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Matching Rank Algorithm Testability of an Electrical Circuit 
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Solid Mechanics and Systems Laboratory (LMSS), University M’Hamed Bougara Boumerdes, Algeria 

 

Abstract: In this study, an advanced way of dealing with testable subsystems and residual generation for fault 
detection and isolation based on structural analysis is presented. The developed technique considers execution 
issues; therefore, it has a more realistic point of view compared to classical structural approaches available in the 
literature. First, theoretical aspects of structural analysis are considered and introduced. Then the way of 
incorporating them to test the structural proprieties is explained. Finally, we show how the proposed (upgraded) 
matching rank algorithm can be used in order to choose the most suited matching that leads to computational 
sequences and detection tests. The method is demonstrated using an electrical circuit. 
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INTRODUCTION 

 

In complex systems consisting of a great number of 
sensors, the obtained information starting from the 
various parameters and the signals must be controlled 
with an aim of the faults detection. This became a 
rigorous task with the increase in the number of the 
subsystems, i.e., actuators and sensors.  

The structural approach constitutes a general plan 
to provide information when the system becomes 
complex. The main objective of the application of the 
structural approach is to identify the subsystems that 
present redundancy.  

This study investigates the structural properties of 
dynamical systems by analyzing their structural model. 
The structural model of a system is an abstraction of its 
behavior model in the sense that only the structure of 
the constraints, i.e. the existence of links between 
variables and parameters, is considered and not the 
constraints themselves. The links are represented by a 
bipartite graph, which is independent of the nature of 
the constraints and variables (quantitative, qualitative, 
equations, rules, etc.) and of the value of the 
parameters. This indeed represents a qualitative, very 
low level, easy to obtain, model of the system behavior.  

Structural analysis is concerned with the properties 
of the system’ structure model, which resorts to the 
analysis of its bipartite graph. As this graph is 
independent of the value of the system parameters, 

structural properties are true almost everywhere in the 
system parameter space.  

The FDI community, Staroswiecki and Declerck 
(1989), adopted the analysis of system structure, 
originally  developed   for   the   decomposition of large  
systems of equations for their hierarchical resolution 
and structural concepts were used for the analysis of 
system monitorability using complete matchings on a 
graph. A recent overview of structural analysis can be 
found in Blanke et al. (2006), which also provides 
essential references to the field. Research on properties 
of residual generators for linear differential algebraic 
systems were treated in Nyberg and Frisk (2006) and 
Combined structural and polynomial methods were 
pursued in Krysander (2006) and Krysander and 
Nyberg (2005). Techniques for active fault isolation 
were treated in Niemann (2006) and suggested in a 
structural context in Blanke et al. (2006). Structural 
isolability properties were investigated and exemplified 
in Düstegör (2005) and Düstegör et al. (2006).  

In spite of their simplicity, structural models can 
provide many useful information for fault diagnosis and 
fault-tolerant control design, since structural analysis is 
able to identify those components of the system which 
are-or are not-monitorable, to provide design 
approaches for analytic redundancy based residuals, to 
suggest alarm filtering strategies and to identify those 
components whose failure can be tolerated through 
reconfiguration.   
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Fig. 1: A typical FDI-system 
 

FAULT DETECTION AND  
SYSTEM ANALYSIS 

 
A typical FDI-system consists of a set of fault detection 
tests associated with a fault isolation scheme (Fig. 1). 
The input to the FDI-system is a set of observations,   
i.e., measurements,  from the  monitored system and the 
output is a diagnosis statement. The diagnosis statement 
contains a collection of faults that can be used to 
explain the observations.  

Given a set of observations, y, the outcome of a 
detection test τi is a binary fault detection result, di, 
equal to, for instance,1 if the test has alarmed, or equal 
to 0, otherwise.  

To enable fault isolation, different detection tests 
typically monitors different faults and thus different 
parts of the system. Each fault detection test typically 
utilizes a subset of the observations in order to 
determine if any fault is present in its monitored part of 
the system.  

Common traditional approaches for construction of 
fault detection tests are for example limit checking, i.e., 
to check if a sensor is within its normal operating range, 
or to employ hardware redundancy. For instance, if two 
sensors are used to measure the same physical quantity, 
it is possible to test if one of the sensors is faulty by 
comparing the values of the sensors. Another approach, 
providing potentially increased diagnosis performance 
and in which the need of additional, redundant, 
hardware is avoided, is to use detection tests based on 
residuals. Detection tests based on residuals will be 
generated further in the next section using a structural 
approach.  
 

STRUCTURAL MODEL 
 

This section provides a brief overview of the main 
concepts in structural analysis. It provides a baseline for 
further extensions to enhanced structural faults 
detection and isolation.  

The essential idea in analytic fault diagnosis is to 
establish relations to test whether measured and other 
known variables satisfy all relations that describe the 
system’s normal behavior. If this is not the case, some 
violation of the normal behaviour has occurred, i.e., one 
or more faults are present in the system. Relations that 
can be used for such testing are referred to as 
redundancy relations.  

Let a system be described by a set X of unknown 
variables, a set K of known variables and a set of 
constraints C on these variables.  

Then there may exist a set �� ⊆  � from which all 
variables in X can be determined. A system that has this 
property is said to have a complete matching on the 
unknown variables. If any constraints exist that were 
not used to obtain such matching, the set of unmatched 
constraints ��� ⊂  � may be used to test the 
consistency between known variables and the system’s 
normal behavior. Hence, redundancy relations are 
obtained from the unmatched constraints.  

Solving for unknown variables in a nonlinear 
system can be rather complex if done directly on the 
analytical form of the constraints. Structural analysis 
offers a significant shortcut. It is a method to determine 
possible ways to solve a set of constraints without 
actually doing so. Making a graph representation of the 
relations between constraints and unknown variables 
makes it possible to seek through a graph to determine 
how one could solve for unknown variables. The result 
of structural analysis is a receipt that, in a symbolic 
form, describes how unknown variables could be 
calculated from known variables, using the system 
constraints. Analytical expressions are not used until a 
complete structural solution is found. This dramatically 
reduces the complexity of finding parity equations for 
fault diagnosis.  

The salient feature of the structural analysis 
approach is that graph theory exists which can be 
employed to find all possible ways the set of system 
constraints can be matched to unknown variables 
(Dulmage and Mendelsohn, 1959). As sets of 
unmatched constraints, in general, differ from matching 
to matching, structural analysis can determine the entire 
set of possible parity relations.  

Being very useful as a first step of the analysis, the 
results of structural analysis are, however, only 
indicative of the existence of the associated analytical 
results. The existence of a structural parity relation does 
not guarantee the existence of an analytic counterpart. 
Non-existence in the structural domain does, however, 
imply non-existence also in the analytical domain. 

Structural concepts were studied early in the 
applied mathematics community and various theoretical 
algorithms were developed in Hopcroft and Karp 
(1973) and Izadi-Zamanabadi et al. (2003). Structural 
analysis was and is used intensively in chemical 
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engineering for solving large sets of equations 
and Hangos, 2001; Unger et al., 1995). The structural 
approach and the features it offers for analyzing 
monitoring and diagnosis problems were first 
introduced in Staroswiecki and Declerck (1989). 
Extensions to the analysis of reconfigure ability and 
fault-tolerance emerged in Izadi-Zam
Staroswiecki (2000) and Staroswiecki and Gehin 
(2000).  

The structural analysis approach was presented in a 
digested form in Düstegör et al. (2004). Structural 
analysis has hence evolved during several decades. 
However, the salient features of the theory and the 
possibilities it offers have only become apparent to a 
larger community in the field of automation and 
automatic control over the last few years 
(2001; Izadi-Zamanabadi et al., 2003) with applications 
reported in, e.g., Izadi-Zamanabadi and Staroswiecki 
(2000).  
 
Structure as a bi-bipartite graph
structural represents the links between a set 
and a set of constraints. It is an abstraction of the 
behavior model because it describes simply which 
variables are connected to which constraints. Hence, the 
structural model presents the basic features and 
properties of a system which are independent of its 
parameters. The behavior model of a system is defined 
by a pair (C, Z) where Z is a set of variables and 
parameters  and  C  is  a   set  of   constraints  (
et al., 2006; Düstegör et al., 2004).  

This structure can be represented by a graph 
bipartite. A graph is bipartite if its vertices can be 
separated in two disjoin sets C and Z in such a way that 
every edge has one endpoint in C and the other one in 
Z.  

To note that the graph bipartite is undirected graph, 
which can be interpreted as follows: All the variables 
and parameters connected with a given constraint vertex 
has to satisfy the equation or rule this vertex represents. 
This graph allows representing the structure of rather 
general models including both differential and algebraic 
constraints.  

In the bipartite graphs the vertices of 
represented by circles while constrained the vertices of 
C will be represented by bars.  
 

 
Fig. 2: Electrical circuit  
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engineering for solving large sets of equations (Leitold 
1995). The structural 

approach and the features it offers for analyzing 
monitoring and diagnosis problems were first 

roswiecki and Declerck (1989). 
Extensions to the analysis of reconfigure ability and 

Zamanabadi and 
Staroswiecki and Gehin 

The structural analysis approach was presented in a 
(2004). Structural 

analysis has hence evolved during several decades. 
However, the salient features of the theory and the 
possibilities it offers have only become apparent to a 
larger community in the field of automation and 

trol over the last few years (Åström et al., 
2003) with applications 

Zamanabadi and Staroswiecki 

bipartite graph : The model 
structural represents the links between a set of variables 
and a set of constraints. It is an abstraction of the 
behavior model because it describes simply which 
variables are connected to which constraints. Hence, the 
structural model presents the basic features and 

ndependent of its 
parameters. The behavior model of a system is defined 

is a set of variables and 
constraints  (Blanke  

This structure can be represented by a graph 
bipartite. A graph is bipartite if its vertices can be 

in such a way that 
and the other one in 

To note that the graph bipartite is undirected graph, 
which can be interpreted as follows: All the variables 
and parameters connected with a given constraint vertex 
has to satisfy the equation or rule this vertex represents. 

the structure of rather 
general models including both differential and algebraic 

In the bipartite graphs the vertices of Z are 
represented by circles while constrained the vertices of 

 

 
Fig. 3: Structure graph of the electrical system
 
Table 1: Incidence matrix of the system 

Variables/ 
constraints 

Unknown variables 
-------------------------- 

Known variables
-------------------------------------------

R C ��	  s e v1 
C1 1    1 1 
C2       
C3  1 1    
C4      1 
C5    1  1 
C6   1   1 

 
Example 1: For a better comprehension, the example 
above will be used, (Ploix et al., 2005)

To consider an electrical system where the courant 
and the tension are the variables propagating in the 
circuit.  

The system consists of the components {Resistor 
R, capacitor C, Output charge s, Generator
v). A continuous model with variable 
time is given by the following constraints: 

 
• Resistor C1: 
 � �� 
 ��� 
• Node rule C2 : �� 
 �� � �� 

• Capacitor C3 : �� 
 �
�

��
�� 

• Tensions rule C4: ��  
  �� 
• Charge C5: ��  
  � 

• Derivative constraint C6 : ��	 

 

The graph bipartite of our system is represented in 
the Fig. 3 as follows:  

We can also represent our system in the form of 
incidence matrix, Table 1. Every column of the matrix 
correspond to a circle-vertex and every row correspond 
to a bar-vertex, the variables that are connected to a 
constraint is marked by 1 in its box as is given in the 
following:  
 
Known and unknown variables: System variables and 
parameters can be decomposed into known (Internal) 
and unknown (external). System inputs and outputs are 
examples of variables that are usually known. In the 
same way, parameters that are entries for the model or 
were previously identified are certainly kn
known variables are available in real
directly be employed in the faults diagnosis. 

Unknown variables are not directly measured, 
although there might exist some way to compute their 
value  from the values of known ones (

 

Fig. 3: Structure graph of the electrical system 

Known variables 
------------------------------------------------

 v2 i1 i2 i3 
  1   

 1 1 1 
  1  

 1    
     
     

For a better comprehension, the example 
2005) (Fig. 2). 

To consider an electrical system where the courant 
and the tension are the variables propagating in the 

The system consists of the components {Resistor 
, Generator e, Sensors i, 

). A continuous model with variable in continuous 
time is given by the following constraints:  

	 �

��
�� 

The graph bipartite of our system is represented in 

We can also represent our system in the form of 
Every column of the matrix 

vertex and every row correspond 
vertex, the variables that are connected to a 

in its box as is given in the 

System variables and 
parameters can be decomposed into known (Internal) 
and unknown (external). System inputs and outputs are 
examples of variables that are usually known. In the 
same way, parameters that are entries for the model or 
were previously identified are certainly known. Thus, 
known variables are available in real-time and they can 
directly be employed in the faults diagnosis.  

Unknown variables are not directly measured, 
although there might exist some way to compute their 

from the values of known ones (calculability). In  
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the   electrical  circuit example, the  last five columns of 
the incidence matrix {e, v1, v2, i1, i2, i

known variables, while the first four ones correspond to 
unknown variables {R,C, s,��	 }, (the components and 
the derivative state).  
Variable set is portioned into:  
 

 � 
 � � �  
 

Or: K (known variable) and X (unknown variable) 
And: � 
 ��  � �� 

CK constraint, which links only the known 
variables and CX includes constraints in which at least 
one unknown variables appears.  
 

MATCHING ON A BI-PARTITE GRAPH

 

The basic tool for the structural analysis is the 
concept of matching founded on a bipartite graph. In 
other words, a matching is a causal assignment, 
associates unknown variables of the system with the 
constraint of system from which they can be calculated. 
The unknown variables that cannot be matched cannot 
be calculated. The variables, which can be matched 
several ways, can be determined by vari
which provide means for fault detection and a 
possibility for reconfiguration (Düstegör 

On a Bipartite graph, the matching is a set of 
arcs/edges such that any two edges have no common 
node (neither in C nor in Z) and it is represented by an 
arc in Gras. This is given as follows, in Fig. 4, an 
example of two possible matchings for the electrical 
circuit system: 

 

 

Fig. 4: Possible matching on the bipartite graph of the electrical system
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last five columns of 
i3} correspond to 

known variables, while the first four ones correspond to 
(the components and 

(unknown variable)  

constraint, which links only the known 
includes constraints in which at least 

PARTITE GRAPH 

The basic tool for the structural analysis is the 
concept of matching founded on a bipartite graph. In 
other words, a matching is a causal assignment, which 
associates unknown variables of the system with the 
constraint of system from which they can be calculated. 
The unknown variables that cannot be matched cannot 
be calculated. The variables, which can be matched 
several ways, can be determined by various ways, 
which provide means for fault detection and a 

Düstegör et al., 2004). 
On a Bipartite graph, the matching is a set of 

arcs/edges such that any two edges have no common 
) and it is represented by an 

. This is given as follows, in Fig. 4, an 
example of two possible matchings for the electrical 

In the incidence matrix, the matching is 
represented by one ①. Only one 
same column and line.  
 

Matching algorithm: We can count many algorithms 
to find the maximal matching, like the classical 
maximal matching algorithm, the 
matching, Hungarian method 
Mendelsohn, 1963; Hopcroft and Karp

However, we will use an efficient and upgraded 
algorithm based on ranks to find the matchings 
considering his effectiveness and his simplicity of 
application on a system. See for basics, Blanke 
(2006). In our ameliorated version of the algorithm, it
possible to generate all non-matched constraints in each 
iteration, this is useful for diagnosis and for tests 
generation.  
 
Ranking algorithm 
Given: an incidence matrix or a structural graph 
 
• Mark all know variables 
• i = 0 
• Fine all constrain in the current table with exactly 

one unmarked variable. Associate them the rank i 
and mark these constraints as well as the 
corresponding variable. 

• Set i = i + 1 
• If there are unmarked constraints where all 

variables with rank i, mark them and link them to 
the pseudo-variable ZERO 

• If there are unmarked variables or constraints, 
continue with step2 

 

 

 

Fig. 4: Possible matching on the bipartite graph of the electrical system 

In the incidence matrix, the matching is 
Only one ① is authorized in 

: We can count many algorithms 
to find the maximal matching, like the classical 
maximal matching algorithm, the maximal flow 

 (Dulmage and 
Hopcroft and Karp, 1973). 

However, we will use an efficient and upgraded 
algorithm based on ranks to find the matchings 
considering his effectiveness and his simplicity of 
application on a system. See for basics, Blanke et al. 
(2006). In our ameliorated version of the algorithm, it is 

matched constraints in each 
iteration, this is useful for diagnosis and for tests 

ructural graph  

current table with exactly 
one unmarked variable. Associate them the rank i 
and mark these constraints as well as the 

If there are unmarked constraints where all 
them and link them to 

If there are unmarked variables or constraints, 
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The constraint propagation algorithm applied to the 
electrical circuit system is exhaustively given as 
follows: 

Since, {e, v1, v2, i1, i2 and i3} are known, only the 
variable set {R,��	 , C, s} has to be matched.  

 
•••• Starting set (rank 0): {e, v1, v2, i1, i2, i3 }  
•••• First step (rank 1): match �	 �with C6 and match s 

with C5.  
•••• Second step (rank 2): match C with C3 and match  
•••• R with C1. 
 
It is clear that all our unknown variables are matched.  
 
System’ canonical decomposition: The graph theory 
recalls a classical result from bipartite graph, (Dulmage 
and Mendelsohn, 1959), which states that any finite-
dimensional graph can be decomposed into three sub-
graphs with specific properties, respectively associated 
with an over-constrained, a just-constrained and an 
under-constrained subsystem. This decomposition is 
canonical, i.e., for a given system, it is unique. The 
three subsystems play a major role in the analysis of the 
system structural properties: Observability, 
Controllability and Monitorability.  
A graph (C, Z) is called: 
 
• Over-constrained: if there is a complete matching 

on the variables Z but not on the constraint C,  
• Just-constrained: if there is a complete matching 

on the variables Z and on the constraints C,  
• Under-constrained: if there is a complete 

matching on the constraints C but not on the 
variables Z.  
 

PROPERTIES OF STRUCTURAL ANALYSIS 

 
Observability:  Observability informs us about the 
unknown variables of our system that can be checked 
and observed.  
Structural Observability condition (Blanke et al., 2006):  
 
• All the unknown variables are reachable from the 

known ones  
• The over-constrained and the just-constraint 

subsystems are causal  
• The under-constrained subsystem is empty  

 
To simplify, to ensure that the system is 

observable, it is necessary that, it be over-constrained or 
just-constrained. Moreover, it is necessary that all the 
unknown variables are reachable (Blanke and 
Staroswiecki, 2006), i.e., can be calculated by means of 
the known variables.  
 
Monitorability: A system is said to be monitorable, if 
it can be determined using only known variables, 
whether the system constraints are satisfied or not.  

In addition, this is feasible through designing fault 
detection and isolation algorithms based on the 
analytical redundancy relation.  

Analytical redundancy ARR based fault diagnosis 
tries to identify faults by comparing the actual behavior 
of the system, with the theoretical behavior described 
by the system constraints. They are given in the means 
of only known variables. ARRs are the constraints that 
express this redundancy. This redundancy is 
represented in the following with the over-constrained 
and unmatched constraints that denote the testable 
subsystems.  
The ARR should have the following properties: 
  
• Robust: i.e., insensitive to unknown input and 

unknown parameters.  
• Sensitive to faults: this insures that they are not 

satisfied when faults are present, so that there is no 
missed detection.  

• Structured: this insures that in the presence of a 
given fault, only subsets of the ARR are not 
satisfied, thus allowing recognizing, the fault 
which occurred.  

 
The following two necessary conditions meant for 

which a fault to be monitorable are equivalent:  
 

• X is structurally observable in the system  
• It belong to the over-constrained part of the system 

(C, Z), i.e., that the unknown variables must be 
observable (adding sensors) and it belongs to an 
overstrained subset (complete matching on the 
variables Z). 

 

Design of analytic redundancy relations:  
Redundancy relations are sub-graphs of the structure 
graph, which are associated with complete causal 
matching of the unknown variables and associated with 
the over-constrained subsystem of a reduced bi-partite 
graph. Redundancy relations are composed of alternated 
chains, which start with known variables and end with 
non-matched constraints, here the chosen output is 
labeled ZERO.  

Designing a set of residuals requests for building 
maximal matching on the given structural graph, under 
derivative causality and identifying the redundancy 
relations as the non-matched constraints in which all the 
unknowns have been matched. The algorithm to find 
maximal matching has been previously presented.  

In our studied example, the incidence matrix 
obtained after applying the rank algorithm is in the 
form below, Table 2:  

It is clear that constraints C2 and C4 are the non-
matched constraints, where all the variables are 
matched.  
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Table 2: Incidence matrix after matching 

Variables/ 
constraints 

Internal variables 
---------------------- 

External variables 
----------------------------------------  

R C ��	  s e v1 v2 i1 i2 i3 Rank 
C1 ①    1 1  1   2 
C2        1 1 1 Zero 
C3  ① 1      1  1 
C4      1 1    Zero 
C5    ①  1     0 
C6   ①   1     0 

 
Constraint C2 and C4 are used for the design of 

redundancy relations by replacing all the matched 
variables by the known variables, the results are as 
following:  

The given calculation order of unknown variables 
from knows is as follow:  
 

C4: ν1 = ν2 → C5: ν1 = s → C2:  i1 + i2 + i3 → C6: 

 �	 

�

��
��→ C3: �� 
 �

�

��
��→ C1: 
 � �1 


� �1→ Zero 
 
By replacing the known variables we have:  
 

C1:0 
  ���  �  � �� ‒  
 
  "($) 
 
where, r(t): is a residual obtained by the analytical 
redundancy relation, the residual is an evaluation of 
the ARR, it is equal to 0 if the system is free-fault 
and to a non-zero value in the presence of a fault 
(fault detection). It is s-called also, the fault indicator 
or fault signature, if two faults have the same fault 
signature, they are not structurally distinguishable 
(fault isolation).  

We can note that Kirchhoff laws are generally 
the redundant constraints in circuit analysis and they 
are commonly used to calculate residues.  

The order of operations on constraints is(coming 
from the last) C1 (C3 (C6 (v1)),C2 (i2, i3),C3 (C4 (v2))) 
→ zero 

We remark that v2 and v1 are redundant sensors 
and it is similar for i1 and (i2,i3). Hence, it is well 
known that hardware redundancy is generally the 
commonly used approach in circuit tests, the next 
section deals with redundancy elimination in testable 
subsystems generated using a structural methodology. 
 
GENERATION OF TESTABLE SUBSYSTEMS 

 
A testable subsystem is a set of constraints, which 

leads to an Analytical Redundancy Relation (ARR). An 
ARR is a static or dynamic time evolution constraint 
that contains only known variables and it is equal to 
zero (0) when the system operates according to its 
normal operation model.  

Any given subsystem model cannot always be 
checked because testing the consistency of a subset of 
elementary models requires that some physical 
variables to be known. A test, also called a detection 
test, dedicated to a subsystem model is a Boolean 

function defined on a space of known variables, based 
on all the analytical relations of the elementary models 
belonging to the subsets.  

In the following, a short survey on related works is 
given. Armengol et al. (2009) resumes all the methods 
used in the literature to generate the testable subsystems 
in the context of structural analysis.  

Krysander et al. (2008) proposed an algorithm for 
finding all MSOs (minimal structurally over-
constrained subsystems), i.e., testable subsystems TSS. 
This algorithm is based on the Dulmage-Mendelsohn 
decomposition, (Dulmage and Mendelsohn, 1959) and 
on a top-down approach. It starts with the entire model 
and then reduces the size of the model step by step until 
a TSS remains.  

A handicap of this method is that, the same TSS 
can be found more than once. Therefore, this algorithm 
is not optimal in terms of efficiency. Krysander et al. 
(2008) presented improvements in order to increase the 
efficiency.  

Even if the complexity of this method is lower than 
for the last approach, the main disadvantage of this 
method is that it cannot take into account the notion of 
deductibility/reachability of variables, Blanke and 
Staroswiecki (2006): all variables of the system are 
considered as deductibles and, therefore, some ARRs 
may not be achievable. Of course, systems with 
branchings cannot be managed.  

In this study, we combine the rank algorithm with 
the approach proposed in Krysander et al. (2008) to 
ameliorate TSS generation. The main idea is using the 
elimination of the redundancy in the incidence matrix 
and reduces the number of constraints used to the 
minimal; this will generate the basic testable 

subsystems defined in Ploix et al. (2005). 
Taking in account the following definition of 

deductibility (calculability):  
 

Definition 1: Two constraints C1 and C2 defined on a 
set of physical variables V will be considered as 
equivalent&(�1)  
  & (�2). It is denoted  C1 ⇔  C2.  

The set of references  &(�), also called constraint 
support, containing either the name of the constraint if 
it is related to only one component state, or, elsewhere, 
the names of all the constraints that compose C.  
 

Definition 2: A constraint C2 overestimates 
(miscalculates) a constraint C1 if & (�1)  ⊂  & (�2), It 
is denoted �1 ⊂  �2.  

Constraints overestimating others and equivalent 
constraints have to be removed because they are not 
minimal. This is the main idea in Krysander et al. 
(2008) and Yassine et al. (2008), they called it 
redundant constraints.  

Recall the example 1, the incidence matrix for the 
reduced model of electrical circuit (without 
miscalculated and redundant constraints and variables) 
is as follow, Table 3:  
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Table 3: Incidence matrix after re-arrangement and reduction

Variables/ 
constraints 

Internal variables 
---------------------- 

External variables
-----------------------------

R C ��
	  s e 

\ ①    1 
C3  ① 1   
C6   ①   
C5    ①  
 

 
Fig. 5: Bipartite graph of reduced system with a maximal 

matching on variables 
 

One finds that, by establishing all the possible 
matchings, it is possible to generate all the detection 
tests (basic tests), which will be used for the design of 
all Testable subsystems.  

Figure 5, illustrates a maximal matching on the 
reduced model.  

It is proposed that: by tracking all the linked edges 
on the graph, starting from a matched variable and 
passing by a constraint, allows us to tracing the order of
calculability directly from the Bipartite graph and 
generate a testable subset (a basic subset)
mapping. As a result, by establishing all the possible 
mappings on Fig. 5, one can get all the testable 
subsystems (the sets of all possible basic tests in 
different calculation orders) i.e., the over
subsets of constraints, which can be used directly in the 
FDI-scheme defined in Fig. 1. 
 

CONCLUSION 
 

The structural analysis enables the exploration of 
local redundancy of the system, it also allows 
highlighting the possibilities for monitoring through the 
structural properties such as, Monitorability and 
determination of calculation sequences, the result is a 
residue and allows generating all the testable 
subsystems. Analysis of residues structure has in 
purpose to assess the faults detectability and isolability, 
but it can also suggest what sensors should be 
implemented in order to change the status of the system 
components, to move a non-observable one to an 
observable (Alem and Benazzouz, 2013

An ameliorated ranking algorithm is used to 
generate the testable subsets and produce
by eliminating the miscalculated and equivalent 
(redundant) constraints in the structured model. 
efficiency of the proposed method is confirmed along 
the paper using an electrical circuit system. The 
obtained results are clearly compared with those in 
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arrangement and reduction 
External variables 
--------------------------------

v1 i1 i2 
1 1  
  1 
1   
1   

 

Bipartite graph of reduced system with a maximal 

One finds that, by establishing all the possible 
matchings, it is possible to generate all the detection 
tests (basic tests), which will be used for the design of 

Figure 5, illustrates a maximal matching on the 

is proposed that: by tracking all the linked edges 
on the graph, starting from a matched variable and 
passing by a constraint, allows us to tracing the order of 
calculability directly from the Bipartite graph and 
generate a testable subset (a basic subset),this is called a 

. As a result, by establishing all the possible 
mappings on Fig. 5, one can get all the testable 
subsystems (the sets of all possible basic tests in 
different calculation orders) i.e., the over-determined 

ich can be used directly in the 

The structural analysis enables the exploration of 
local redundancy of the system, it also allows 
highlighting the possibilities for monitoring through the 

h as, Monitorability and 
determination of calculation sequences, the result is a 
residue and allows generating all the testable 
subsystems. Analysis of residues structure has in 
purpose to assess the faults detectability and isolability, 

ggest what sensors should be 
implemented in order to change the status of the system 

observable one to an 
3). 

An ameliorated ranking algorithm is used to 
the testable subsets and produce detection tests 

by eliminating the miscalculated and equivalent 
(redundant) constraints in the structured model. The 
efficiency of the proposed method is confirmed along 
the paper using an electrical circuit system. The 

ed with those in 

Ploix et al. (2005). The paper gives a short 
investigation on related works and commonly utilized 
terminology on testable subsystems generation using a 
structural approach. 

In future works, one can include some causal 
interpretations on computational sequences, i.e., 
derivative and algebraic loops. Amelioration on the 
proposed algorithm o fit with large
dynamic behaviors will be also considered. It is 
possible to take into account the exponential 
complexity of the iterative algorithm and proposing a 
heuristic approach to deal with an optimization on the 
combination of all the obtained basic matchings in each 
iteration.  
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