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Abstract: The barycentric rational interpolation possesses various advantages in comparison with other 
interpolation, such as small calculation quantity, no poles and no unattainable points. It is definite when weights are 
given, so how to choose optimal weights becomes the key issue. A new optimization algorithm to compute the 
optimal weights was found by minimizing the Lebesgue constant. The biggest advantage of this algorithm is that the 
linearity of interpolation process with respect to the interpolated function is preserved. In this paper, we will study 
the shape control in barycentric rational interpolation under this new optimization algorithm, then numerical 
examples are given to shown the effectiveness of this algorithm. 
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INTRODUCTION 

 
Interpolation is one of the primary algorithm of 

mathematics, it always the first choice to solve 
analytical problems. Most books devote a chapter to it. 
It is well known that polynomial interpolation have 
small calculation quantity, simple structure, 
interpolation function exist and only, so it is easy to 
realize the calculation and theoretical analysis. But when 
the degree of the polynomial is higher, it will product 
Runge phenomenon (John and Fei, 2009). And the 
effect of approach is not very good. Above all, it is a bad 
choice for practical computations, so it usually is a 
theoretical tool for proving problems.  

Rational function approximation is a typical non-
linear approximation. It than polynomial interpolation 
not only flexible, effective, fast convergence, but also 
reflect some properties of the function itself. But it also 
has some drawbacks, such as big calculation quantity, 
difficult to avoid poles and unattainable points. In 1984, 
Schneider and Werner have been the first to determine 
barycentric representations of rational interpolation 
(Claus and Wilhelm, 1986). The barycentric form is the 
most stable formula for a rational interpolant for use on 
a finite interval. Barycentric rational interpolation has 
good numerical stability, small calculation quantity, no 
poles, no unattainable points and high approximation 
orders (Michael and Kai, 2007). Recent years, 
barycentric rational interpolation is one of the hottest 
research points among all the interpolation (Zhang et al., 
2012). The problem of shape preservation has been 
discussed by a number of authors (Hoa et al., 2010).            

Berrut and Mittelmann (1997) found a new optimization 
algorithm that minimizes the Lebesgue constant for the 
given nodes to choose the optimal weighs. In this paper, 
the barycentric weights can be chosen on the basis of 
this optimization algorithm so as to deliver shape control 
and present numerical results to shown the effectiveness 
of the new algorithm. 
 
BARYCENTRIC RATIONAL INTERPOLATION 

 
In 1945, W. Taylor discovered the barycentric 

formula for evaluating the interpolating polynomial. It 
has good numerical stability and small amount of 
calculation (Jean-Paul et al., 2005). In 1984, Schneider 
and Werner have been first to determine barycentric 
representations of interpolants. In this paper, it relaxed 
the requirements for degree of rational function and 
constructed the barycentric rational interpolation by 
introducing to different barycentric weights. The 
barycentric representation of rational interpolants has 
several advantages over other representation, in 
particular, it allows for an easier detection of 
unattainable points and of poles in the interval of 
interpolation (Berrut and Mittelmann, 1997). 

Let r(x)  Rm, n, where Rm, n is the set of all rational 
functions with the degrees of numerator at most m and 
the degrees of denominator at most n. 
 
Lemma 1: Let {(xj, fj)},  j = 0(1) N, be N+1  pairs of 
real numbers with xj ≠ xk, j ≠ k and let {wj} be N+1 real 
numbers.  
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• If  wk ≠ 0, the rational function:    
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• Conversely, every rational interpolant r(x)  Rm,n  
of the  fj may be written as in (1) for some wj. 
 
From the above, as long as the weighs are not all 

zero, it will not appear unattainable points the necessary 
condition of no poles is also given by Schneider and 
Werner (Claus and Wilhelm, 1986). As shown in the 
following theorem. 
 
Theorem 1: Let Nxxx <<< L10 , 0≠iw , i = 0 … N. 
 
• If r has no poles in [x0, xN]  then sing (wi). sing 

(wi+1) = - 1, i = 0, … N -1. 
• If sing (wi) =- sing (wi+1) for some j, 0 ≤ j≤ N-1, 

then r has an odd numbers of poles in (xj, xj+1). 
 

LEBESGUE CONSTANT MINIMIZING 
BARYCENTRIC RATIONAL  

INTERPOLATION 
 

Let f  be a complex-valued function on some 
interval [α, b] of the real line, let x0, x1, … , xn be n + 1  
distinct points in [α, b] and  fk = f(xk), k = 0, … n. Then  
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• Is the Lagrangian representation of the unique 

polynomial of degree n, which interpolates f 
between the points xk : P(xk) = fk. 

 
Theorem 2: Let xn, x0, x1, … , xn be 1+n  distinct 
points in [α, b]. The linear projection Pn which in C[α, 
b]  associates  with  any  function  f  the  polynomial Pn 
f  Pn interpolating f between the xk ’s has the norm: 
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)()(λ  is called the Lebesgue function of the 

approximation operator and Λn  its Lebesgue constant 
(Simon, 2006). 

The Lagrange fundamental polynomials in (3) may 
be written as lk (x) = wk(l(x)/ (x- xk)) with: 
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In Jean-Paul et al. (2005) Berrut’s optimization 

problem becomes a minimization problem with simple 
bounds: 
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Let (9) as the objective function without 

interpolated function, then used the optimization 
software to search for optimal weights. This 
optimization algorithm has great practical significance; 
however, its shape control is much less studied. In this 
paper we will focus on its shape control. 
 

SHAPE CONTROL IN BARYCENTRIC 
RATIONAL INTERPOLATION  
OPTIMIZATION ALGORITHM 

 
The researchers in the field of the developing 

interpolation are always interested in shape preserving. 
Comonotonicty, co convexity and co positivity are 
well-understood in uniform barycentric rational 
interpolation (Hoa et al., 2011).  
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It is well known that the different barycentric 
rational interpolations are obtained based on different 
given weights; we take the weights wi(i = 0, …n) as the 
decision variable and take min Λn as the objective 
function. Meanwhile, in order to ensure the barycentric 
rational function has no unattained points and no poles, 
the weights should satisfy the constraint conditions: 
 

sing (wi). sing (wi+1) = - 1, i = 0 , … n             (10) 
 

wi ≠ 0, i = 0, … n                                              (11)                
            
Furthermore, for ensuring the uniqueness of the 

optimization solution, we take the normative constraint            
  

   1
0

=∑
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n

i
iw                                                        (12)                        

 
On weights additionally. 

From the above, the optimization algorithm model 
for computing the optimal interpolation weights as 
follows: 
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sing (wi). sing(wi+1) = - 1, i = 0 , …, n     
 

wi ≠ 0, i = 0, … n  
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So we can get a set of optimal weights by LINGO 
software. 

 
Controlling monotonicity: The formula for the first 
derivative of r(x), with x not being a pole or 
interpolation point of r(x), can be written as:  
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It is well known that if 0)( >′ xf ( 0)( <′ xf ), x  I, f   

will    be    a   increasing   (decreasing)   function.   Add  

 
 
Fig. 1: The function of interpolated and interpolant 
 

 
 
Fig. 2: Interpolation error 
 

)0)((0)( <′>′ xrxr  to the above optimization algorithm 
model, we can get a set of optimal weights. 
 
Example 1: Given f(x) = e-x as the interpolated 
function and choose x0 = 1, x1 = 12, x2 = 14, x3 = 1.6, x4 
= 18, x5 = 2 as interpolation points.  

We can obtain the optimal weights by the software 
LINGO as follows: 
 

w0 = - 0.1164657, w1 = 0.1365075, w2 = - 
0.1581999 
w3 = 0.1762474, w4 = - 0.1945403, w5 = 0.2180392 

 
In order to show the effectiveness of new 

algorithm, we give figures of function interpolated and 
interpolant (Fig. 1) and their error (Fig. 2) by using 
MATLAB as follows: 
 
Controlling convexity or concavity: The second 
derivative )(xr ′′  in a point x that is not a pole or an 
interpolation point, equals: 
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Fig. 3: The function of interpolated and interpolant  
 

 
 
Fig. 4: Interpolation error 
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It is easy to know that )0)((0)( <′′>′′ xrxr  can keep 

barycentric rational interpolation function convex 
(concave). From above, we can get the optimization 
algorithm model and use the software LINGO to obtain 
the optimal weights. 
 
Example 2: Given f(x) = In (x) as the interpolated 
function and choose   x0 = 0.5, x1 = 1, x2 = 1.5, x3 = 2, 
x4 = 2.5, x5 = 3, as interpolation points. 

By the LINGO software can get the optimal 
weights as follows: 

 
 
Fig. 5: The function of interpolated and interpolant 
 

w0 = - 0.0888195, w1 = 0.1110244, w2 = - 
0.1387805 
w3 = 0.1734756, w4 = - 0.2168445, w5 = 0.2710556 

 
The interpolating function r(x) is shown in Fig. 3 

and the error (Fig. 4) with the interpolated function f(x) 
can be got by the MATLAB software. 
 
Asymptotes: From (2.1) we can see that the highest 
degree coefficients in numerator and denominator of 
r(x) are given by: 
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When qn ≠ 0, a horizontal asymptote at y = α  ( α is 

a constant) can be imposed by choosing  wi such as: 
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Example 3: Given f(x) = e –x2/2 as the interpolated 
function and x0 = - 3, x1 = - 1.5, x2 = 0, x3, = 1.5, x4 = 3 
as interpolation points. 

By the software LONGO we can get the optimal 
barycentric weights as follows: 
 
w0 = - 0.1809454, w1 = 0.2122513, w2 = - 0.1768761 
w3 = 0.1734756, w4 = - 0.2210951, w5 = 0.2088321 
 

The function of interpolated and interpolant is 
show in Fig. 5 and the interpolation error (Fig. 6) can 
be obtained by the MATLAB software. 
 
Positivity preservation: In many physical situations 
entities only meaningful when their values are positive, 
such as progress of an irreversible process, volume, 
density. So positivity is also an important shape 
property. 
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Fig. 6: Interpolation error 
 

 
 
Fig. 7: The function of interpolated and interpolant 
 

 
Fig. 8: Interpolation error 
 
Example 4: Given f(x) = ex as the interpolated function 
and x0 = 1, x1 = 1.1, x2 = 1.2, x3 = 1.3, x4 = 1.4, x5 = 1.5 
as interpolation points. 

We can get the optimal barycentric weights by the 
software LINGO as follows. 

 
 
Fig. 9: The function of interpolated and interpolant 
 

 
 
Fig. 10: Interpolation error 
 

w1 = - 0.1754505, w2 = 0.1744595, w3 = - 
0.1716674,  
w4 = 0.1670000, w5 = - 0.1602543, w6 = -
0.1511685 

 
The interpolating function r(x) is shown in Fig. 7 

and the error (Fig. 8) with the interpolated function f(x) 
can be obtained by the MATLAB software. 
 
Controlling in  [α, b]: 

Example 5: Given dtexf
x

t
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π

 as the 

interpolated function and x0 = - 3. x1 = - 1, x2 = 1,  x3 = 
3 as interpolation points. 

We can get the optimal barycentric weights by the 
software LINGO as follows:  

 
 w0 = - 0.25, w1 = 0.25, w2 = 0.25, w3 = 0.25 
 
The interpolating function is shown in Fig. 9 and 

the error (Fig. 10) with the interpolated function can be 
obtained by the MATLAB software. 
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CONCLUSION 
 

In this study, the main research is sought for 
optimization algorithm model for shape preserving 
barycentric rational interpolation. Let minimizing 
Lebesgue constant as objective function (weights as the 
only decision variable) to seek the optimal weights. We 
can see how the barycentric weights can be chosen to 
influence the shape of the rational function. The biggest 
advantage of this optimization algorithm is that the 
interpolated function is preserved, so it can solve many 
practical problems. 

In future study, shape control in multivariate 
barycentric rational interpolation base on this method 
will be studied 
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