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Abstract: In this study, a method for obtaining of hydrodynamic derivatives by numerically replicating the Planar 
Motion Mechanism (PMM) tests of an axisymmetric submersible model is demonstrated. The numerical simulations 
of PMM tests are regarded as transient due to the movement of the model in the discretized computational domain 
thus causing mesh deformation. To accommodate the sway and yaw oscillation motions of the model, the entire 
computational domain is divided into three zones namely rotating, inner and outer zone. Multi-block structured grid 
is generated with finer resolution in the proximity of the model to capture the boundary-layer flows. Non-conformal 
fluid interfaces are used to connect the three zones. Commercial CFD Solver FLUENT is used to simulate the flow 
characteristics while the dynamic mesh capability included in the software is applied to handle the mesh 
deformation during the movement of the model. In order to verify the CFD method, 6:1 prolate spheroid is used as it 
can be idealized as an axisymmetric submersible model. The CFD results of added mass derivatives of the model 
show very close agreement when compared with the theoretical values. The present study is an attempt towards 
developing an economical CFD method for evaluating the hydrodynamic derivatives of submersible platforms such 
as submarines, torpedoes and autonomous underwater vehicles during early design stages. 
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INTRODUCTION 

 
As the technology is improving, the missions being 

expected for, both in defense and scientific research 
domain, submersibles platforms such as torpedoes, 
submarines, and autonomous undersea vehicles are 
becoming highly complicated and challenging 
(National Research Council, 2004). In order to meet the 
expectations of these missions, the performance of the 
newly designed vehicles in terms of speed, endurance, 
maneuverability, controls, etc., need to be superior to 
the existing ones. Understanding the hydrodynamic 
characteristics of a submersible is the prerequisite for 
the analysis of new designs which in turn involves a 
detailed investigation of differential equations, which 
govern its motion (Feldman, 1979). In these equations, 
hydrodynamic forces and moments appear as 
coefficients or derivatives, which are classified as 
static, rotary and acceleration derivatives. The static 
derivatives are due to linear velocity of the vehicle, 
rotary are due to angular velocity and acceleration 
derivatives are due to linear and angular accelerations. 
An accurate and reliable assessment of these derivatives 
is essential for cost effective yet advanced design 
configurations of the submersible vehicles. 

The need to identify the hydrodynamic derivatives 
has led to the evolution of numerous captive model 
tests such as Straight-Line Tests (SLTs); Rotating Arm 
Tests (RATs) and using Planar Motion Mechanism 
(PMM) etc, Comstock (1967). However, performing 
the captive model tests has proven to be expensive and 
time-consuming especially during the preliminary 
stages of the design phase. With the rapid development 
of computational technology and increased maturity in 
numerical methods, it is now feasible to consider CFD 
(Computational Fluid Dynamics) as attractive and low 
cost tool suitable for deriving the hydrodynamic 
derivatives of the submersibles by replicating the 
experimental procedures (Phillips et al., 2010). The 
present study demonstrates the CFD predictions of 
hydrodynamic derivatives by replicating the forced 
oscillation motions of an axisymmetric submersible 
model as in PMM tests. As opposed to SLTs and RATs 
that directly supplies static and rotary coefficients only, 
PMM tests can be used to determine all the 
hydrodynamic coefficients in the equations of motion 
(Newman, 1977). The numerical approach consists of 
solving the flowfield using Unstaedy Reynolds 
Averaged Navier Stokes Equations, oscillating the 
model, controlling the mesh quality during the 
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Fig. 1: Oscillation motion in Sway 
 
movement of the model and recording the computed 
forces and moments.  

The organization of the stutdy is as follows; after 
this introduction, next section provides brief description 
of calculating hydrodynamic derivatives through PMM 
tests. After that the discussion moves onto the details of 
numerical approach covering geometric details of 
model, discretization of fluid domain, dynamic mesh 
algorithm, CFD solver settings, etc. The numerically 
computed results are then analyzed and compared. In 
the last section, conclusions regarding the CFD 
approach are drawn.  
 

PMM TESTS PROCEDURE 
 
 The technique of conducting PMM tests was first 
described by Gertler (1959) who referred particularly to 
its use with submarine model. The essence of PMM 
tests is that the model is forced oscillated with 
predetermined amplitude and frequency whilst being 
towed with constant velocity down the tank. 
 
Oscillatory motion in sway: Pure sway PMM tests 
consists of imposing an oscillatory motion in y 
direction with a constant forward speed ܷఖ such that 
model always remains parallel to the tank centerline as 
shown in the Fig. 1 In this way the angular velocity 
ሶݎ and acceleration ݎ  are always zero in body 
coordinates during the course of the motion. The 
displacement ݕ ,velocity ݒ and acceleration ݒሶ  can be 
expressed as: 
 

ݕ ൌ െܽ୭sinωt                 (1) 
 
ሶݕ ൌ ݒ ൌ െܽ௢߱ܿ(2)                ݐ߱ݏ݋ 

 
ሷݕ        ൌ ሶݒ ൌ ܽ௢߱ଶ(3)                         ݐ߱݊݅ݏ 
 
where, ܽ௢ and ߱ represents amplitude and frequency of 
the oscillation motion.While moved harmonically up 
and down in flow direction, an angle of attack is 
induced on the body. During one cycle of the motion, 
the  velocity ݒ and acceleration ݒሶ  vary between a 

positive and negative extreme value, and hence 
amplitude of force ܻ and moment ܰ are exerted on the 
model. These forces appears in sway and yaw equations 
of motion as: 
 
  ܻ ൌ ሺ݉ െ ௩ܻሶ ሻݒሶ ൅ ሺ݉ீݔ െ ௥ܻሶ ሻݎሶ െ ௩ܻݒ ൅ 

ሺܷ݉ఖ െ ௥ܻሻ(4)                                                        ݎ 
 
 ܰ ൌ ሺ݉ீݔ െ ௩ܰሶ ሻݒሶ ൅ ሺܫ௭ െ ௥ܰሶ ሻݎሶ െ ௩ܰݒ ൅ 
 ሺܷ݉ீݔఖ െ ௥ܰሻ(5)                                     ݎ 

 
Since ݎ ൌ ሶݎ ൌ 0, therefore, motion equations will 

be simplified as: 
 
ܻ ൌ ሺ݉ െ ௩ܻሶ ሻݒሶ െ ௩ܻ(6)                             ݒ 
 
ܰ ൌ ሺ݉ீݔ െ ௩ܰሶ ሻݒሶ െ ௩ܰ(7)                     ݒ 

 
The force ܻ and moment ܰ can be decomposed 

into components in phase and out of phase with the 
displacement ݕ. From pure sway equation, the 
acceleration ݒሶ  being sine function is in phase whereas 
the velocity ݓ being cosine function 90° out of phase 
with the displacement ݖ. The in phase component of the 
force ௜ܻ௡ and moment ௜ܰ௡ are directly related to 
acceleration ݒሶ  and therefore can be used to compute 
acceleration deriveatives ௩ܻሶ  and ௩ܰሶ . Similarly, the force 
and moment that are out of phase with displacement 
( ௢ܻ௨௧, ௢ܰ௨௧ሻ will yield velocity derivatives ௩ܻand ௩ܰ. 
Now when force and moment are in phase (ݒ ൌ 0 and 
ሶݒ ൌ ܽ௢߱ଶ),the associated acceleration derivatives will 
be computed as: 

 
       ௩ܻሶ ൌ ݉ െ ௒೔೙

௔೚ఠమ , ௩ܰሶ ൌ ீݔ݉ െ ே೔೙
௔೚ఠమ                (8) 

 
 For out of phase condition (ݒ ൌ െܽ௢߱ and ݒሶ ൌ 0), 
force and moment correpond to velocity derivative as: 

 
௩ܻ ൌ ௒೚ೠ೟

௔೚ఠ
, ௩ܰ ൌ െ ே೚ೠ೟

௔೚ఠ
                                          (9) 
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Fig. 2: Oscillation motion in Yaw  
 
Oscillatory motion in yaw: For pure yawing motion, it 
is necessary that ݒ ൌ ሶݒ ൌ 0, so that the velocity of the 
model must always be tangential to the path of the 
model. This test enables us to calculate rotary 
hydrodynamic derivatives  ௥ܻ, ௥ܻሶ , ௥ܰ  and ௥ܰሶ  . Figure 2 
illuatrates the pure yaw motion,in which the resulatnt 
velocity ܸ of the body is directed along the tangent of 
the model.In this way the vertical component of the 
velocity ݒ and hence acceleration ݒሶ  remain zero in body 
coordinates during the entire cycle. The motion 
parameter in case of pure yawing can be expressed as: 
 

߰ ൌ െ߰௢ܿݐ߱ݏ݋, ݕ ൌ െܽ୭sinωt             (10) 
 

ሶ߰ ൌ ݎ ൌ ߰௢߱(11)                        ݐ߱݊݅ݏ 
 

ሷ߰ ൌ ሶݎ ൌ ߰௢߱ଶܿ(12)                         ݐ߱ݏ݋ 
 
where, ߰௢ ൌ ௔೚ఠ

௎എ
  is the amplitude of the angular 

oscillations. For pure yaw motion, the sway and yaw 
equations of motion will be simplified as: 
 
        ܻ ൌ ሺ݉ீݔ െ ௥ܻሶ ሻݎሶ ൅ ሺܷ݉ఖ െ ௥ܻሻ(13)                  ݎ 
 
      ܰ ൌ ሺܫ௭ െ ௥ܰሶ ሻݎሶ ൅ ሺܷ݉ீݔఖ െ ௥ܰሻ(14)              ݎ 

Decomposing ܻ and ܰ into components in phase 
( ሶ߰ ൌ ݎ ൌ 0) and out of phase ( ሷ߰ ൌ ሶݎ ൌ 0) with the 
angular displacement ߰, following hydrodynamic 
derivatives will obtained: 
 

௥ܻሶ ൌ ீݔ݉ െ ௒೔೙
ట೚ఠమ   , ௥ܰሶ ൌ ௭ܫ െ ே೔೙

ట೚ఠమ               (15) 
 

௥ܻ ൌ ܷ݉ఖ െ ௒೚ೠ೟
ట೚ఠ

   , ௥ܰ ൌ ఖܷீݔ݉ െ ே೚ೠ೟
ట೚ఠ

           (16) 
 
Geometric model: Prolate spheroids are widely used to 
approximate the shape of an axisymmetric underwater 
vehicle.  Although   the   geometrical  shape  of   prolate  

 

Fig. 3: Prolate spheroid with major and minor axes  
 
spheroid is simple but in maneuvering its flow field 
carries over qualitatively to torpedoes, submarines, 
AUVs like stagnation flow, cross-flow separation, 
Boundary layer detachment, etc. Constantinescu et al. 
(2002). For the aforementioned reasons, the 6:1 prolate 
spheroid has been selected for the computation of the 
hydrodynamic derivatives in the present study. The 
coordinate system adopted in this study is such that the 
flow direction is in the positive x-axis, y points to the 
upward vertical direction, and the x y plane makes the 
vertical symmetry plane. The origin of the coordinate 
system is placed at the center of the spheroid as shown 
in the Fig. 3. The numerical simulations are conducted 
for 6:1 prolate spheroid model with Reynolds number 
approximately 4.5x10଺ ,which is based on the free 
stream velocity Uο and the model-length L.  
 
Added mass derivatives: Prolate spheroid is surface of 
revolution generated by rotating the ellipse about its 
major axis as shown in the Fig. 3. The equation of 
ellipsoid is given as: 
  
        ௫మ

 ௔మ ൅ ௬మ

௕మ ൅  ௭మ

௖మ ൌ 0                                           (17) 

For a prolate spheroid (ܾ/ܿ ൌ  1, ܽ ൐  ܾ), the 
eccentricity of the sections through the axis of 
symmetry is defined as: 



 
 

Res. J. Appl. Sci. Eng. Technol., 5(21): 5003-5011, 2013 
 

5006 

݁ଶ ൌ 1 െ ሺ௕మ

௔మሻ                               (18) 
 
Other parameters are:  
 

଴ܣ ൌ ଶሺଵି௘మሻ
௘య ቀଵ

ଶ
ln ଵା௘

ଵି௘
െ ݁ቁ                                (19) 

 
଴ܤ ൌ ଵ

௘మ െ ଵି௘మ

ଶ௘య ݈݊ ଵା௘
ଵି௘

                                (20) 
 

The mass ݉ of the volume of fluid, with density ߩ, 
displaced by the spheriod and its moment of inertia 
௬ሺൌܫ  :௭) are expressed asܫ
 

݉ ൌ ସ
ଷ

 ଶ                                            (21)ܾܽߩߨ 
 
௬ܫ ൌ ௭ܫ ൌ ସ

ଵହ
 ଶሺܽଶ൅ ܾଶሻ                            (22)ܾܽߩߨ 

Lamb’s ݇ factors (Lamb, 1945) are represented as: 
 

݇ଵ ൌ െ ஺బ
ଶି஺బ

                                      (23) 
 

݇ଶ ൌ െ ஻బ
ଶି஻బ

                            (24) 
 

݇ ′ ൌ ௘రሺ஻బି஺బሻ
ሺଶି௘మሻሾଶ௘మିሺଶି௘మሻሺ஻బି஺బሻሿ

                             (25) 
 

With these definitions, the expressions of added 
mass and inertia derivatives for prolate spheroid will be 
Fossen (1994): 

 

 ܺ௨ሶ ൌ െ݇ଵ݉                                                       (23) 
 

௩ܻሶ ൌ ܼ௪ሶ ൌ െ݇ଶ݉                                              (24) 
 

௥ܰሶ ൌ ௤ሶܯ ൌ െ݇  ௬                                  (25)ܫ′
 

COMPUTATIONAL DETAILS 
 
Domain decomposition: The numerical simulations of 
PMM tests are regarded as transient due to the 
movement of the body in the discretized computational 
domain thus causing mesh deformation. For this reason, 
the dynamic mesh capability of FLUENT software is 
utilized in this study. The dynamic mesh algorithm can 
maintain the domain grid qualities during the course of 
the movement of body using the three different grid 
updating schemes (Layering, spring smoothing and 
local re-meshing). For the rigid body moves in the 
domain; it is possible to make the grid near the body 
move with the body while using the spring smoothing 
and local remeshing techniques to maintain the grid 
qualities. However, fine unstructured grids and small-
time steps are often required for accuracy and stability, 
which increases the computational time (Zhang et al., 
2010). An alternative method is to replicate the motion 
of the body with the fluid domain split into an inner and 
outer zone. The outer zone remains fixed in space while 
the inner zone containing the hull moves to create the 
motion induced by a PMM. In this way, the mesh in the 
inner zone remains locked in position relative to the 
motion of the vessel. This method is proven to very 
promising as high quality structured grids and larger 
time   steps   can   be  used.  The   only drawback of this 

 

 
 
Fig. 4: Splitting up computational domain into different zones 
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method is that it can be used for the Heave/Sway PMM 
tests where the motion of the body is purely linear 
(Xianzhoa and Yumin, 2010). In order to facilitate the 
simulations for pure yaw PMM test while maintaining 
the benefits of above method, the inner zone is further 
divided into two sub-zones as depicted in the Fig. 4. 
The rotating zone around the prolate spheroid has a 
semi spherical shape created to accommodate rotation 
motion and it is connected to inner subzone using non-
conformal grid connection method. In this way, the 
rotation motion of the spheroid model can be handled 
dynamically without mesh distortion.  

The oscillation motions on the spheroid model are 
imposed by compiling a User Defined Function (UDF) 
written in C++ programming language. The dynamic 
mesh UDF is implemented using the DEFINE-CG-
MOTION macro. For pure sway motion, the rotating 
and inner zones move together with model in linear 
direction specified by UDF and mesh will remain 
unaffected. The mesh of the outer zone will be 
deformed in order to accommodate the motion of the 
spheroid model. In case of pure yaw motion, the 
spheroid model and rotating zone move together in 
rotation, at the same time, they also have translation 
motion with inner subzone. As in the pure sway motion, 
the mesh of the outer zone will be deformed. In this 
way, the pure yaw motion will be achieved without any 
mesh distortion in the inner zone. 
 
Dynamic mesh method:  In all above-mentioned cases, 
the value of amplitude of the oscillation is taken very 
small (ܽ୭= 0.04 m), because it represents the 
perturbation. For such small-scale body motions, the 
solver recommends localized smoothing method to 
update the mesh of the outer domain. In the smoothing 
method, the edges between any two mesh nodes are 
idealized as a network of interconnected springs. A 
displacement at a given boundary node will generate a 
force proportional to the displacement along all the 
springs connected to the node. Using Hooke's Law, the 
force on a mesh node can be written as: 
 

పሬሬԦൌܨ ∑ ݇௜௝
௡೔
௝ ൫∆ݔఫሬሬሬԦ െ  పሬሬሬԦ൯                   (26)ݔ∆

 
where, ∆ݔపሬሬሬԦand ∆ݔఫሬሬሬԦ are the displacements of node ݅ and 
its neighbor ݆, ݊௜ is the number of neighboring nodes 
connected to node ݅, and ݇௜௝ is the spring constant 
between node ݅ and its neighbor ݆.  
 

݇௜௝ ൌ ଵ

ටห௫ഢሬሬሬԦି௫ണሬሬሬሬԦห
                                                (27) 

 
At equilibrium, the net force on a node due to all 

the springs connected to the node must be zero. This 
condition results in an iterative equation such that: 
 

పሬሬሬԦ௠ାଵൌݔ∆
∑ ௞೔ೕ

೙೔
ೕ ∆௫ണሬሬሬሬԦ೘

∑ ௞೔ೕ
೙೔
ೕ

                         (28) 

Since displacements are known at the boundaries 
(after boundary node positions have been updated), Eq. 
(28) is solved using a Jacobi sweep on all interior 
nodes. At convergence, the positions are updated such 
that: 

 
 పሬሬሬԦ௠,௖௢௡௩௘௥௚௘ௗ                               (29)ݔ∆పሬሬሬԦ௡൅ݔ పሬሬሬԦ௡ାଵൌݔ

 
where, ݊ ൅ 1 and ݊ are used to denote the position at 
next and current time-steps respectively. 
 
Grid generation and boundary conditions: High 
quality multi-block grid is generated using FLUENT’s 
pre-processor GAMBIT. Structured curvilinear grids 
(O-O topology) are employed with finer resolution in 
the proximity of the model. The first cell height for 
desired wall ∆yା is estimated from the following 
empirical correlations based on flat-plate boundary 
layer theory (Schlichting, 1966): 
 

ାݕ∆ ൌ ∆௬௨ഓ
ఔ

                                                        (30) 
 
where, 
 First cell height (distance from the wall surface)  =  ݕ∆
ఛݑ   ൌ   ඥ߬௪/ߩ , ߬௪ = The wall shear stress 
 ൌ   Kinematic viscosity of sea water    ߥ
 
Now:  

 
ାݕ∆ ൌ 0.172 ቀ∆௬

௅ 
ቁ ܴ݁௅

଴.ଽ                                   (31) 
 

From the above equation, first cell height is located 
such that wall ∆ݕା is kept in a range 30~100. Figure 5 
shows that the mesh in the rotating zone which 
surrounds the spheroid model is much denser as 
compared to the other two regions. Figure 6 presents 
the enlarged view of the mesh in the vicinity of the 
model displaying the resolution of boundary layer. In 
total, the final mesh consists of 377,320 hexahedral 
cells with 395776 nodes. In Fig. 5 also shown are the 
boundary conditions imposed: at the inlet face and outer 
boundaries velocity inlet boundary condition is applied; 
static pressure is set at the outlet; no-slip condition is 
imposed at the surface of spheroid model and on the 
central ݕݔ plane symmetry boundary condition is 
applied. Outer boundaries of the computational domain 
are positioned far enough to have no effect on motion 
of the spheroid model. 

 
Solver settings: Series of unsteady RANS CFD 
simulations are carried out using the FLUENT’s double 
precision segregated pressure based solver. For 
convection and diffusion terms, second order upwind 
scheme is adopted whereas SIMPLEC algorithm is 
chosen for velocity-pressure coupling. For convergence 
criteria,    residuals      of    continuity,    velocities   and  
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Fig. 5: 3D computational domain along with the boundary conditions  
 

 

Fig. 6: Structured meshes generated on and around the spheroid model 
 

 

Fig. 7: Typical velocity contours around the model during sway motion 
 
turbulence parameters are set to 1E-6 value. In this 
study, Shear Stress Transport (SST) ݇߱ turbulence 
model is selected due to its superior performance track 
records   for   complex   boundary   layer   flows   under  

adverse pressure gradient and separation (Kim et al., 
2003). The simulations of PMM tests are performed 
with three ߱ values of 1.256 rad/s, 1.885 rad/s and 
2.512  rad/s. The  number of time steps for each cycle is  
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Fig. 8: Time history of sway force for three cycles  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Time history of sway moment for three cycles  
 
taken 100 with 20 iterations per time step. For all cases, 
forces and moment are monitored and recorded at each 
time step. 

 

RESULTS AND DISCUSSION 
 

Planar sway motion simulations: Figure 7 illustrates 
typical velocity contours around the model during the 
planar sway motion. Due to the oscillations, wake 
generated behind the model represents oscillatory 
pattern .The time history of the sway force Y and 
moment N for three frequencies are plotted in Fig. 8 
and 9, respectively. The steady state curves for three 
cycles are obtained after some instability at initial time 
steps. The computed forces and moments are 
decomposed into in phase and out of phase components 
with respect to displacement y. For numerical 
simulations, there will be no contribution of inertial 
forces and moment since only hydrodynamic forces are 
computed by integrating pressures on the body (Saout 
and Ananthakrishnan, 2011). Therefore,the equations 8 
and 9 are reduced as: 
 

௩ܻ ൌ െ ௒೚ೠ೟
௔೚ఠ

, ௩ܰ ൌ െ ே೚ೠ೟
௔೚ఠ

                       (32) 
 

௩ܻሶ ൌ ௒೔೙
௔೚ఠమ , ௩ܰሶ ൌ ே೔೙

௔೚ఠమ                                       (33) 
 

Using the above equations ,the hydrodynamic force 
and moment derivatives are calculated and converted 
into non-dimensional form (S.N.A.M.E, 1964). Table 1 
shows the comparison between the added mass 
derivatives  from  the  CFD  simulations and theoretical 

 
Table 1: Hydrodynamic derivatives obtained from planar sway motion 

simulations 
ω (rad/s) ௩ܻ

′  ௩ܰ
′  ௩ܻሶ

′  ௩ܰሶ
′  

1.256 -0.02268 0.024378 -0.02681 -9.381E-05 
1.885 -0.03257 0.024623 -0.02687 -4.46799E-05 
2.512 -0.04227 0.024646 -0.02686 -2.28725E-05 
Theoretical value -0.02668  

 

Fig. 10: Typical velocity contours around the model during yaw motion 
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Fig. 11: Time history of yaw force for three cycles  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: Time history of yaw moment for three cycles 
 
Table 2: Hydrodynamic derivatives obtained from planar yaw motion 

simulations 
ω (rad/s) ௥ܻ

′  ௥ܰ
′  ௥ܻሶ

′  ௥ܰሶ
′  

1.256 -0.001026 -0.00198 3.058E-5 -0.00109
1.885 -0.001034 -0.00208 2.283E-5 -0.00113
2.512 -0.001041 -0.00203 2.412E-5 -0.00103
Theoretical value -0.0011
 
calculations. Very close comparison is found with 
maximum discrepancy of 1.5%, thus verifying the 
accuracy of the method. 
 
Planar yaw motion simulations: Figure 10 illustrates 
the velocity contours with the wake pattern behind the 
model during the planar yaw motion. The plots of the 
sway force Y and moment N for three ߱ values are 
shown in Fig. 11 and 12, respectively. Again 
instabilities in forces and moments are observed at the 
start of the simulation. However, after they reach a 
stable state the values are measured for three complete 
cycles. The forces and moments are then decomposed 
into in phase and out of phase components with respect 
to angular displacement߰. Filtering out contribution of 
inertial forces and moments, equations 15 and 16 are 
reduced as: 
 

௥ܻሶ ൌ ௒೔೙
ట೚ఠమ   , ௥ܰሶ ൌ ே೔೙

ట೚ఠమ                                     (34) 

௥ܻ ൌ ௒೚ೠ೟
ట೚ఠ

   , ௥ܰ ൌ ே೚ೠ೟
ట೚ఠ

                                         (35) 
 

Using the above equations ,the computed value of 
hydrodynamic force and moment derivatives in non-
dimensional form are given in Table 2. Comparing the 
inertia derivatives from the simulations and theoretical 
calculations, the maximum difference is about 6.5% 
which can be regarded as within the range of acceptable 
limits. 

CONCLUSION 
 

The current study investigates the use of CFD in 
the prediction of hydrodynamic derivatives for an 
axisymmetric submersible model. For this purpose, the 
captive model testing using planar motion mechanism 
is briefly described and numerically simulated using the 
capabilities of commercial CFD solver FLUENT. 
Forced sway and yaw oscillation motions are produced 
by implementing user defined functions. During the 
oscillation motions of the model, FLUENT solves the 
flow field by applying unsteady RANS equations while 
the deformation of the mesh during the model motion is 
controlled by dynamic spring smoothing technique. In 
order to maintain the quality of the grid during the 
motion the entire computational domain is divided into 
rotating, inner and outer zones. The three zones are 
meshed with high quality structured grids and 
connected via non conformal fluid interfaces. To get 
verification of the CFD method, prolate spheroid model 
with 6 to 1 aspect ratio is used due to its quality to have 
same shape and flow characteristics as an axisymmetric 
submersible vehicle. Comparison of the computed 
results of the added mass derivatives obtained from 
pure sway and yaw oscillation motion reveals very 
good agreement with the theoretical value. Based on 
this study, it is concluded that the CFD method is well 
capable of economically evaluating the hydrodynamic 
derivatives of submersible platforms such as 
submarines, torpedoes and autonomous underwater 
vehicles. 
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