implement of the task request should
be completed at this time and a valuable outcome is
supposed to be produced

• ri represents the relative deadline of the task
request and ri= di-t

• vi represents the value of a task request, namely the
criticality of task request, which means the degree
of importance of the task request compared to other
task requests in the set of task requests

• qi represents the initiator of the task request

For each task request in set Г, its final priority is

determined by two parameters, namely the relative
deadline ri and value vi of the task request.

• Multi-factor constrained priority determining

method: Determining task priority based on

multiple factors has the following two commonly

used methods: linear weighted method and priority

table design method.

Linear weighted method: The basic idea of linear

weighted method is to use linear weighted arithmetic

directly on the relative deadline and the value of the

task that is, pi = k.ri+ (1-k).vi (Jin et al., 2003)
Error!

Reference source not found.
, in which]10[，∈k is the weighted

coefficient between the two. The inadequacy of linear

weighted method is: the relative deadline and the value

of the task are two totally different concepts with

different units of measurement, so we should not

simply use weighted arithmetic on them.

• The priority table design method: Wang et al.

(2004) proposed priority table design method based

on PTD (Jin et al., 2003) for determining priority.

The basic idea of priority table design method is to

aggregate the two parameters of task request

attributes into a two-dimensional priority table

(Wang et al., 2004), in which the values indicate

the final priority of the task request, with smaller

numerical value representing higher priority of the

task request. Priority table design method

eliminates the problem of unable to get direct

dealing and calculation caused by the

dimensionless of task requests, but it still has

drawbacks as follows:

• The design of priority table is relatively

cumbersome and along with every scheduling

analysis, the priority table should be redesigned, so

when handling more tasks requests the calculation

amount of scheduling analysis will increase

• The design rules of priority table are more fixed,

when it is needed to increase the weight of a

certain parameter in scheduling process, it can not

be effectively expressed by the method.

This study integrated the designing ideas of the two

methods above, proposed linear weighted priority table

method to determine priority for the task requests,

which is described as follows:

Sort all the task requests in task request set in

accordance with their relative deadline and value, to

obtain relative deadline sequence seriR =

(r1，r2，…，rn), where r1<r2<,…, <rn and task request

value sequence seriV = (v1，v2，…，vn), where

v1>v2>…>vn. The two attributes ri and vi of each task

request τi in the set of task request Г are inevitably

corresponding to two values in the above-mentioned

two sequence of numbers, denoted as <ri, vi>→<m, n>,

where m, n presents the serial number of the position

that ri and vi corresponds to respectively in the sequence

seriR and sequence seriV and then based on the idea of

linear weighting, obtained the expression of task

request’s final priority:

Res. J. App. Sci. Eng. Technol., 5(24): 5614-5618, 2013

5616

nkmkp ⋅−+⋅=)1(
(1)

 The weighted priority table method is characterized by:

• Eliminate the effect of task request parameters’
dimensionless on priority design and made the
meaning of priority expression more clear

• Compared with the priority table design method, it
is not needed to establish priority table to get the
final priority by successive queries and thus easier

• Priority design is more flexible by choosing
different weights k to adjusted the effect of a task
request attribute on priority

For three or more attributes, the basic idea of

priority design are the same, except that it is needed to
add one dimension or a number of dimensions and sort
the variety of attributes, while adding the corresponding
weighting parameters.

RESOURCE CONSTRAINED REAL-TIME TASK

REQUEST SCHEDULING POLICY

After determined the method for determining task
request’s priority, the real-time task request scheduling
algorithm in application-level device gateway is
provided below: resource constrained dynamical
priority scheduling algorithm based on multithreading.

The basic idea of the algorithm is: to add all of the

task requests that have arrived at the present time to the

implement task request list sequentially according to

their priority order, at the meantime subtract the

resources consumed by each task request from the total

system resource set and the task requests whose

resource request can not be met, are put into wait queue

to wait for the next scheduling. During the above

described process, the task requests that exceed their

own deadline need to be constantly deleted and all of

the resources occupied by task requests that have been

scheduled and completed also need to be released.

Algorithm description: For task request set

{reqi|1≤i≤N} within time [t, t+∆t], the task request

linked list is generated based on the arrival time of each

task request, while the task request execution linked list

and the task request deletion linked list are initialized.

The data structure description:

• ListExe represents linked list of task requests being

scheduled and executed

• List Del represents linked list of task requests to be
deleted

• List Wait represents linked list of task requests
whose resource request can not be met and are in a
wait state

• List Ready represents linked list of task requests

that the system received within the time ∆t

Algorithm: Priority Schedule

Input: linked list of task requests being scheduled,

denoted by list, which contains k task requests.

Start

Step1: At current time tcur, for each task request τi =

{ai, ci, di, vi, qi, RS} in task request linked list

list, if di- ci ≥tcur, then remove task request τi

from list and also remove all the task requests

with a initiator attribute qi, meanwhile, add all

the removed task requests into linked list

listDel

Step 2: According to formula (1), calculate priority

value of each task request in list;

Step 3: Sort the task requests in list from small to

large in accordance with their priority value (if

a few task requests have the same priority

value, then sort these task requests according

to the arrival order based on ai)

Step 4: Acquire task request τi = {ai, ci, di, vi, RS}

from the list head of list and do resource

allocation operation on τi, if the allocation is

successful, go to Step 5; otherwise, go to

Step 6

Step 5: Open thread and execute task request τi,

remove task request τi from list, meanwhile,

add τi into linked list listExe

Step 6: Add task request
iτ into linked list listWait and

remove it from list linked list list

Step 7: Determine whether the linked list list is empty.

If it is empty, the algorithm terminates;

otherwise go to Step4

End

The main algorithm is as follows:

Algorithm: main flow of scheduling

Input: None

Start

Step 1: Denote the time when scheduling manager

started task request scheduling as tst

Step 2: Add the received task requests into linked list

list Ready

Step 3: Denote the current time of system as tcur

• In the case of tcur<tst+∆t: If listExe is empty or

there is not any execution of task request in

execution linked list listExe is completed, go to

Step 2. If there are task requests in linked list

listExe are executed and completed, go to Step 4.

• In the case of tcur≥ tst+∆t: If listExe is empty or

there is not any execution of task request in

execution linked list listExe is completed, go to

Step 5; If there are task requests in linked list

listExe are executed and completed, go to Step 4.

Res. J. App. Sci. Eng. Technol., 5(24): 5614-5618, 2013

5617

Step 4: Construct linked list list and store the task

requests in linked list list ready and linked list

list Wait into list; then empty the linked list list

Ready and linked list list Wait; assign tst as the

current system time. Execute Priority Schedule

algorithm and use list as the input of algorithm

Priority Schedule; go to Step 2

Step 5: Construct linked list list and store the task

requests in linked list listReady into list; then

empty the linked listlist Ready; assign tst as the

current system time. Execute Priority Schedule

algorithm and use list as the input of algorithm

Priority Schedule; go to Step 2

End

EXPERIMENTS AND ANALYSIS

Experimental environment includes 5 device

servers, 1 scheduling server and 1 execution server,

each server is located in the same LAN (Table 1).

Compare the simulation results of dynamic priority

scheduling policy proposed in this study with the EDF

priority scheduling policy.

Experimental methods:

Execution server constantly sends out task requests

τi = {ai, ci, di, vi, qi, RSi} and the varieties of parameters

are generated according to the following rules:

• The task execution time ci is randomly selected

between 100 milliseconds to 20,000 milliseconds,

which obeys uniform distribution;

• The absolute deadline of a task: the length of delay

time is bi = 1.3×ciand the absolute deadline of a

task is determined by the time of generating the

task request plus the delay time bi;

• The task value vi is randomly select between 1-100,

which obeys uniform distribution and all task

requests are divided into different test tasks qi

(0≤qi≤19), where greater k implies higher level of

criticality the test task has and a task request

belongs to the k-th test task if and only if qi ×10≤ qi

≤ (qi +1)×10

• The number of channel resource between each

device server and the scheduling server is 10. Each

task randomly selects two device servers and then

randomly generates 0 or 1 channel resource request

for the two device server

• The running time is 10 min and with a cycle of 5

sec, the execution server has 10, 20, 30, 40, 50, 60,

70, 80, 90 and 100 task requests respectively

generated and sent to the scheduling server. The

task generation density is� =
��

��
, where tl is the

number of task requests generated, pr is the cycle

of generating task.

• Investigate the following indicator:

Table 1: Experimental environment

Experimental

equipments Hardware configuration

Software

configuration

Device server CPU: Intel Core Duo
2.6GHz

Memory: 2GB

Windows XP
JDK1.6

Scheduling server HP E4440 Server
Memory: 8G

HP UNIX
11.0

JDK1.6

Execution server CPU: Intel core duo
2.6GHz

Memory: 2GB

Windows XP
JDK1.6

Fig. 1: Realized request value ratio at different request

numbers

Realized request value ratio:

∑

∑
=

=

=

=

×

×

×=
100

1

100

1

)(

)(

100
j

j

j

T

j

j

j

S

Tj

Tj

AVR

(2)

In formula (2),�	

 is the number of task requests

with value j that are successfully scheduled, ��

 is the

total number of task requests with value j. The request
value ratio reflects the ratio of task request value that
can be realized by the scheduling policy in the total
value of all task requests. It should be noted that when
investigating the realized value ratio, only task request
τi is deleted from the list in Step 1 of the scheduling
policy Priority Schedule algorithm, with other
initiators’ task request with qi attribute remain
undeleted, for we do not consider this qi attribute.

Form Fig. 1 we can see that when the method
brought up by this study is adopted at a task density of
10, i.e., 50 tasks generated every 5 sec, the ARV ratio is
over 90% and along with the increase of task density,
the ARV ratio goes down. However, its overall
performance is always higher than the adoption of PRI
of EDF method.

Realized test task value ratio:

∑

∑

=

=

=

=

×

×

×=
100

1

100

1

)(

)(

100
j

j

j

T

j

j

j

S

Tj

Tj

TVR

 (3)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100
R

ea
li

ze
d

 r
eq

u
es

t
v
al

u
e

ra
ti

o
Number of request

PRI of linear weight
PRI of EDF

Res. J. App. Sci. Eng. Technol., 5(24): 5614-5618, 2013

5618

Fig. 2: Realized test task value ratio at different request

numbers

In formula (3), �	

is the number of task requests

with value j that are successfully scheduled,��

 is the

total number of task requests with value j and the

realization ratio of tested tasks is the ratio of realized

tested task value in the total tested task value, which

reflects that the scheduling policy can properly handle

every important test task. Different form the above

mentioned realized request value ratio, here the task

request attribute qi is considered, so τi is deleted from

the list at Step 1 of Priority Schedule algorithm,

together with any other initiators task request with qi

attribute.

From Fig. 2 we can see that, as EDF considers only

the closed line of requests, while the method brought up

by this study takes not only the closed line of requests,

but also value of the request, resource required and time

length of task execution into consideration, which

makes it excel the EDF method in performance at

different task density.

CONCLUSION

Based on the EDF scheduling model, this study

apprehends the dynamic, real timing and

communicating resource limitation in automated testing

of application-level device gateway in spacecraft

subsystem in its design of a multiple-factor based PRI

ascertain method and put forward a scheduling policy

of multithreading under resource limitation. Test results

show that this policy better assures scheduling effect

with effective scheduling of each parallel testing task

under different task densities.

REFERENCES

Choi, Y. and H. Kim, 2007. A new scheduling scheme

for high-speed packet networks: Earliest-virtual-

deadline-first [J]. Comput. Commun., 30(10):

2291-2300.

Hei, X. and D. Tsang, 2002. Earliest deadline first

scheduling with active buffer management for real-

time traffic in the Internet [J]. Telecommun. Syst.,

19(3-4): 349-359.

Jin, H., H.A. Wang, Q. Wang and G.Z. Dai, 2003. An

integrated design method of task priority. J. Softw.,

14(3): 376-382.

Jin, H., H.A. Wang, Q. Wang and G.Z. Dai, 2004. An

improved least-slack-first scheduling algorithm. J.

Softw., 15(8): 1116-1123.

Leung, J. and J. Whitehead, 1982. On the complexity of

fixed-priority scheduling of periodic, real-time

tasks. Perform. Eval., 2(12): 237-250.

Liu, C. and J. Layland, 1973. Scheduling algorithms for

multiprogramming in real-time systems. J. ACM,

20(l): 46-61.

Narlikar, G., G. Wilfong and L. Zhang, 2010.

Designing multihop wireless backhaul networks

with delay guarantees [J]. Wirel. Netw., 16(l):

237-254.

Wang, Y.Y., Q. Wang, H.A. Wang, H. Jin and G.Z.

Dai, 2004. A real-time scheduling algorithm based

on priority table and its implementation. J. Softw.,

15(3): 360-370.

Zhu, Y. and F. Mueller, 2006. Exploiting synchronous

and asynchronous DVS for feedback EDF

scheduling on an embedded platform [J]. ACM T.

Embed. Comput. Syst., 5: l-24.

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80 90 100

R
ea

li
ze

d
 t

es
t

ta
sk

 v
al

u
e

Number of request

PRI of linear weight

PRI of EDF

