
Research Journal of Applied Sciences, Engineering and Technology 5(17): 4427-4432, 2013
DOI:10.19026/rjaset.5.4440
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2013 Maxwell Scientific Publication Corp.
Submitted: December 15, 2012 Accepted: January 19, 2013 Published: May 01, 2013

Corresponding Author: Yu-Cheng Liu, School of Electrical and Information Engineering, Chongqing University of Science

and Technology, University Town, Shapingba, Chongging 401331, P.R. China, Tel.: 13436087448
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4427

Research Article

A Fast and Efficient Genetic Evolution Algorithm

1Yu-Cheng Liu and 2Yu-Bin Liu
1School of Electrical and Information Engineering, Chongqing University of Science and Technology,

Chongqing, China
2School of Continuing Education, Panzhihua University, Panzhihua, China

Abstract: This study presents an improved genetic algorithm. The algorithm introduced acceleration operator in the
traditional genetic algorithm, effectively reducing the computational complexity. The search speed of the algorithm
has been greatly improved, so that it can quickly find the global optimal solution. The accelerating collaborative
operator lessons from the thoughts of binary search algorithm combining with the variable step length strategy. The
accelerating operator has strong local search ability and crossover and mutation operators have strong global search
ability, then combining these operators generates a new Genetic algorithm. The tests on the different functions show
that the improved algorithm has the advantages of faster convergence and higher stability in the case of a small
population than traditional genetic algorithm and can effectively avoid the premature phenomenon.

Keywords: Accelerating operator, improved genetic algorithm, search speed, traditional genetic algorithm

INTRODUCTION

As a bionic algorithm in the macro sense. Genetic

Algorithm (GA) inspires a good structure by simulating
the Darwinian “survival of the fittest, survival of the
fittest” principle. It maintains the existing structure and
looks for a better structure by simulating Mendelian
theory of the genetic variation in the iterative process.
The classical genetic algorithm solving steps are
initialize population, choice, cross, variation and the
judge of the termination condition. The genetic
algorithm provides a common framework of solving
traditional optimization problems. Because it does not
depend on the specific problem areas and has good
robustness, it is widely used in many disciplines.With
further research, the genetic algorithm also showed
many deficiencies, such as premature convergence,
easy to fall into local optimum, the slow search speed
and strong dependence on the initial population.
Because of it’s insufficient and inspire of the imitation
of human intelligence (HSIC), People have been
proposed many improvements algorithm and the new
intelligent algorithms, such as the parallel genetic
algorithm based on fixed-point theory (Chen et al.,
2010), adaptive genetic algorithm, super-selection
strategy genetic algorithm, chaos genetic algorithm, ant
colony algorithm, PSO algorithm, simulated annealing
algorithm, immune algorithm (Gong et al., 2008) co-

evolutionary algorithm and so on. This study introduced
the acceleration operator in the traditional genetic
algorithm to enable search efficiency to be greatly
improved and to enable the global optimum to be
quickly found.

GENETIC ALGORITHM WITH ACCELERATE

OPERATOR

This algorithm uses a binary encoding, random
initialization population and the elite retention policy.
The acceleration operator is applied to each individual.
All genes of all individuals in the population are
executed crossover and mutation. When the end
conditions are satisfied, genetic manipulation ends, or
go into the next generation.

Population initialization:
Binary encoding and decoding: To transformer the
variable value into the corresponding binary string.

Set x = [x1,x2,…,xn]TεRn to be decision-making
variable, set u = [u1,u2,…,un]T to be the upper bound of
the decision-making variable, set d = [d1,d2,…dn]T to
be the lower bound of the decision-making variable, set
p = [p1,p2,…,pn]T to be the accuracy of the decision-
making variable, set l = [l1,l2,…,ln]T to be the length of
the binary string with corresponding to decision-making
variable. The formula is as follows:

Res. J. Appl. Sci. Eng. Technol., 5(17): 4427-4432, 2013

4428

;
0 ;

()
{

;
/ 2 ;

}

i i

i

i

i

t u d
l
w h i l e t p

l
t

= −
=

> =

+ +
=

 (1)

Here, i {1, 2,.., n}.Use o = [o1, o2,…, on]T as the

lower bound of the binary string with corresponding to
decision-making variable, },,2,1{,0 nioi L∈= . Use ub
[ub

1, ub
2,…, ub

n]T
 as the upper bound of the binary string

with corresponding to decision-making variable,
},,2,1{,2 niu ilb

i L∈= . Use c = [c1, c2,.., cn]T
 as the

gene with corresponding to decision-making variable.
The binary string in the machine is expressed as
unsigned integer number that itself is a binary string.
The decoding formula is as follows:

*() / , {1,2, , }b

i i i i i ix d c u d u i n= + − ∈ L (2)

The initialization of the population has a variety of
methods, such as random initialization, uniform
initialization and orthogonal initialization. In order to
show the superiority of the introduction of the
acceleration operator, the study selected randomly
initialized population. Another advantage of using
random initialization is that the number of variables can
be arbitrarily changed, which brings the convenience in
the program tests. This population size is set to 50.

Acceleration operator:
Seek to the initial exploration step length: Use vector
sb[sb

1, sb
2,..,sb

n]Tto express the exploration step length of
each dimension binary string. Assume b

is is as follows:

/ ; {1,2, , }b
i is U c i n= ∈ L (3)

Here, c is an appropriate constant. In this study, c = 10.
Use s = [s1,s2,…,sn]T to express the step length of the
corresponding variable after decoding. The calculate
formula is shown as follows:

()/ ; {1,2, , }i i is u d c i n= − ∈ L (4)

The description of using variable was carried out as

follows. It’s just a difference of a decoder compared
with the binary description.

Variable step size strategy: An individual in the
population is equivalent to a point in the solution space.
It can be expressed as the vector a = [a1,a2,…,an]T.
Select the dimension i, T

1 2 1 1[, , , , , , ,]i
i i i i na a a a a s a a− += +L L ,

fix the other dimension. Also set up a counter times to
record number of times of that the fitness value of the
point ai is continuously smaller than the fitness value of
the point a. Then determine the next step length

according to the current fitness value of a and ai and
times. The formula for calculating step length is shown
as follows:

Sub-histogram after FCM. Therefore we define two
weights according to the information. One, W1, is the
ratio of the intensity distribution of each cluster and the
whole image. The other one, W2, is the ratio of the pixel
number of each cluster and the whole image. And the
total weight, Weight, is composed of W1 and W2 and the
intensity distribution owns more weight than the pixel
number. So we can calculate the weights according to
the followings:

; () () and 2
2* ; () () and 2

/ 2; () ()
/ 2; () ()

i
i

i
i

i i
i

i
i

s f a f a times
s f a f a times

s
s f a f a
s f a f a

⎧ < ≤
⎪ < >⎪= ⎨
− >⎪
⎪ =⎩

 (5)

Here, f indicates the fitness function. What is

calculated in the study is the minimum. The
corresponding changes are necessary when calculating
the maximum.

Steps of the acceleration operator: With having the
above initial step length and the calculating formula of
the variable step length, we first give the search
operator in the i-th dimension before specific steps of
the acceleration operator are given.

Operator 1:
The first step: to calculate T

1 2 1 1[, , , , , , ,]i
i i i i na a a a a s a a− += +L L

according to step s = [s1, s2,…, sn]T, given point a =
[a1,a2,…,an]T

 and the selected i-th dimension.

The second step: If f(ai)<f(a), a = ai, then according to
(5) determine the step length of the new i-th dimension
step length si, T

1 2 1 1[, , , , , , ,]i
i i i i na a a a a s a a− += +L L .

The third step: If si = 0 then end, otherwise turn to the
second.

With having the operator 1, we can give the
concrete steps of the acceleration operator as follow:

The first step: To determine the initial step length s =
[s1, s2,…, sn]T

 and starting point a = [a1, a2,…, an]T, take
i = 1.

The second step: To apply operator 1 to the i-th
dimension.

The third step: If i>n then end, otherwise i = i+1, turn
to the second step.

Crossover: There are many the binary crossing ways,
such as a single-point crossover, multi-point crossover,
uniform crossover, multi-point orthogonal crossover,
ectopic crossover (Zhong et al., 2003), multi-agent
crossover (Pan and Wang, 1999) and so on. The ectopic
crossover among them will change the original model

Res. J. Appl. Sci. Eng. Technol., 5(17): 4427-4432, 2013

4429

Fig. 1: Algorithm process of genetic algorithm with

acceleration operator

space, while others will not change the original model
space. The study has taken single-point random
crossover manner. The crossover point is randomly
generated. Because of the efficiency of the acceleration
operator, after the applying the acceleration operator to
an individual, one local extremum will be searched. If
the acceleration operator is applied to the individual
once again, the same local extremum will still be
searched. Therefore, this individual does not have much
conservation value. Therefore, this study used a simple
single-point crossover. All individuals were carried out
the crossover. By means of using the offspring
individual to replace the parent individual, the global
search capability was improved as much as possible.

Here is a concrete example, consider the following
11-bit string length parent individuals.

Parent individual 1: 0 1 1 1 0 0 1 1 0 1 0
Parent individual 2: 1 0 1 0 1 1 0 0 1 0 1

Assuming crossover point position randomly

generated to be 5, after the crossover two offspring
individuals were generated as follow:

Offspring individual 1: 0 1 1 1 0 0 0 0 1 0 1
Offspring individual 2: 1 0 1 0 1 1 1 1 0 1 0

Mutation: The most basic operation of the binary
mutation is to change loci. On this basis, then according
to different factors, loci were carried out the mutation
so as to have the different mutation algorithms (Liu
et al., 2003). The study used the basic mutation.
According to a certain mutation rate, mutation position
was randomly produced. The bit is inverted. Consider
the following 11-bit string length parent individuals:

Parent individual 1: 0 1 1 1 0 0 1 1 0 1 0

Assuming crossover point position randomly

generated to be 3, the new offspring individual was
generated after the mutation:

Offspring individual 1: 0 1 1 1 0 0 1 1 1 1 0

Genetic algorithm steps with acceleration operator:
The first step: To initialize population.

The second step: To apply the acceleration operator to
the individuals in the population. Put the best individual
searched into a single document. If the closing
conditions is met, the iteration ends, otherwise turn to
the third step.

The third step: Crossover.

The fourth step: Mutation.
The algorithm process was shown in Fig. 1.

SIMULATION TEST RESULT ANALYSIS

For the genetic algorithm introduced the
acceleration operator, we applied random initialization
and taken the population size to be 50, 50 individuals
were carried out random single-point crossover and
random single-point mutation, the document storages
the optimal individual. For the traditional genetic
algorithm, we applied random initialization and taken
the population size to be 200, 200 individuals were
carried out random single-point crossover with having
the crossover rate of 25% and random single-point
mutation with having the mutation rate of 5%, the
championship selection, the document storages the
optimal individual. Below are test results of the six
categories of the benchmark test function. The number
of variables is 3.

The test of the first type test function: The first type
test function:

∑
=

−=
3

1

2
1 450)(

i
ixxf ,]100,100[−∈ix

the optimal point x = (0,0,0)T, the optimal value is -
450. The new algorithm run10 generations with taking
92 ms. While the traditional algorithm run 100
generations with taking 2498 ms. Set n to be the
number of generations. Set OVS to be optimal value
searched. The results of two algorithms were shown in
Table 1. The test results showed that the new algorithm
found the global optimal value in the third generation,
while traditional algorithm found the global optimal
value in the forty generation.

The test of the second type test function: The second
type test function:

450}31|,{|max)(2 −≤≤= ixxf ii
,]100,100[−∈ix

the optimal point x = (0,0,0)T, the optimal value is -
450. The new algorithm run 20 generations with taking
156 ms. While the traditional algorithm run100
generations with taking 2403 ms. The results of two
algorithms were shown in Table 2.

The test results showed that the new algorithm
found the global optimal value in the eighteenth
generation, while traditional algorithm found the global
optimal value in the ninety generation.

Res. J. Appl. Sci. Eng. Technol., 5(17): 4427-4432, 2013

4430

Table 1: Test results of the first type test function
New algorithm

Traditional algorithm
--

n x1 x2 x3 OVS n x1 x2 x3 OVS
1 0 1.7578 0.00019 -446.9099 10 3.10379 14.7971 0.06679 -221.413697
2 01953 0.0488 0 -446.9601 20 0 1.95309 0 -446.18538
3 0 0 0 -450.0000 30 0 1.75779 0.00019 -449.08681
4 0 0 0 -450.0000 40 0 0.19531 0 -449.96189
5 0 0 0 -450.0000 50 0 0.04859 0 -449.99761
6 0 0 0 -450.0000 60 0 0.03659 0.00320 -449.99869
7 0 0 0 -450.0000 70 0 0.03659 0.00320 -449.99869
8 0 0 0 -450.0000 80 0 0.03659 0.00320 -449.99869
9 0 0 0 -450.0000 90 0 0.03659 0.00320 -449.99869
10 0 0 0 -450.0000 100 0 0.03359 0 -449.99891

Table 2: Test results of the second type test function
New algorithm

Traditional algorithm

n x1 x2 x3 OVS n x1 x2 x3 OVS
2 -1.80029 1.60391 -0.1995 -448.1998 10 0 2.7339 0 -447.26559
4 -1.80029 1.60391 -0.1995 -448.1998 20 0 2.34371 0 -447. 65628
6 -1.80029 1.60391 -0.1995 -448.1998 30 0 0.78128 0.00609 -449.21869
8 -1.80029 1.60391 -0.1995 -448.1998 40 0.08109 0.19529 0.00609 -449.80471
10 -0.92918 -0.7129 -0.5693 -449.0709 50 0.08109 0.19529 0.00609 -449.80471
12 -0.92918 -0.7129 -0.5693 -449.0709 60 0.02457 0.19529 0.00609 -449.80471
14 -0.92918 -0.7129 -0.5693 -449.0709 70 0.02521 0.15682 0.01831 -449.84319
16 -0.92918 -0.7129 -0.5693 -449.0709 80 0.02439 0.12208 0.01831 -449.87789
18 0.0002 0 0+3 -449.9999 90 0.00189 0.02248 0.00609 -449.97751
20 0.0002 0 0+3 -449.9999 100 0.00081 0.01029 0 -449.98981

Table 3: Test results of the third type test function
New algorithm
--

Traditional algorithm

n x1 x2 x3 OVS n x1 x2 x3 OVS
3 -0.999 -1.000 -1.000 391.9985 10 1.56171 7.17769 65.33199 734.36851
6 -1.000 -0.999 -1.000 391.9983 20 2.01719 7.19999 65.34331 607.94668
9 -0.994 -1.000 -1.000 391.9883 30 2.01719 7.19999 65.34331 607.94668
12 -0.994 -1.000 -1.000 391.9883 40 2.01719 7.19999 65.34331 607.94668
15 -0.994 -1.000 -1.000 391.9883 50 2.01719 7.19598 65.34309 597.31498
18 -0.994 -1.000 -1.000 391.9883 60 2.01951 7.06811 64.16021 554.57039
21 -0.994 -1.000 -1.000 391.9883 70 2.01951 7.15339 65.33199 540.30489
24 0.003 0.0024 0.0048 390.0012 80 1.97068 7.12892 65.33199 499.56871
27 0.003 0.0024 0.0048 390.0012 90 1.97068 7.13808 65.33199 493.09489
30 0.003 0.0024 0.0048 390.0012 100 1.95849 7.15329 65.33199 483.01942

Table 4: Test results of the fourth type test function
New algorithm
--

Traditional algorithm

c x1 x2 x3 OVS n x1 x2 x3 OVS
1 0.99 0.9949 1.0322 -326.7360 1 0.04999 1.0099 0.16011 -323.79561
2 0 0.0024 1.0054 -328.9823 5 0.00951 1.05219 0.97499 -327.26818
3 0 0 0 -330 10 0.02081 1.00591 0.97661 -327.83389
4 0 0 0 -330 20 0 0 0.97661 -328.93838
5 0 0 0 -330 30 0 0 0.97661 -328.93838
6 0 0 0 -330 45 0 0 0.97661 -328.93838
7 0 0 0 -330 55 0 0 0.97661 -328.93838
8 0 0 0 -330 70 0.00021 0 1.00679 -328.97721
9 0 0 0 -330 85 0 0 0.99760 -329.00369
10 0 0 0 -330 100 0.00059 0.00151 0.99619 -329.00418

The test of the third type test function: The third type
test function:

∑
=

+ +++−+=
3

1

22
1

2
3 390)))1()1((100()(

i
iii xxxxf ,]100,100[−∈ix

the optimal point x = (0,0,0)T, the optimal value is 390.

The new algorithm run 30 generations with taking

246 ms. While the traditional algorithm run100
generations with taking 2545 ms. The results of two
algorithms were shown in Table 3. The test results
showed that the new algorithm found the global optimal
value in the twenty-fourth generation, while the search
results of the traditional algorithm were still quite far
away from the global optimal solution and had fallen
into a local optimum.

Res. J. Appl. Sci. Eng. Technol., 5(17): 4427-4432, 2013

4431

Table 5: Test results of the fifth type test function
New algorithm

Traditional algorithm

n x1 x2 x3 OVS n x1 x2 x3 OVS
1 0.002 0.0001 10.8665 -179.970 1 310.05 315.6 304.7999 -107.40389
2 -6.270 4.4272 -5.4332 -179.978 10 134.84 187.5 403.2351 -124.27819
3 -6.270 4.4272 -5.4332 -179.978 25 12.887 0.149 304.1439 -156.72501
4 -6.270 4.4272 -5.4332 -179.978 40 14.063 0 4.394498 -178.88438
5 -6.270 4.4272 -5.4332 -179.978 50 12.360 4.688 4.504401 -178.98741
6 -6.270 4.4272 -5.4332 -179.978 60 18.749 0 11.42558 -179.82608
7 -6.270 4.4272 -5.4332 -179.978 70 12.451 0 10.83981 -179.92488
8 -3.135 0 -5.4332 -179.990 80 12.579 0.042 10.83958 -179.93021
9 0 -0.0001 -5.0002 -180 90 12.579 0 10.83979 -179.93068
10 0 -0.0001 -5.0002 -180 100 12.561 0.0023 10.83971 -179.93089

Table 6: Test results of the sixth type test function
New algorithm
--

Traditional algorithm
--

n x1 x2 x3 OVS n x1 x2 x3 OVS
1 -0.9905 0.0001 0.0001 -137.83689 10 0.0627 0.8750 2.0780 -133.64539
2 -0.0002 0.0001 0 -139.99951 20 0.0469 0.1875 0.1875 -138.44489
3 -0.0002 0.0001 0 -139.99951 30 0.0469 0.1875 0.1875 -138.44489
4 -0.0002 0.0001 0 -139.99951 40 0 0.1836 0.0938 -138.91868
5 -0.0002 0.0001 0 -139.99951 50 0 0.1875 0.0625 -138.98771
6 -0.0002 0.0001 0 -139.99951 60 0 0.1757 0.0312 -139.12238
7 -0.0002 0.0001 0 -139.99951 70 0 0.0586 0.0312 -139.77029
8 -0.0002 0.0001 0 -139.99951 80 0.0078 0.0428 0.031 -139.82671
9 -0.0002 0.0001 0 -139.99951 90 0 0.0428 0.0154 -139.85868
10 -0.0002 0.0001 0 -139.99951 100 0 0.0352 0.0073 -139.89422

The test of the fourth type test function: The fourth
type test function:

∑
=

−+−=
3

1

2
4 330)10)2cos(10()(

i
ii xxxf π ,]5,5[−∈ix

the optimal point x = (0,0,0)T, the optimal value is -330.

The new algorithm run 10 generations with taking
118 ms. While the traditional algorithm run100
generations with taking 2498ms. The results of two
algorithms were shown in Table 4.

The test results showed that the new algorithm
found the global optimal value in the third generation,
while the traditional algorithm did not still find the
global optimal value in the hundredth generation.

The test of the fifth type test function: The fifth type
test function:

 ∑ ∏
= =

−−=
3

1

3

1

2

5 179)cos(
4000

)(
i i

ii

i
xx

xf ,]600,600[−∈ix

the optimal point x = (0,0,0)T, the optimal value is -
180. The new algorithm run 10 generations with taking
102 ms. While the traditional algorithm run100
generations with taking 3025 ms. The results of two
algorithms were shown in Table 5. The test results
showed that the new algorithm found the global optimal
value in the ninth generation, while the traditional
algorithm felled into a local optimum and could not
come out.

The test of the fourth type test function: The sixth
type test function:

∑∑
==

−+−−−=
3

1

3

1

2
6 120))2cos(

3
1exp()

3
12.0exp(20)(

i
i

i
i exxxf π

]32,32[−∈ix

the optimal point x = (0,0,0)T, the optimal value is -140.
The new algorithm run 10 generations with taking 100
ms. While the traditional algorithm run100 generations
with taking 1384 ms. The results of two algorithms
were shown in Table 6.

The test results showed that the new algorithm
found the global optimal value in the second
generation, while the traditional algorithm found the
global optimal value in the seventieth generation.

CONCLUSION

The test results showed that the new algorithm had

successfully passed the test of six types of the test
functions. From the running time and the running
results, the new algorithm is superior to the traditional
algorithm. The main characteristics of the genetic
algorithm introduced the acceleration operator are as
follows:

• The small population
• The global search is separated from the local

search, the crossover and mutation only need to
search the local area of containing global optimal
solution. The optimal solution in the local area is
completed by the acceleration operator

Res. J. Appl. Sci. Eng. Technol., 5(17): 4427-4432, 2013

4432

• The search speed is fast, the search efficiency is
high

ACKNOWLEDGMENT

This study was supported by science and

technology project of Chongqing municipal education
committee (No. KJ111414).

REFERENCES

Chen, X.S., D. Liang and H.Y. Wang, 2010. Artificial

fish swarm algorithm with the integration of
genetic algorithm for solving the problem of
clustering. Anhui Agric. Sci., 38(36): 21068-
21071.

Gong, M.G., L.C. Jiao and H.F. Du, 2008.
Multiobjective immune algorithm with
nondominated neighbor-based selection. Evol.
Comput., 16(2): 225-255.

Liu, Z.M., J.L. Zhou and L. Chen, 2003. The research
on the mutation operator of genetic algorithm for
maintaining the diversity of the population. Small-
Scale Micro-Comput. Syst., 24(5): 902-904.

Pan, D. and A.L. Wang, 1999. The genetic algorithm
for many individuals to participate the crossover. J.
Shanghai Jiaotong Univ., 33(11): 1453-1457.

Zhong, G.K., B. Zhen and Y.Q. Yu, 2003. Genetic
algorithm based on ectopic crossover. Control
Decision, 18(3): 361-363.

