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Abstract: In this study, we give a rescaled range analysis method employed to demonstrate long-range correlations 
and the presence of periodical features for a time series. An extension of the rescaled range method to estimate the 
Hurst exponent of high-dimensional fractals is proposed in this study. The two-dimensional rescaled range analysis 
is used to analyze traffic data, reveal interesting scaling behavior with physical grounds. The relation between the 
one-dimensional rescaled range method and two-dimensional rescaled range method is interpreted carefully. 
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INTRODUCTION 
 

Recent research has suggested that many physical 
systems displaying long-range power-law correlation 
can be characterized with concepts and methods from 
fractals theory (Alvarez-Ramirez et al., 2002; Bird et al., 
2006; Wang et al., 2009). Some observations of nature 
consist of records in time of observations and their 
fractal properties are commonly studied by means of a 
scaling analysis of the underlying fluctuations (Masugi 
et al., 2007; Billat et al., 2009).  As a robust analysis 
method, the rescaled range analysis (R/S) was 
introduced to estimate Hurst exponent H for modeling 
the fluctuations of Nile River by Hurst (1951). The 
rescaled range analysis originated in hydrology where it 
was used by Hurst to determine the design of an optimal 
reservoir based on the given record of observed 
discharges from the lake. Mandelbrot and Wallis further 
developed the rescaled range statistic and introduced a 
graphical technique for estimating the so-called “Hurst 
exponent ", a measure of persistence or long-range 
correlations, in a time series. Hitherto, there are lots of 
methods for measuring accurate estimates of H, such as 
the aggregate variance method (Taqqu et al., 1995).  The 
detrended fluctuation analysis method (Peng et al., 
1994; Hu et al., 2001) and the wavelet packet method 
(Chamoli et al., 2007; Shen et al., 2007). Although, the 
R/S analysis were originally conceived as hydrological 
phenomena, where the Hurst exponent H was used to 
characterize the scaling properties of observed 
discharges, the theory have successfully been used in 
diverse disciplines and problems including climatology 
(Rehman et al., 2009, Koutsoyiannis et al., 2006) 
economics time series (Granero et al., 2008: Los et al., 
2008; Kyaw et al., 2006) and geology (Hayakawa et al., 
2004) as well as other fields. 

For almost half a century, the interest in and need 
for investigating and studying on the persistence of 

traffic conditions have increased with the growing 
implementation of both traffic management and traveler 
information systems. Due to the complexity of the 
traffic problem, there have been growing efforts to 
understand the fundamental principles governing the 
flow of vehicular traffic in the theoretical framework of 
traffic science (Lajunen et al., 1999; Vashitz et al., 
2008; Pandian et al., 2009; Logghe et al., 2008). 
Therefore, tracking traffic conditions, reporting real-
time travel information and forecasting traffic 
information can help commuters make educated mode, 
route and travel time choices. The use of advanced 
technologies and intelligence in vehicles and 
infrastructure could make the current highway 
transportation system much more efficient. 

In this study, we focus our attention to generalize 
the Rescaled range analysis method to high-dimensional 
versions. Then, the two-dimensional R/S method is used 
to analyze both synthetic two-dimensional time series 
and traffic data, revealing interesting scaling behavior 
that is interpreted from physical meaning. 

In this study, we give a rescaled range analysis 
method employed to demonstrate long-range 
correlations and the presence of periodical features for a 
time series. An extension of the rescaled range method 
to estimate the Hurst exponent of high-dimensional 
fractals is proposed in this study. The two-dimensional 
rescaled range analysis is used to analyze traffic data, 
reveal interesting scaling behavior with physical 
grounds. The relation between the one-dimensional 
rescaled range method and two-dimensional rescaled 
range method is interpreted carefully. 
 

METHOD 
 

One-dimensional R/S Method: For convenience, For a 
record {x(k)},a brief description of the one-dimensional 
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R/S analysis is given. Let  x(k), k = 1, 2, 3, … , n be a set 
which have an expectation value E[x(k)]; the scaled, 
adjusted range is given by: 
 

1 2 1 2max(0, , , , ) min(0, , , , )R(n)
S(n) ( )

n nw w w w w w
S n

⋅ ⋅⋅ − ⋅⋅⋅
=       (1)    

where, S(n) = The standard deviation and for each k = 
1, 2, 3, … , n, wk, is given by: 
 
wk = (x(1)+x(2)+ … + x(k))-kE[x(n)], k = 1, 2, ….n 
 

If the record {x(k)} is scaling over a certain 
domain, n  (nmin, nmax) the R/S statistics follow a 
power-law: 
 

( )
( )

R n
S n

~ Hcn                                                         (2) 

   The parameter H, called the Hurst exponent, 
represents the dependence properties of the data. The 
values of the Hurst exponent range between 0 and 1. If 
H = 0.5, there is no correlation and the data is an 
uncorrelated signal (white noise); if H<0.5, the data is 
anti-correlated; if H>0.5, the data is long-range 
correlated. 
 
Two-dimensional R/S Method: The R/S analysis 
method can be easily extended for two dimensions 
along similar steps. However, as we are interested in 
applying the R/S analysis for traffic, the two-
dimensional case is detailed a follows. 

For two-dimensional time series {(xk, yk)}, the two-
dimensional R/S analysis method is given by: 

 
1
2

1 1( ) { [0, ( ), , ( )] [0, ( ), , ( )]}
( ) ( )

xy n n

xy xy

R n x x y y
S n S n

ω ω ω ω∆ ×∆
=

L L

  
(3) 

where, 
 
∆[0, ω1(x), … ,ωn(x)] = 

 
[max(0, ω1 (x),…, ωn(x))-min(0, ω1(x),…., ωn(x))] 
 
[max(0, ω1 (y),…, ωn((y))-min(0, ω1(y),…., ωn(y))] 
 
∆[0, ω1(y), … , ωn(y)] = 
 

2
1

1

))()(1()( ∑
=

−−=
n

k
kkkkxy yEyxEx

n
nS  is the covariance of 

xk, yk,  ωk(x)  is given by ωk(x) = (x1 + x2 + … xk – k 
E(xk)), ωk(y), is given by ωk(x) = (y1 + y2 + … yk – k 
E(yk)), k = 1, 2, … , n. 

As in the one-dimensional case, the above 
computation is repeated for different box sizes n, to 
provide the relationship between Rxy(n)/Sxy(n) and n. 

For signals with power-law correlations, the R/S 
statistics follow the power-law behavior: 
 

xyH

xy

xy cn
nS
nR

~
)(
)(                                                      (4) 

 
The parameter Hxy, is the two-dimensional scaling 

exponent or two-dimensional Hurst exponent and 
represents the correlation properties of the two-
dimensional signal. 
 
Higher-dimensional R/S Method: Being a direct 
generalization, the higher-dimensional R/S statistics 
have quite similar procedures as the two-dimensional 
R/S analysis method. 

For d-dimensional time series {x1
k , x2

k ,…, xd
k}, 

the d-dimensional R/S analysis method is detailed as 
follows: 

 
1

1 1 2
1 1{ [0, ( ), , ( )] [0, ( ), , ( )]}( )

( ) ( )

d d
n nx x x xR n

S n S n
ω ω ω ω∆ × × ∆

=
L L L       

           (5) 

where,  ∆[0, ω1(x1), … ,ωn(x1)] = 
 

 [max (0, ω1 (x1),…, ωn(x1))-min (0, ω1(x1),…., ωn(x1))] 
 
∆[0, ω1(xd), … ,ωn(xd)] = 
 
[max (0, ω1 (xd),…, ωn(xd))-min (0, ω1(xd),…., (xd))] 
 

2
1

1

11 ))()(1()( ∑
=

−××−=
n

k

d
k

d
kkk xExxEx

n
nS L  is the inner 

product of  x1
k, x2

k , … , xd
k and for each k = 1, 2, 3, …, 

n,  ωk(xl), is given by ωk(xl) = (xl
1 + xl

2+ …  xl
k –kE(xl)), 

k = 1, 2, … , n. 
As in the two-dimensional case, we plot  R(n)/S(n) 

versus n on a log-log plot and compute the slope for 
obtaining the generalized Hurst exponent. For signals 
with power-law correlations, the R/S statistics follow 
the power-law behavior: 

 
Hcn

nS
nR ~
)(
)(                                                (6) 

The parameter H, is the d-dimensional scaling 
exponent or d-dimensional Hurst exponent and 
represents     the     correlation     properties    of    the  
d-dimensional signal. 

 
APPLICATION TO TRAFFIC TIME SERIES 

 
The real traffic data are used to illustrate the 

performance    of    the   two-dimensional   R/S analysis  
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Fig. 1: The two-dimensional Hurst exponent Hxy and one-

dimensional Hurst exponent Hx, Hy for traffic time 
series 

 
method. These traffic data were observed on The 
Renmin Road of Handan over a period of about 4 
weeks, from December 6, 2011 to January 2, 2012.  

Figure 1 illustrates the relation between the two-
dimensional scaling exponent Hxy and one-dimensional 
scaling exponent Hx,  Hy  for traffic time series, where 
Hx , Hy  is the Hurst exponent of traffic speed and traffic 
flow. The estimated Hurst scaling exponent is Hxy  = 
1.04, Hx = 0.98  and Hy = 1.11, respectively. This shows 
that the average of the scaling exponents  Hx and Hy  is 
approximately equal to the scaling exponents of the 
synthetic data including traffic volume and traffic 
speed. 

The above results have illustrated The the ability of 
the higher-dimensional R/S algorithm to provide 
quantitative insights into the intrinsic correlations of 
higher-dimensional time series. Given its ease of 
implementation, the higher-dimensional R/S method 
can be used to investigate and characterize traffic data, 
meteorological data and many other higher-dimensional 
time series possessing self-similar properties. 
 

CONCLUSION 
 

Rescaled range analysis is a scaling analysis 
method estimated long-range power-law correlation 
exponents in one-dimensional signals. In this study, we 
propose a higher-dimensional rescaled range analysis 
method to investigate the correlation of higher-
dimensional time series. Then, the two-dimensional 
rescaled range analysis method is applied to the 
analysis of the traffic time series to reveal the long-
range correlation of the two-dimensional data. 
Specifically, we find that the two-dimensional scaling 
exponent Hxy is the mean of two one-dimensional Hurst 
exponent Hx,  Hy. 
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