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Abstract: The Exponential distribution has attracted the attention of statisticians working on theory and methods as 
well as in various fields of lifetime data analysis. In this study, we employ gamma non-informative prior and 
generalised (data-dependent) non-informative prior proposed by Guure and Ibrahim (2012) using squared error loss 
function. The Bayesian estimate of the scale parameter of the Exponential distribution is obtained by making use of 
Lindley’s approximation procedure and compared with the classical maximum likelihood estimator. Mean Squared 
Error (MSE) and the absolute bias of the estimators are determined via simulation study for the purpose of 
comparison. It has been observed from the simulation study that, Bayes estimator with the generalised non-
informative prior outperformed the gamma non-informative prior and the classical maximum likelihood estimator. 
 
Keywords: Bayesian, exponential distribution, gamma and generalised non-informative priors, random censoring, 

simulation study  

 
INTRODUCTION 

 
Exponential distribution is the most exploited 

distribution for life-time data analysis. However, its 
suitability is restricted to a constant hazard rate, which 
is difficult to justify in many practical problems. This 
led to the development of alternative models for life-
time data. A number of distributions such as Weibull 
and gamma have been extensively used for analysing 
life-time data, particularly, in those situations where the 
hazard rate is monotonically increasing or decreasing. 

Censoring is a feature that is recurrent in lifetime 
and reliability data analysis, it occurs when exact 
lifetimes or run-outs can only be collected for a portion 
of the inspection units. 

According to Horst (2009), “A data sample is said 
to be censored when, either by accident or design, the 
value of the variables under investigation is unobserved 
for some of the items in the sample". 

Guure et al. (2012a) studied Bayesian estimation of 
two-parameter Weibull distribution using extension of 
Jeffreys' prior information with three loss functions. Al-
Kutubi and Ibrahim (2009), studied Jeffery prior 
information to get the modify Bayes estimator for 
exponential distribution and compared it with standard 
Bayes estimator and maximum likelihood estimator to 
find the best (less MSE and MPE). The extension of 
Jeffery prior information with new loss function for 
estimating the parameter exponential distribution of life 
time is presented by Alkutubi and Ibrahim (2009). 

Elfessi and Reineke (2001) studied the relationship 
between Bayesian and classical estimation approach 
using exponential distribution. He showed how the 

classical and the Bayesian estimators could be obtained 
with regards to the exponential distribution parameter. 

Al-Bayyati (2002), further studied the problem of 
estimating parameters of the Weibull distribution and 
the reliability function where there is lack or 
insufficient information about the parameters. 

An important element, in the point estimation 
problem, is the specification of the loss function. The 
most popular loss function used in the estimation 
problem is the Squared Error Loss Function (SELF), 
which can be easily justified on the grounds of 
minimum variance-unbiased estimation. 

However, the weakness of this loss function is that 
it is symmetrical and gives equal weight to the 
overestimation and underestimation of the same 
magnitude. A number of asymmetric loss functions are 
available in the statistical literature and one of the most 
widely used asymmetric loss function is the LINEX 
loss function, originally proposed by Varian (1974) and 
popularized by Zellner (1986). But it has been pointed 
out by various authors that LINEX loss function is not 
as appropriate for the estimation of the scale parameter 
as it is for the location parameter. 

Exponential distribution is the most commonly 
used model in reliability and life-testing analysis. In 
this study we present and compare Bayes estimator 
using gamma and generalised non-informative priors 
for the estimation of the exponential scale parameter 
with the squared error loss function against the classical 
maximum likelihood estimator. 

 

Maximum Likelihood Estimation:  Let ���, … , ���  be 

the set of n random lifetimes from exponential 
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distribution with parameter �. The probability density 

function of exponential distribution is given by: 
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The likelihood function with respect to right 

(random) censored data is: 
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where, 	 = 1 is for failure and 	 = 0 for censored 

observation and S(.) is the survival function. To obtain 

the maximum likelihood estimator for the unknown 

parameter, we take the natural log of the likelihood 

function, differentiate with respect to the parameter �  

and equate to zero as follows: 
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Bayesian Analysis: The Bayesian approach has 

received a lot of attention for analysing failure data and 

other time-to-event data and has often being proposed 

as a suitable alternative to the traditional statistical 

methods. The Bayesian approach to lifetime data 

analysis allows prior subjective knowledge on lifetime 

parameters and technical information on the failure 

mechanism, as well as experimental data, to be 

incorporated into the inferential procedure. Hence 

Bayesian methods usually require less sample data to 

achieve the same quality of inferences than methods 

based on sampling theory, which becomes extremely 

important in case of expensive testing procedures. 

Often there exists in failure data analysis some prior 

information concerning the parameters of the model; 

such knowledge can be translated into a prior density. 

The information summarized by this prior density 

may be either subjective (i.e., based on individual’s 

experience, belief and preference) or objective (i.e., 

based on test data from a comparable experiment and 

technical information) or both. When reliable prior 

subjective knowledge or technical information 

concerning the parameter is not available, or an 

inference from the data at hand is desired, it may be 

suitable to resort to the use of a default (or non-

informative) prior density, (Al-Aboud, 2009). 

 

Gamma prior: Let the scale parameter of the 

Exponential distribution take a Gamma (a, b) prior such 

that a>0  and b>0  and 
��� represent the prior: 
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The joint posterior density function is: 
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and the marginal distribution function is: 
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Therefore, the posterior distribution under squared 

error loss function is given as: 
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Generalised non-informative prior: According to 

Guure and Ibrahim (2012), the generalised non-

informative prior is solely data dependent and is given 

with respect to the scale parameter of the exponential 

distribution as: 
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The posterior distribution according to the 

generalised prior is: 
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Since the posterior distributions with respect to the 

two priors contain some ration of integrals, we propose 
to use a numerical approximation approach known as 
Lindley approximation procedure to reduce the ratio of 
integrals. 

With the one-parameter exponential distribution, 
the Lindley approach is given as: 
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with l being the log-likelihood equation given in (4) 
Therefore, 
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Considering the generalised non-informative prior, v(θ) 

is substituted for v_1(θ). 

 
Simulation study: A simulation study is carried out to 

determine  the  best  estimator   for   the scale parameter 

of  the   exponential   distribution   with   40%   random  

censoring, taking into consideration a sample size of n 

= 25, 50 and 100. The coding and the analysis are 

performed using the R programming language which is 

freely available on line. The exponential parameter is 

estimated with maximum likelihood and Bayesian using 

gamma non-informative prior and generalised non-

informative prior approach. To obtain gamma non-

informative prior, we make an assumption such that the 

hyper-parameters of the gamma distribution equal zero, 

i.e., a = b = 0. The values for the generalised non-

informative prior were chosen to be c = 0.4, 0.8  and 

1.6 without loss of generality. The scale parameter �  = 

0.5, 1.0 and 1.5. These were iterated (R) 1000 times. 

The mean squared error values and that of the absolute 

bias are determined and presented below for the 

purpose of comparison. The mean squared error and 

absolute bias are given respectively as: 
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CONCLUSION 

 

Bayes gamma non-informative prior and the 

generalised non-informative prior  estimators of the 

exponential parameter are obtained using squared error 

loss function by employing Lindley approximation. 

Comparisons are made between the estimators using 

mean squared error and absolute bias based on 

simulation study. The performance of MLE and Bayes 

using the non-informative priors were examined and the 

following conclusions made. 

Table 1, shows the mean squared error values of 

the exponential parameter. It’s been observed that the 

generalised Bayes non-informative prior estimator has 

the smallest mean squared error values than the others. 

But at � = 0.5 and 1.0 with n = 25 and � = 1.0 with n = 

50 that, maximum likelihood estimator gave the 

smallest mean squared error. We must state that the 

generalised non-informative prior performed better than 

the gamma non-informative prior. 

 
Table 1: Mean squared error for �� of the estimators 

    ����� 
----------------------------------------------------------------- 

Size � ����� ���� c = 0.4 c = 0.8 c = 1.6 

25   0.5 0.3674          0.4318          0.3312          0.3805          0.4470       
 1.0         0.0290          0.0379          0.0330          0.0380          0.0396       
 1.5 0.0149          0.0133          0.0132 0.0130          0.0135       
50         0.5        0.1623          0.1754          0.1549          0.1676          0.1761       
 1.0         0.0107          0.0124          0.0119          0.0126          0.0128       
 1.5         0.0071          0.0066          0.0064          0.0063          0.0062       
100       0.5         0.0750          0.0779          0.0748          0.0779          0.0800       

 1.0           0.0043          0.0046          0.0042          0.0046          0.0046       
 0.5          0.0034          0.0032          0.0031          0.0032          0.0033       
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Table 2: Absolute bias for  �� of the estimators 

       ����� 
------------------------------------------------------------------ 

Size � ����� ���� c = 0.4 c = 0.8 c = 1.6 

25      0.5  0.1126            0.1217        0.1089        0.1150          0.1235       

 1.0         0.0268 0.0311        0.0297        0.0305          0.0313       

 1.5         0.0221        0.0205        0.0208        0.0204          0.0208       
50         0.5         0.0551        0.0572        0.0539        0.0559          0.0573       

 1.0         0.0126        0.0137        0.0133        0.0137          0.0138       

 1.5         0.0113        0.0108        0.0106        0.0106          0.0104       
100   0.5         0.0269        0.0274        0.0268        0.0274          0.0278       

 1.0         0.0060        0.0062        0.0061        0.0063          0.0063       

 1.5         0.0056        0.0055        0.0054        0.0055          0.0055       

 

The absolute biases of the estimated values are 

presented in Table 2 observe.   

Bayes using the generalised non-informative prior 

outperformed Bayes using the gamma non-informative 

prior. This is followed by maximum likelihood 

estimator with respect to minimum bias. All the 

estimators had their mean squared error and absolute 

bias values decreasing with an analogous increase in 

sample space. It implies that the generalised non-

informative prior is a good alternative to the gamma 

non-informative prior. 
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