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Abstract: Distributed Generation (DG) had created a challenge an opportunity for developing various novel 
technologies in power generation. The rate and of DG implementation have to be determined. The increasing need 
of electricity and establishing powerhouses, as well as spending a great amount of time to built powerhouses, 
indicate the necessity of distributed generation in small size and close to the consumer location. In this study 
selecting IEEE-14 bus systems, attempt to investigate the effect of distributed generation in line losses and voltage 
profile by using two optimization techniques. The introduction of PSO and CSA base DG in a distribution System 
offer several benefits: Significant voltage profile improvement, Considerable line loss reduction, improves system 
reliability and etc. The optimum value of DG, also obtained increasing the maximum load ability of the system. 
Finally the results are compared to a system with and without installation DGs. 
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INTRODUCTION 
 

Distributed Generation which is at first offered for 
the access of high reliability for sensitive consumers 
has now been offered as one of suitable methods in 
providing power according to its considerable positive 
effect on generation and on the final price of power. 
The necessity of fundamental change in generation 
systems and energy transition has been taken for 
granted as power industry develops. In very early days 
once man feels he needs electricity energy more and 
more for different purposes, the energy generation was 
in the form of distributed generation. Distributed 
generation usually refers to generation of any kind of 
energy in pretty low capacities which is operated close 
to its location or the place of consuming without 
considering the used technologies which use recycled 
resources to generate power (Nara et al., 2001). 

Considering high costs in transition and 
distribution, the distributed generators will be given this 
opportunity to provide cheaper generated power for 
customers. Practically, this system can be installed and 
used inside or near the location of the final consumer as 
a medium of power generation. 

What makes power systems designers interested in 
establishing large power houses to generate power are 
to provide large consumption loads, heat efficiency 
increasing and exploitation costs? It is also significant 
to note that applying DG will not be always 

economically rescannable. After all, regarding other 
benefits of these generations, they will be helpful 
application. Some of its advantages are emergent power 
generation, power quality, high reliability, voltage 
security improvement and loss reduction 
(Khanjanzadeh et al., 2011b). 

Distributed Generations be able to reduce the 
network losses for the reason that they produce the 
power in the nearness of load, so it is better to allocate 
DG units in places that they can supply a higher loss 
reduction. For the reason that DGs are so costly, loss 
reduction is a very essential object for DGs allocation. 
Power losses in distribution systems vary with various 
factors dependent on configuration of the system. 
Power losses being able to be divided into two parts: 
Reactive Power and Real Power. The reactive element 
causes the reactive losses and real power loss is 
produced due to the resistance of lines. Rahman et al. 
(2004), El-Khattam et al. (2004, 2005) and 
Khanjanzadeh et al. (2011a) in this study it is tried to 
reduce power loss as well as improving voltage profile. 

 
Problem statement: The proposed work aims at 
minimizing the combined objective function designed 
to reduce power loss and also improve voltage profile. 
The main objective function is defined as: 
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Fig. 4: Flowchart of colonel selection algorithm  
 
Step 3: Select the n (n<m) best (fittest) individuals 

based on their affinities from the m original 
antibodies. These antibodies will be referred to 
as the elites. 

Step 4: Place each of the n selected elites in n separate 
and distinct pools in a descending order of the 
affinity (Ab1, Ab2, Abn). They will be referred 
to as the elite pools. 

Step 5: Clone the elites in each elite pool with a rate 
proportional to its fitness, i.e., the fitter the 
antibody, the more clones it will have. The 
amount of clone generated for these antibodies 
is given by: 

 
                             (7) 

 
Q determines the scope of the clone and round (.) is 

the operator that rounds its argument towards the closest 
integer. After this step, we can obtain ΣPi antibodies just 
as: 

 
 

Step 6: Subject the clones in each pool through either 
hyper mutation or receiver editing processes. 
Some of the clones in each elite pool undergo 
the hyper mutation process and the remainders 
of the clones pass the receiver editing process. 
The mutation number (  and Pre for hyper 
mutation and receptor editing, respectively) are 
defined as follows: 

 
=                                                     (8) 

 
 =                                              (9) 

 
Which µ is user-defined parameter which 

determines the complementary intensity between the 
hyper mutation and receiver editing. In our perior work, 
we had demonstrated that an equivalent level of Phm:  
Pre, that is, µ = 0.5 will lead the CSA algorithm to a 
better performance. After this step, we obtain ΣPi  
mutated antibodies just as: 
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Table 2: Buses data 
Bus number P  Q  
1 0 0 
2 21.7 12.7 
3 94.2 19 
 4 47.8 -3.9 
5 7.6 1.6 
6 11.2 7.5 
7 0 0 
8 0 0 
9 29.5 16.6 
10 9 5.8 
11 3.5 1.8 
12 6.1 1.6 
13 13.5 5.8 
14 14.9 5 
 
Table 3: Results of power flow and harmonic power flow without 

installation of DG 
BUS V(without DG) V(with DG) PSO V(with DG) CSA 
1 1.060 1.060 1.060 
2 1.045 1.045 1.038 
3 1.01 1.041 1.065 
4 1.019 1.051 1.041 
5 1.02 1.047 1.072 
6 1.07 1.063 1.043 
7 1.062 1.051 1.035 
8 1.09 1.065 1.032 
9 1.056 1.034 1.02 
10 1.051 1.049 1.044 
11 1.057 1.041 1.031 
12 1.055 1.044 1.032 
13 1.05 1.03 1.025 
14 1.036 1.034 1.043 

 
CASE STUDY 

 
Single line diagram of the network is illustrated in 

Fig. 5. It was selected from IEEE-14 bus system 
Network. Table 1 and 2 provide the data of lines and 
buses: 

The bus system is with the total load of 259 MW 
and 73.5MVar. The original total real power loss and 
reactive power loss in the system are 13.393MW and 54 
MVAR, respectively. Initially, a load flow was run for 
the case study with and without installation of DG. The 
results are illustrated in Table 3. 

 
SIMULATION RESULT 

 
The impact of installing three DGs in the case study 

network  with  optimal  sit  and size is illustrated in 
Table 5. If the results of Table 3, 4 and 5 are compared, 
it can be concluded that with installing three DGs, the 
voltage magnitude is improved and fitness function is 
decreased. Figure 6 shows voltage profile of the case 
study network without and with three optimal DGs. In 
Table 3 results of voltage profile with and without 
installation of DGs are presented, respectively. These 
improvements are more in branches connected to buses 
that shown in Table 4. 

These methods are implemented with MATLAB 
software. 

Table 4: Fitness function without DG 
 Fitness 

function 
Without DG installation 0.74 
 
Table 5: Optimum capacity and location 

Method Bus no Dg capacity 
Fitness 
function 

By PSO 14 17.3MW- J14.6MVAR 0.79 
 4 20MW- J15.6MVAR  
 10 16.7MW- J20MVAR  
 8 17.1MW – J13.9Var  
 By CSA 4 19.8MW- J15.7VAR 0.77 
 12 16.9MW-J19.7VAr  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Voltage profile without and with three optimal DG By 
PSO and CSA 

 
CONCLUSION 

 
In this research, there are two optimization 

techniques have been tested to achieve the optimal 
place and size of DGs in distribution network. This 
study deals with the applicability of the intelligent 
optimization to optimize both place and size of DG in 
order to voltage improvement and line loss reduction. 

Both sizing and locations of DG have to be 
considered together very carefully to capture the 
maximum benefits of DG. By analyzing and comparing 
the results, it is shown that PSO is more efficient than 
CSA to achieve the optimal performance for DG. 
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