
Research Journal of Applied Sciences, Engineering and Technology 5(22): 5267-5271, 2013

DOI:10.19026/rjaset.5.4275

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: October 22, 2012 Accepted: December 28, 2012 Published: May 25, 2013

Corresponding Author: Yuqiang Sun, International Institute of Ubiquitous Computing, Chang Zhou University, Chang Zhou

213164, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

5267

Research Article
Based on the MapReduce Model for Data-intensive Computing of Energy

 Scheduling Algorithm Strategy

1, 2
Yuqiang Sun,

1
Xin Gao,

1
Huanhuan Cai,

1
Xianmei Chang and

1
Lei Li

1
International Institute of Ubiquitous Computing, Chang Zhou University, Chang Zhou 213164, China

2
School of Computer and Information Technology, Henan Normal University,

Hennan, Xinxiang 453007, China

Abstract: In this study, based on the consideration of energy consumption, we take to improve the strategy of the
MapReduce job scheduling algorithm, in order to reduce the average response time for task scheduling of interactive
jobs in the network. In accordance with the job priority grouping to adjust the scheduling task response time which
can reduce the impact of network congestion, with good results that increase the throughput of the system
transferring data and computing power.

Keywords: Data-intensive, MapReduce, scheduling algorithm

INTRODUCTION

The development and application of Internet

technology make the need to deal with the amount of
data show the combinatorial explosion situation. Based
on network data-intensive computing about massive
data processing, require mass storage, high-
performance computing platforms to achieve this
process. Nevertheless, data-intensive computing is
usually not available locally to provide services, so it is
an effective and natural way that network services
provide the application interface. The network has
become the carrier of a large-scale data processing (Li
et al., 2011).

However, it is different from the traditional high
performance computing, users’ application requirement
on huge amounts of data calculation in the network may
include from data acquisition to pre-treatment and then
the whole process of data analysis. There are some
complex processes, therefore service interface for data-
intensive computing applications based on these
network services interaction functions. In the network
environment, a series of interactive behavior like
storing, calculation and retrieve, energy consumption of
them is particularly prominent, to some extent. Energy
performance indicators are demonstrated between each
data node in the network, including utilization of
network bandwidth, response time/waiting time of the
running job and throughput of the system (Laura et al.,
2010; Xiao-Xia and Zhong-He, 2011; Chen et al.,
2009a). Energy problem is becoming a hot issue of
network data center. Therefore, the traditional
centralized or small-scale distributed parallel

technology, which takes corresponding storage,
retrieval and computing technology should also change,
so that it may be in the fast growing amount of data to
meet the requirements of response time, throughput and
scalability. MapReduce (Chen and Qian-Ni, 2009b) was
initially developed at Google as a platform to parallel
processing of large datasets. It is suitable for large-scale
computer clusters to analysis processing with data-
centric. Likewise, it is a core computing model in the
cloud currently. Based on MapReduce energy
consumption, we’ll study this point of view from job
scheduling (Matei et al., 2009).

In this study, based on the consideration of energy

consumption, we take to improve the strategy of the

MapReduce job scheduling algorithm, in order to

reduce the average response time for task scheduling of

interactive jobs in the network. In accordance with the

job priority grouping to adjust the scheduling task

response time which can reduce the impact of network

congestion, with good results that increase the

throughput of the system transferring data and

computing power.

MAPREDUCE PARALLEL MODEL
FRAMEWORK

MapReduce is a calculational model which can

support a very large scale keys/ value pairs; it hides the

complex distributed processing details of

parallelization, fault tolerance, data distribution, load

balancing, etc. Its processing mechanism can be

exempted from the limitations of the data scale, with

Res. J. Appl. Sci. Eng. Technol., 5(22): 5267-5271, 2013

5268

Fig. 1: MapReduce basic framework

superior scalability. Users ’needs are handled by the

distributed parallel computing on massive data sets on

clusters of computers. In a MapReduce framework, a

calculation request of every user as a job, the main

server JobTracker is responsible for coordinating the

operation of this job. Each job will be split into many

tasks, then the tasks are assigned to different slave

servers TaskTracker by JobTracker, TaskTracker is

responsible for carrying out specific tasks. Different

TaskTrackers execute Map tasks and Reduce tasks

assigned. At its core, MapReduce has two user-defined

functions. The Map function takes in a key-value pair

and generates a set of intermediate key-value pairs. The

Reduce function takes in all intermediate pairs

associated with a particular key and emits a final set of

key-value pairs. Figure 1 shows the basic framework of

MapReduce model from the perspective of scheduling.

Based on MapReduce implementation mechanism,

when some data that the user requires are running in the

network, the user submits the job to the scheduling

system, each job contains a series of tasks and

scheduling system will allocate these tasks on more

than one machine available in a cluster. However,

MapReduce splits data to achieve parallel computing on

each node, there are some restrictions. First, the data

cannot be infinitely spilt, if each data is spilt too small,

then the calculated energy costs by MapReduce

framework itself will be relatively larger. And if the

cluster nodes become larger, the network will overload,

because the network bandwidth between the racks is far

less than the total bandwidth of each rack local, it will

cause the energy overhead of communication between

nodes increase. Therefore, in order to fully use network

bandwidth resources, allocate resources reasonably in

the job scheduling process, we propose the following

optimization strategy to the schedule algorithm based

on energy performance.

MAPREDUCE JOB SCHEDULING

ALGORITHM

MapReduce supports data-intensive computing
process. Between the stages of Map task and Reduce
task, the whole implementation process is serial
synchronous, Reduce operation do not begin until the
last Map operation finished. This interdependent
relationship will lead to resource utilization and idle too
much in the implementation of mission operations. If a
long-running job gets many Reduce slots on the
machine, it will release them only after the end of Map
stage, while other small workload in its reserved slot
has been in a state of "hunger" and lack of a chance to
run. Like this the process will cause a large number of
idle workload and long queuings delay, resulting in
waste of resources in time and space. It is so important
to schedule effectively for data-intensive cluster
computing because of the shared cluster resources and
network bandwidth are very expensive, as well as
difficult to move. Now data integrated scheduling
reflects the important value.

For in all the MapReduce computation to achieve,
we choose an open source platform Hadoop. In
Hadoop, job scheduling processes are implemented to
allocate tasks to the corresponding TaskTracker by
JobTraeker. Multiple tasks are running at the same

Res. J. Appl. Sci. Eng. Technol., 5(22): 5267-5271, 2013

5269

(a) Job1 enter the queue (b) Job1 run，Job2 wait (c) Job2 begin to run

Fig. 2: FIFO algorithm

Fig. 3: Job1 and Job 2 run together, share cluster resources

time, the order in which jobs are executed and the

allocation of computing resources will affect the

performance for Hadoop platform and the energy

efficiency of system resources. In data processing, job

scheduling algorithms are generally used as follows.

The first scheduling algorithm is a default

scheduling algorithm, FIFO. FIFO algorithm is with a

priority and all the users' jobs are submitted to a queue

only. Scan the entire job queue in accordance with the

priority level and submitted in chronological order;

choose one job to implement tasks allocation, as shown

in Fig. 2. FIFO algorithm is relatively simple with less

scheduling overhead of the cluster. However, it has its

limitations that the algorithm ignores jobs demand

difference among different users. In the case of large

operations, small jobs’ response times are relatively

poor. For massive data processing, it is inevitable to

carry out interactive tasks in different applications

operating. To a certain extent, waste the resource of the

system cluster, make that parts of the resource use

frequently, while another is in an idle state during

period of time.

Another common scheduling algorithm is Fair

Scheduler. This algorithm could access to cluster

resources averagely as time goes by. When a single job

is running, it will get the resource of the entire cluster.

When new users submit jobs in the queue, the system

will assign the task slots to these new users, allowing

each user to share resources evenly. By default, each

user has an independent resource pool, which means

that all running tasks can get the same amount of the

shared resources, regardless of whether they submit the

number of jobs. The advantage of this algorithm is

shorter time-consuming jobs can be completed within a

reasonable period of time; meanwhile longer time-

consuming job will not be chronically hungry. Shown

in Fig. 3. However, the amount of job queue exceeds

the system carrying capacity, so that it does not

improve the total throughput of the system. Instead, it

will cause working nodes in the system are in a state of

overload. The quantity of tasks which are allocated by

TaskTrackers is oversize, or the numbers of running

multiple jobs are excessive at one time, there may be

overload. As a result, this will reduce the job response

time and system processing capabilities. For batch tasks

have been running with computing resources which are

not completed, the server will not be able to recycle

these resources, so it will make some jobs for prolonged

lack of response. In conclusion, the algorithm does not

take into account the actual load of the nodes, although

scheduling the jobs proportional, it leads to the nodes

load are imbalance.

The third scheduling algorithm is Capacity

Scheduling. In the algorithm it defines multiple queues.

Assign a certain amount of system capacity for each

queue by file configuration; a task will be randomly

placed into a queue. Limit the percentage of the

resources available to jobs submitted by the same user,

so that belong to a user's job resource cannot be

exclusive. Idle resources can be dynamically assigned

to the heavy loads of the queues. However, queue

settings and queue selection cannot be free to choose,

users need to know a lot of system information.

OPTIMAL SCHEDULING ALGORITHM BASED

ON ENERGY CONSIDERATIONS

Analysis of the energy index: Based on the above

scheduling algorithms process, none of the scheduling

algorithms consider energy consumption in the

transmission and scheduling process. Running

calculation and storage problems for mass of data are

growing fast. More and more alternate switching

execution scheduling problems between long jobs and

small jobs. In this study, it is a prominent place that

combines the energy performance and job scheduling

algorithms to optimize the better algorithm. Have a

means of maximizing the utilization of system

resources and throughput; meanwhile reduce latency

and response time of the jobs.

There are a lot of inputs and outputs data needs of

users during transmission, so the network bandwidth is

the scarcest resource in the system. Task scheduling

and allocation cannot be concentrated in the same node;

scheduling algorithms need to consider the data

input/read. Data cluster resource is shared and the

nodes transfer data between two-way communications.

Res. J. Appl. Sci. Eng. Technol., 5(22): 5267-5271, 2013

5270

Fig. 4: Algorithm chart

Fig. 5: Scheduling algorithm process

A large number of data transfer or pending transfer

will take up a lot of network resources, scheduling
inappropriate will affect the response time of a single
task, ultimately affect the overall system throughput
and the total response time.

The task response time is that the completion time
which a single task runs minus the time which the tasks
submitted to the system. It is a two-tuple, described as
T = <U, V>, U represents delay factor sets, V = {job
segmentation number N, job length J, tasks number I}.
It reflects the ability of interaction between MapReduce
model and user. The shorter of the response time, the
stronger of the system interacted with the users. The
total response time reflects the computing capacity and
throughput of the entire system, a shorter response time
indicates that this model can use a small amount of
computers and network resources to accomplish the
same task in a large number of parallel executions of
tasks. Throughput is the number of jobs which are
processed by cluster system in unit time. The more of
throughput, the more jobs processed in unit time.

Algorithm process improvement: In this study, the
strategy adopted by combination of these algorithms is
the use of priority, as well as weights and equitable use
of shared resources. Each queue is seen as a separate
resource pool, the system allocates shared resources.
Reduce the transmission of network data as a starting
point, for decentralized demand of jobs on different
nodes. On the basis of Fair Scheduler, use the priority

grouping strategies to reduce the response time of
interactive jobs in the network. Above all, segregate
jobs into segments, according to segmentation to
determine priority. Priority of each task depends on the
length of specific job, define two priorities. 1 indicates
a high priority and 0 indicates a low priority. When
master server sends tasks to TaskTracker, the queue
manager carries out jobs segmentation, form task
groups. If job segmentation is only composed of a
single segmentation task, it displays as 1, identified as
high priority. If form multiple segments task, it displays
as 0, identified as low priority. The algorithm structure
diagram and process diagram as follows. As shown in
Fig. 4 and 5.

The pseudo codes of the corresponding job
scheduling are as below:
Job scheduling begin

Initialize job queue JobList
Traverse all the queues, define the queue priority

{int high-priority-queue;
int low-priority-queue;
The jobs are submitted to the queue manager, job

segmentation;
int t[N]; //Define the storage of job queues, N is the

number of job segments
t< = total number of job queue
if N = 1

{Jobs are mapped to the high priority queue;
put this job into the queue position t [1] and put

job segmentation into high-priority-queue team;
}
else

{Jobs are mapped to the low priority queue;
for (i = 1; i<N; i++)

{put this job into the queue position t [i], put
job segmentation into low-priority-queue team;}
}

}

That is, when there is only one group task, the

priority is 1 and then adds it to the end of the high

priority queue; otherwise it is added to the end of the

low priority queue. When TaskTracker is idle, the

queue manager always selects a first packet from a high

priority queue to transmit. When the high priority queue

is empty, select another first packet from a low priority

queue to send. The algorithm sets a dynamic priority,

neither exists a certain priority queue that is progressed

in a long time, nor job overload. Timing to a point in

the low priority queue, a packet will be removed from it

and added to the end of the high-priority for processing.

In the scheduling process, the whole system has always

maintained a balance in each node running.

CONCLUSION

Optimization of job scheduling algorithm based on

the MapReduce energy aware is from the macro aspects

to execute performance improvement. When multiple

Res. J. Appl. Sci. Eng. Technol., 5(22): 5267-5271, 2013

5271

tasks are running at the same time, adjust the order of

tasks to run, as well as the allocation of computing

resources. Make a distinction between the uses' job

requirements, meanwhile ensure a certain degree of

fairness that no user for a long time to occupy most of

the resources system. The optimization algorithm also

reduces the waiting time of majority tasks and

condenses jobs response time, thus it improves the

work efficiency of MapReduce. The next step is from

MapReduce internal proceeded to optimize the

operating efficiency of a single job. We will focus on

the task scheduling strategy in a distributed system;

make use of the reciprocity between nodes to select the

most appropriate node to execute the corresponding

tasks. So as to reduce the amount of data transmission

system and decrease the overhead of network

bandwidth, consequently achieve the goals of

improving overall system performance.

ACKNOWLEDGMENT

Supported by The project of general office of

Broadcasting and Television (GD10101) and Natural

Science Fund in JiangSu (BK2009535) and Natural

Science Fund in ZheJiang(Y1100314).

REFERENCES

Chen, Q. and D. Qian-Ni, 2009b. Self-adaptive
MapReduce scheduling under heterogeneous
environment [J]. Comp. Eng. Sci., 31(A1).

Chen, Y., L. Keys and R.H. Katz, 2009a. Towards
energy efficient MapReduce [J]. Technical Report
No. UCB/EECS-2009-109.

Laura, K., R. Suzanne and D.D. John, 2010. The search
for energy-efficient building blocks for the data
center [J]. Proceeding of the International
Conference on Computer Architecture. Springer-
Verlag, Berlin, pp: 172-182.

Li, M., G.H. Xu and Y. Ji, 2011. Application research

on MapReduce programming model in network-

I/O-intensive programs [J]. Appl. Res. Comp.,

29(9): 3372-3374.

Matei, Z., B. Dhruba, S.S. Joydeep, E. Khaled, S. Scott

and S. Ion, 2009. Job scheduling for multi-user

mapreduce clusters [J]. Technical Report No.

UCB/EECS-2009-55.

Xiao-Xia, L. and Z. Zhong-He, 2011. The research for

optimization of the main task scheduling algorithm

in cloud computing [J]. Comp. Technol. Automat.,

30(4): 108-110.

