
Research Journal of Applied Sciences, Engineering and Technology 5(20): 4936-4941, 2013 

DOI:10.19026/rjaset.5.4346 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2013 Maxwell Scientific Publication Corp. 

Submitted: September 30, 2012                       Accepted: December 13, 2012 Published: May 15, 2013 

 

Corresponding Author: Dong Hu, Center for Networked System, College of Computer Science, Southwest Petroleum 
University, Chengdu 610500, China 

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

4936 

 

Research Article 
Epidemic Oscillations in a Meta-Population Model 

 
1, 2

Dong Hu, 
3
Zhicheng Lei and 

1
Ping Li 

1
Center for Networked System, College of Computer Science, 

2
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum 

University, Chengdu 610500, China 
3
Department of Information Science and Engineering, Zhongshan Torch Polytechnic, 

 Zhongshan 528436, China 
 

Abstract: The individual mobility and the underlying spatial structure of populations play an important role in 
epidemic spreading processes. In this study, effects of these two factors on epidemic dynamics in metapopulation 
systems are investigated by using a discrete Susceptible-Infective-Recovered-Susceptible (SIRS) model. Our 
extensive numerical Monte Carlo simulations show that both irregular and regular oscillations can be observed, 
depending on the life cycles of epidemic diseases. Furthermore, the amplitudes of regular oscillations are enlarged 
by decreasing the move cycle. It is also found that heterogeneous connectivity patterns among subpopulations result 
in a global infection under fast movement, compared to homogeneous connectivity patterns. 
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INTRODUCTION 

 
Epidemic dynamics has been extensively 

investigated in recent years. Many of them have focused 
on the spreading behaviours in the populations by using 
a network approach, where individuals are represented 
by nodes and the contacts between any pair of 
individuals are mapped to links. Various network 
connectivity patterns, like small world network and 
scale free network, have been manifested to play an 
important role in the study of the influence of the 
network topology upon the dynamics of epidemics. The 
underlying assumption in these models is that the 
population is localized in one region and the connections 
between individuals are static. Given the situation that 
individuals are distributed in relatively isolated regions 
or subpopulations connected by some degree of 
migration through corridors between these regions, then 
another approach called metapopulation modelling is 
being revamped in studying epidemic dynamics for such 
large scale populations. Diekmann and Heesterbeek 
(1999) study the mathematical epidemiology of 
infectious diseases: model building, analysis and 
interpretation. Anderson and May (1991) have a 
research of the infectious diseases of humans: dynamics 
and control. Bailey (1975) studies the mathematical 
theory of infectious diseases and its applications. 

The meta-population approach is a basic theoretical 
framework to describe population dynamics in ecology. 
Populations of many species occupy patches of high 

quality habitat and use the intervening habitat for 
movement from one patch to another. Such a collection 
of interacting populations of the same species is called a 
metapopulation, which means a population of 
populations. The classical metapopulation theory 
focuses on the processes of local extinction, 
recolonization and regional persistence and emphasizes 
the importance of connectivity between seemingly 
isolated populations. It has been found that the spatial 
structure of populations has remarkable impacts on the 
system's evolution. The meta-population approach can 
serve as a paradigm for studying the epidemic dynamics 
of spatially structured populations with well-defined 
social units (e.g., cities, towns, villages, etc.) connected 
through individuals' movement. Recently, this method 
has been successfully applied to study the dynamics of 
epidemic processes in metapopulation models 
characterized by heterogeneous connectivity patterns, as 
the outcome of the influences of network heterogeneity 
and mobility process on the invasion threshold. It is 
assumed in that model that individuals are 
homogenously mixed in each subpopulation and the 
mobility rate is topologically dependent. Besides, there 
is another interesting model called dynamical domain 
network, which is also very promising for modelling the 
interactions between the subpopulations. 

In this study, effects of these two factors on 

epidemic dynamics in meta-population systems are 

investigated by using a discrete Susceptible-Infective-

Recovered- Susceptible  (SIRS)  model.  Our  extensive  
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Fig. 1: Schematic representation of a metapopulation model R 

 

numerical Monte Carlo simulations show that both 

irregular and regular oscillations can be observed, 

depending on the life cycles of epidemic diseases. 

Furthermore, the amplitudes of regular oscillations are 

enlarged by decreasing the move cycle. It is also found 

that heterogeneous connectivity patterns among 

subpopulations result in a global infection under fast 

movement, compared to homogeneous connectivity 

patterns. 

 

METAPOPULATION MODEL 

 

In the real world, the populations are localized 

discretely in different regions, such as cities, urban 

areas, or other defined geographical regions. Individuals 

can transfer from one region to another through traffic 

routes. This way, individuals in different regions 

mutually interact, which makes a disease propagating 

among large scale population possible. At the 

microscopic layer of the meta population system, 

individuals randomly contact each other and move on 

top of the spatial structure of the meta population system 

at the macroscopic layer. The macroscopic structures 

specifying the coupling between the subpopulations are 

in some cases homogeneous. Examples can be found in 

road transportation networks. It has been manifested that 

the connectivity distribution of such road networks 

follows an exponential. In other cases, spatial networks 

are often found to exhibit high heterogeneity. A typical 

example is given by the airline network which shows 

scale free property. 

A Motivated by the above findings, we consider 

here the epidemic dynamics in metapopulation systems 

with complex network topologies (Fig. 1). This way, a 

metapopulation system is treated as the combination of 

many subpopulations which are represented by M nodes 

in the networks. In this study, we explore two kinds of 

network structures: small-world network and scale-free 

network. The epidemic model is defined as follows. 

Each individual can be in three different states. 

Following the original terminology and epidemiological 

literature, these three classes correspond to susceptible 

(S), infected (I) and recovered (R). Susceptible elements 

can transit to the infected category through contagion by 

an infected one. Infected elements pass to the recovered 

state automatically after a recovery time τI. Recovered 

elements return to the susceptible state after a tolerance 

time τR. The contagion only occurs possibly for the 

susceptible elements by an infected element. Note that 

the elements in the refractory state are immune and 

cannot be infected. Here we study the discrete SIRS 

model, in which each element is characterized by a time 

counter τi(t) = 0,1, …,  τI + τR = τ describing its phase in 

the disease cycle. The epidemiological state  πi of the 

element i is decided on its state in the following way: 

        

=i Sπ if ( )=0,
i
tτ                               (1) 

   =Iiπ  if ( ) (1, ),i Itτ τ∈  

   =
i
Rτ  if ( ) ( +1, )i Itτ τ τ∈  

 

The state of an element depends on its current phase 

as well as on the state of its neighbours in the network. 

A susceptible element keeps τi (t) = 0 until it becomes 

infected. Once infected, it goes (deterministically) over 

the disease cycle which lasts one period τ. During the 

first τI time steps, it is contagious and can potentially 

transmit the disease to its susceptible neighbours. Then 

it passes to the recovery stage automatically and remains 

in state R for τR time steps. During this stage, it is 

immune but not contagious. After finishing the cycle, it 

returns to the susceptible state. We indicate as NS(t), 

NI(t) and NR (t), respectively, the numbers in the three 

states at time t, with the total number of  NS(t) + NI (t) + 

τR (t)  = N being constant in time. Additionally, in order 

to include the individuals' mobility, it is possible to 

assume that each individual can transfer from one region 

to another with probability pj but does not move with 

probability 1- pj. This means, individuals perform a 

movement every 1/pj  time steps on average. In contrast 

to the stochastic moving process, we model the 

movement in a deterministic way by letting each 

individual perform a movement every τM. Besides, 

initial phases of individuals' movement are assumed to 

be randomly distributed in [1 τM]. On the other hand, the 

destinations should be decided for those who complete 

one move cycle at some time instant. To take into 

account the preference of people's movement to central 

cities in the real world, we assume the probability that a 

region j is chosen to be the destination of individuals 

inside regions depends upon its degree, i.e:  
  

=

s

j

j

ii M

k
d

k
∈∑

                                       (2) 

where, 

MS = The number of neighbours of region s 

 

Furthermore, inside the local regions, we suppose 

that the individuals randomly contact each other with 

certain   probability  p0  at  any  time.  In this sense, the  
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Fig. 2: Time series of the fraction of infected elements for different p0 
in one subpopulation without individuals moving in or moving 

out of the subpopulation. The contact network is generated 

with homogeneous connectivity with N = 100; the spreading 
begins with one infected individual. Parameters are:  τI

 
=3 and 

τR
 
= 5  

 

contact patterns in subpopulations can be treated as 

time-varying Erdős-Rény random networks which are 

not required to be connected. By means of random 

networks, a susceptible element i in subpopulation s 

with ks,i  neighbours is infected with probability q = 

ks,inf/ks,i where ks,inf is the number of the infected 

elements in  ks,I neighbours. Then the ith element will be 

infected with probability 1 if all of its neighbours are 

infected. Another reasonable choice is a fixed infecting 

probability with which the susceptible is infected by 

each of its neighbours. We have tested this and found 

that this criterion gives qualitative similar results for 

small q. An example of spreading dynamics in a single 

region without individuals moving between regions is 

shown in Fig. 2. On this condition, the individuals do 

not move in or move out of the regions. They can, 

however, randomly contact other individuals in the same 

region with probability p0 at each time step. That is, the 

individuals are just locally movable. The subplots of 

Fig. 2 show different dynamic patterns for different p0. 

Similar behaviour can be observed for  τI = 8; τR= 5. To 

go deep into the differences of these epidemic processes, 

we can regard the regional individuals which may be 

infected as nodes of a network in which the links are the 

potentially infectious contacts among individuals but 

changing in time. It is clear that the prevalence of 

infection is influenced by transmissibility of such 

contact networks. In our model, the transmissibility 

depends on the probability p0, as it determines the 

contact rate. The larger  p0  is, the more each individual 

can contact. Furthermore, the local mobility of 

individuals also contributes to effective contacts. 

However, such transient contacts are too short to ensure 

disease transmission and therefore cannot lead to a 

wider spread of disease, in comparison with static 

contact networks. The numerical results Fig. 2 

correspondingly show that the epidemics cannot spread 

among the population for small p0. As a comparison, 

oscillations almost exist for a large p0 in our simulations. 

NUMERICAL SIMULATIONS 

  

We have performed extensive numerical 

simulations of the described metapopulation model. 

Populations with N = 10^4; 10^5 to 10^6 individuals 

have been explored, with M = 100 to 1000 regions and 

<k> = 6 to 10. The individuals are initially distributed 

randomly in M regions. The spatial structures of 

metapopulation systems have been considered to be 

homogeneous. For the comparison and numerical 

simulation, we use the configurations with N=10^4, M 

=100, τI = 8; τR  = 5 and <k> = 6 throughout this study. 

Qualitatively similar results can be obtained for τI ≥3. In 

the case of τI  = 1, we get irregular oscillations under 

individuals' movement, which will be shown in the next 

part. Typical realizations start with the generation of the 

spatial network and the initialization of the state of the 

individuals. An initial fraction of 0.01 infected and the 

rest susceptible was used in all the results shown here. 

Other possible initial conditions have been explored as 

well and no changes have been observed in the 

behaviour. After a transient a stationary state is 

achieved. In order to inspect the dynamics of epidemic 

spreading in metapopulation system with complex 

topologies, we firstly study the case with homogeneous 

connections between the subpopulations. As in the 

Watts-Strogatz (WS) small-world model, the 

homogenous networks we study are random networks 

built upon a ring network with k-nearest neighbours. 

Each link connecting a vertex to a neighbour in the 

clockwise sense is then rewired at random, with a 

probability p ∈ (0,1] to any vertex of the network. Any 

self-connections and multiple connections are not 

allowed. It should be noted that this procedure may 

produce a disconnected network. We only use the 

connected ones for our analysis. 

We adopt Monte Carlo simulations for epidemic 

processes where the state of each individual can be 

tracked in time. We start the epidemics from a randomly 

selected region with a fraction of 0.01 infected as the 

seeds to propagate. Additionally, in the realization of 

individual’s mobility, the individuals are initialized 

randomly in the move cycle τM. At each time step, the 

states of the individuals evolve by Eq. (1). They choose 

one of the neighbours of their habitat by Eq. (2) to 

transfer when they complete the movement cycle. The 

long-term behaviour of the fraction of the infected 

individuals is shown to oscillate for a short move cycle 

after a transient (Fig. 3).  

In this case, the contact probability in each region is 

assumed to be p0 = 0.5. Compared with the epidemic 

dynamics  among the populations in a single region (Fig. 

2), the global oscillation in a metapopulation system is 

partially attributed to individuals' movement. Other 

smaller contact probabilities have been tested (e.g.,  p0 = 

0.01) and oscillations have also been detected for a rapid  
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Fig. 3: The epidemics evolve in time, parameters:  τI

  
= 8, τR

  
= 5 and τM

  
= 1 

 

 
 
Fig. 4: Irregular oscillations in moving populations 

parameters: τI
  

= 1, τR
 
=5 and τM

 
= 5 

 

 
 

Fig. 5: The amplitudes of oscillations for different τM
 

in 

metapopulation system with small-world connections 

in which p = 0:01; other parameters; τI
  

= 8, τR
 
= 5 

 

movement. As mentioned above, the life cycle of the 

diseases can have an impact on the system dynamics. 

When τI is significantly small, then the periodic 

oscillations will be replaced by irregular fluctuation 

(Fig. 4).  

In addition, the amplitude of the oscillations is 

shown to decrease with the increase of the move cycle 

(Fig. 5), which accordingly implies that the prevalence 

of the epidemics can be enlarged by individuals' rapid 

move. On the other hand, from Fig. 5 that, the period of 

the oscillations is slighted affected by movement, 

showing an intrinsic property of the SIRS dynamics. 

According to the Watts-Strogatz model, the small-

world property will emerge during the network structure 

change from a  regular  network  to  an  entirely  random  

 
 

Fig. 6: Comparison of the oscillation amplitudes for various p 

in small-world network model. In these cases, τM
 
= 1 

 

 
 
Fig. 7: Td  vs. d in the case of small-world spatial structure, 

parameters are:  τI
 
 = 8,  τR

 
= 5,  τM

 
=1, p = 0.01 and p0 = 

0.5, respectively 

 

etwork by continuously increasing rewiring probability 

p from 0 to 1. This is a transition on topology. Similarly, 

a transition on dynamics can also be manifested by 

analyzing the change of the oscillation amplitudes while 

increasing the rewiring probability from p = 0.01 to p = 

1.0. Figure 6 shows the oscillations of the epidemic 

incidence in the case of rewiring probability p = 0.01 

and p = 0.1. Other values of rewiring probability (p>0.1) 

have been also tested and the oscillations have been 

found to be almost the same as that in the case of p = 0.1 

except for the phase (not shown here). From the 

numerical results, the variation of the oscillation 

amplitude we observe here is similar to the transition of 

small-world networks for increasing rewiring 

probability. Therefore, the change of the oscillation 

amplitude can be related to the topological properties of 

the spatial structures. 

In order to explore the epidemic spreading process, 

firstly we define the distance di as the number of 

connections along the shortest path starting from the 

initially infected region to region i. Then denote the 

quantity Td be the infection time that the infected 

individuals spend to arrive at the regions whose  di  is 

equal to d for the first time.  

In Fig. 7, the time for the regions to be infected has 

a linear dependence on the distance di  in the small-

world network with p = 0.01. As the rewiring 

probability grows, the strip of time distribution becomes 

more flat (Fig. 8). 
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Fig. 8: Tmax  vs.  pj, other parameters are the same as above 

setting 

 

 
 

(a) 

 

 
 

(b) 

 

Fig. 9: Time series of epidemics in subpopulations with scale 

free network connections, one of the hubs in the scale-

free network is selected to be the initially infected 

region, parameters:  τI
  

= 8, τR
 
= 5, τM

 
= 1 and (a) τM

  
= 

1 (b) τM
 
= 5 

 

In other words, the infection time Td turns out to be 

approximately uniform, regardless of the distances. We 

recall that the clustering coefficient decreases rapidly, 

while the characteristic path length slightly changes as 

the randomness of network connections increases by 

changing p = 0.01 to p = 1. These results indicate the 

relationship between network topology and the dynamic 

processes. 

Taking into account of heterogeneity of 

connections, we also study the epidemic dynamics in a 

metapopulation system with scale-free network 

topologies.    Meanwhile,   to   get   an   insight  into  the  

 
 
Fig. 10: The epidemic behaviours in subpopulations with 

different degree k, parameters are:  τI
 
 = 8, τR = 5,  

τM= 5 

 

topological fluctuations of the spatial structures, we use 

the quantity introduced in: 

 

 
1

=
Ik Ij

k

N N
M
∑                                              (3)  

 

where, Mk is the number of subpopulations with degree 

k and NIk represents the average number of infected 

individuals in regions with degree k. We generate scale-

free networks by using the evolving model. In contrast 

to homogeneous networks, the epidemic oscillations can 

disappear here for a rapid movement for τM  = 1 (Fig. 

9a).  
For large τM, the incidence of epidemics oscillates 

periodically, as Fig. 9 shown. Note that the average 
distance between two nodes is smaller in scale-free 
networks than in random ones. In our simulations, we 
set the distance di = 1, 2 and 3, respectively. 
Consequently, epidemics in scale-free networks can 
propagate more rapidly than in homogeneous networks 
by individuals' movement. Meanwhile, it is hard to find 
out a dependence of Td  on d. On the other hand, from 
Fig. 10, the quantity  NIk is also shown to be coherent in 
phase for the subpopulations with different degrees, 
which is similar to that in homogeneous networks. 
 

CONCLUSION 
 

Here we have performed extensive simulations on 
epidemic spreading in a metapopulation system with 
SIRS on individuals' dynamics. The connecting patterns 
and individuals' mobility are taken into consideration in 
the metapopulation model. The system shows long term 
sustained oscillations under individuals' move both in 
homogeneous and heterogeneous networks. In 
particular, the oscillation amplitude of the prevalence in 
subpopulations with homogeneous connectivity patterns 
is found to be enlarged by decreasing the move cycle, 
while the impact of movement on the amplitude is not 
apparent in heterogeneous networks. However, the 
global prevalence can happen to subpopulations with 
heterogeneous networks’ rapid move. In our daily life, 
individuals' mobility can benefit regional economic 
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development which may accelerate the epidemic 
spreading. Therefore, there is a tradeoff between 
throttling the disease diffusion and maintaining 
economics for controlling individuals' movement. 

Interestingly, a prominent increase of the oscillation 

amplitude of the prevalence with the increase of 

rewiring probability accords with the transition of small-

world networks. Moreover,  the heterogeneous 

distribution of the infection time transit to a 

homogeneous distribution when the spatial network 

structure goes through regular networks to random ones, 

which implies the underlying interactions between 

dynamic processes and connection patterns. 
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