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Abstract: Brain Computer Interface (BCI) systems establish a one way communication link between man and 
computer. The main goal of this technology is to provide a link between the brain and the physical world without 
any physical contact. Indeed these systems interlink thought to action. As the result, the user would be able to 
control the environment via brain signals. Electro-Encephalogram Signals (EEG) is input signals for these systems 
that include two main stages for processing of those signals, feature extraction and classification. Almost researches 
in this field are done to find what feature extracting methods and classifier are suitable. As regard spread of the 
existing information in this field, in this study, we first introduce a BCI system and then try to collect and organize 
the most needed information for processing EEG signals in BCIs. This study with having sufficient references 
presents the basic information for researchers who want to start their studying in this field. 
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INTRODUCTION 

 
Rain-Computer Interfacing (BCI) is a challenging 

problem that forms part of a wider area of research, 
namely Human-Computer Interfacing (HCI), which 
interlinks thought to action. BCI can potentially provide 
a link between the brain and the physical world without 
any physical contact. The main objectives of BCI are to 
manipulate the electrical signals generated by the 
neurons of the brain and generate the necessary signals 
to control some external systems. The most important 
application is to energize the paralyzed organs or 
bypass the disabled parts of the human body. 

BCI addresses analyzing, conceptualization, 
monitoring, measuring and evaluating the complex 
neurophysiologic behaviours detected and extracted by 
a set of electrodes over the scalp or from the electrodes 
implanted inside the brain. The main and prominent 
activities in BCI (especially noninvasive BCI) are the 
Berlin BCI (BBCI) group (Blankertz et al., 2006) 
Wadsworth BCI research (Wolpaw and McFarland, 
2003), the Graz BCI activity lead by Pfurtscheller et al. 
(2005) and Muller-Putz et al. (2003) and the Martigny 
BCI (Millan et al., 2004). 

In this study, the fundamental concepts and the 
requirement for the BCI design using EEG signals are 
reviewed. We try to collect the most important 
information in BCI researches that are included the 
block diagram of BCI system, the concept of EEG 
signal, the important decomposition in EEG signal, 
important strategies in localization of the source's brain 
activity and finally assessment methods of the 

performance of these systems. This information is 
necessary for starting studying in BCI researches. 
 

MATERIAL 
 
State of the art BCI: The first step in developing an 
effective BCI paradigm is therefore to determine 
suitable control signals from the EEG. A suitable 
control signal has the following attributes: it can be 
precisely characterized for an individual, it can be 
readily modulated or translated to express the intention 
and it can be detected and tracked consistently and 
reliably. 

There are some approaches towards BCI, that the 
first and second approaches are the more main of them: 

 
• The first approach is based on the multiple sensor 

EEG activities recorded in the course of ordinary 
brain activity. This approach is more 
comprehensive than others and does not require 
any particular stimulus. Nowadays there are many 
attractions in using the normal EEGs (or 
Spontaneous Signals (SSs)) for BCI. A BCI system 
of this kind generates a control signal at given 
intervals of time based on the classification of EEG 
patterns resulting from particular Mental Activity 
(MA). 

• Second approach based on Event Related 
Potentials (ERPs) that appears in response to some 
specific stimulus. The most widely used ERP 



 
 

Res. J. Appl. Sci. Eng. Technol., 5(11): 3144-3151, 2013 
 

3145 

evoked potential (EP) is the P300 signal, which can 
be auditory, visual, or somatosensory. It has a 
latency of approximately 300 ms and is elicited by 
rare or significant stimuli and its amplitude is 
strongly related to the unpredictability of the 
stimulus (Donchin et al., 2000). Another type of 
Visual EP (VEP) is those for which the ERPs have 
a short latency, representing the exogenous 
response of the brain to a rapid visual stimulus. The 
ERPs can provide control when the BCI produces 
the appropriate stimuli. The information achieved 
through ERP extraction and measurement is not 
accurate enough for extraction of movement 
related features and they have vast variability in 
different subjects with various brain abnormalities 
and disabilities. More importantly, the subject has 
to wait for the relevant stimulus presentation 
(Bayliss, 2001). 

• The other approaches used for BCI is based on 
Steady-State Visual Evoked Responses (SSVERs), 
which are natural responses for visual stimulations 
at specific frequencies. The SSVERs are 
characterized by an increase in EEG activity 
around the stimulus frequency. 

• The latest approach is Slow Cortical Potential 
Shifts (SCPSs), which are shifts of cortical voltage 
lasting from a few hundred milliseconds up to 
several seconds. This can be achieved if the 
subjects are provided with feedback on the 
evolution of their SCP and if they are positively 
reinforced for correct responses (Kubler et al., 
1998). 

 
In all types of BCI systems human factors such as 

boredom, fatigue, stress, or various illnesses are of 
great influence and therefore motivating the subject 
often becomes very important. 

 

MAIN SECTIONS IN BCI 
  

A simple BCI system setup is illustrated in Fig. 1. 
As mentioned previously, the major problem in BCI is 
separating the control signals from the background 
EEG. Meanwhile, cortical connectivity, as an 
interesting identification of various task related brain 
activities, has to be studied and exploited. Detection 
and evaluation of various features in different domains 
will then provide the control signals. To begin, 
however, the EEG signals have to be preprocessed 
since the signals are naturally contaminated by various 
internal and external interferences. Data conditioning 
such as pre-whitening may also be necessary before 
implementation of the source separation algorithms. 
 
Preprocessing of the EEGs: In order to have an 
artifact-free EEG to extract the control signals, the 
EEGs have to be restored from the artifacts, such as 
eye-blinking (Ocular Artifact (OA)), 
Electrocardiograms (ECGs) and any other internal or 
external disturbing effects. 

Most of the noises, external and even internal 
artifacts, such as ECGs, are filtered out by the hardware 
provided in new EEG machines. There have been some 
works by researchers to remove OAs such as trying to 
estimate the propagation factors for example PCA and 
SVMs that rely on the uncorrelatedness assumption of 
the EEGs and OAs (Lins et al., 1993), ICA (Jung et al., 
1998) and Adaptive filtering (Celka et al., 2001). 

In another recent attempt, an iterative SOBI-based 
BSS method followed by classification of the 
independent components using SVMs has been 
designed to effectively remove the EOG artifacts 
(Shoker et al., 2005). The method can also be easily 
extended to removal of the ECG artifacts. The proposed

 
 

Fig. 1: Basic design and operation of any BCI system 



 
 

Res. J. Appl. Sci. Eng. Technol., 5(11): 3144-3151, 2013 
 

3146 

 
 
Fig. 2: A hybrid BSS-SVM artifact removal system (Shoker 

et al., 2005) 
 
algorithm consists of BSS, automatic removal of the 
artifact ICs and finally re-projection of the ICs to the 
scalp, providing artifact-free EEGs. This is depicted in 
Fig. 2. Up to 99% accuracy in detection of the EOG ICs 
has been reported (Shoker et al., 2005). 
 
Feature extraction: The digitized signals are then 
subjected to one or more of a variety of feature 
extraction procedures, such as spatial filtering, voltage 
amplitude measurements, spectral analyses, or single-
neuron separation. This analysis extracts the signal 
features that (hopefully) encode the user’s messages or 
Commands. These features are vectors of numbers that 
are assigned to each individual EEG window. BCIs can 
use signal features that are in the time domain (e.g., 
evoked potential amplitudes or neuronal firing rates) or 
the frequency domain (e.g., mu or beta-rhythm 
amplitudes). A BCI could conceivably use both time 
domain and frequency-domain signal features and 
might thereby improve performance (Noshadi et al., 
2011). In general, the signal features used in present-
day BCIs reflect identifiable brain events like the firing 
of a specific cortical neuron or the synchronized and 
rhythmic synaptic activation in sensor motor cortex that 
produces a mu rhythm. Knowledge of these events can 
help guide BCI development. The location, size and 
function of the cortical area generating a rhythm or an 
evoked potential can indicate how it should be 
recorded, how users might best learn to control its 
amplitude and how to recognize and eliminate the 
effects of non-CNS artifacts.  

In summary Feature extraction is used to translate 
signal properties for comparing with other signals or 
determining their major properties. In the following, 
based on recent researches, different types of features 
were extracted from the signal for every trial mentioned 
(Lotte et al., 2007): 

 
• Statistical features: These parameter calculated 

from a vector af numerical data are significant 
parameters for example variance, Root Mean 
Square (RMS), moments and etc.  

• Entropic based features: First, Entropy idea is 
presented in dynamic but because of its ability is 

broached in other field engineering and specially in 
EEG signal processing. It introduced by Shannon 
and then researchers created different definitions 
for entropic parameter based on Shannon entropy, 
such as sample entropy,approximate entropy 
(Richman and Moorman, 2000). This feature could 
show effective influence in EEG signal processing, 
especially in BCI. 

• Parametric and nonparametric feature in time 
domain: These features are good for real-time 
systems because they don't need prior information 
and have no more time for calculation. Although 
not have frequency resolution is a weakness of 
them. One of these features that correlate with the 
user’s intent but do not necessarily reflect specific 
brain events are Autoregressive parameters which 
are used commonly in BCI research is. 

• Frequency based features: Because of nature 
EEG signal, the most important information of 
EEG signal's intent is related to frequency domain. 
Almost all successful research in EEG signal 
processing has been done in frequency domain or 
in time-frequency domain. Therefore we attend to 
introduce some features that, almost, is used in 
EEG signal processing. 

• ERD and ERS: ERD and ERS can be considered 
as event-related potentials (which can also include 
evoked potentials). The cortical mu rhythm is an 
example of ERD. ERD is due to blocking of alpha 
activity just before and during the real or imagery 
movement. ERD is measured in terms of the power 
of the peak in the alpha band to the bandwidth, that 
is: 
 
ୖୈ
ୖୗ

ൌ ሺ,୬ሻି౨ሺሻ
౨ሺሻ

                (1) 
 
where, Pሺf, nሻthe value of a signal power is at a given 
time–frequency point of an average power map and 
ܲሺ݂ሻ is an average power during some reference 

time calculated for frequency݂. This represents the 
level of rhythmic activity within the alpha band just 
before or during the movement. Any attention 
dramatically attenuates the alpha rhythms, while an 
increase of task complexity or attention results in an 
increased magnitude of ERD. 

The cortical mu rhythm is of particular interest in 
BCI mainly because it can be modulated /translated 
through imaginary and can be monitored via a 
noninvasive technique. The overall alpha band may be 
divided into lower and higher alphas. Lower alpha ERD 
(6-10 Hz) is a response to any type of task and is 
topographically spread over almost all electrodes. 
Higher alpha ERD, restricted to parietooccipital areas, 
is found during visually presented stimulations. ERD 
starts over the contra lateral rolandic region and, during 
the movement, becomes bilaterally symmetrical with 
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execution of movement. It is of interest that the time 
course of the contra lateral mu de-synchronization is 
almost identical to brisk and slow finger movements, 
starting about two seconds prior to movement onset. In 
ERS, however, the amplitude enhancement is based on 
the cooperative or synchronized behavior of a large 
number of neurons. In this case, the field potentials can 
be easily measured even using scalp electrodes. It is 
also interesting to note that approximately 85% of 
cortical neurons are excitatory, with the other 15% 
being inhibitatory (Lotte et al., 2007). 

 
• Transient Beta activity after the movement: 

This activity, also called Post Movement Beta 
Synchronization (PMBS), is another interesting 
robust event that starts during the movement and 
continues for about 600 ms (Pfurtscheller, 1999). It 
is found after finger or foot movement over both 
hemispheres without any significant bilateral 
coherence. The frequency band may vary from 
subject to subject; for finger movement the range is 
around 16-21 Hz whereas for foot movement it is 
around 19-26 Hz (Neuper and Pfurtscheller, 1996). 
The PMBS has similar amplitude for brisk and 
slow finger movements. Also the movement of 
more fingers results in a larger beta wave. Beta 
activity is also important in the generation of a 
grasp signal, since it has less overlap with other 
frequency components (Pfurtscheller et al., 2005). 

• Gama band oscillation: Oscillation of neural 
activity (ERS) within the gamma band (35-45 Hz) 
has also been of interest recently. Such activity is 
very obvious after visual stimuli or just before the 
movement task. This may act as the carrier for the 
alpha and lower beta oscillations and relate to 
binding of sensory information and sensor motor 
integration. Gamma, together with other activities 
in theabove bands, can be observed around the 
same time after performing a movement task. 
Gamma ERS manifests itself just before the 
movement, whereas beta ERS occurs immediately 
after the event. 

• Long delta activity: Rather than other known ERS 
and ERD activities within alpha, beta and gamma 
bands a long delta oscillation starts immediately 
after the finger movement and lasts for a few 
seconds. Although this has not been reported often 
in the literature, it can be a prominent feature in 
distinguishing between movement and non 
movement states. The main task in BCI is how to 
exploit the behavior of the EEGs in the above 
frequency bands before, during and after the 
imaginary movement, or after certain brain 
stimulation, in generation of the control signals.  
 
After extracting the features, they were normalized 

in order to prevent numerical computational errors. The 

normalization was done by subtracting the statistical 
mean of each feature from the original feature and 
dividing the result by the standard deviation of the same 
feature. 
 
Classification or translation algorithms: The first 
part of signal processing simply extracts specific signal 
features. The next stage, the translation algorithm 
(classification), translates these signal features into 
device commands orders that carry out the user’s intent. 
This algorithm might use linear methods (e.g., classical 
statistical analyses or nonlinear methods (e.g., neural 
networks). Whatever its nature, each algorithm changes 
independent variables (i.e., signal features) into 
dependent variables (i.e., device control commands). 
Effective algorithms adapt to each user on 3 levels. 
First, when a new user first accesses the BCI the 
algorithm adapts to that user’s signal features. A BCI 
that possesses only this first level of adaptation, i.e. that 
adjusts to the user initially and never again, will 
continue to be effective only if the user’s performance 
is very stable. However, EEG and other 
electrophysiological signals typically display short- and 
long-term variations linked to time of day, hormonal 
levels, immediate environment, recent events, fatigue, 
illness and other factors. Thus, effective BCIs need a 
second level ofadaptation: periodic online adjustments 
to reduce the impact of such spontaneous variations. 
The third level of adaptation accommodates and 
engages the adaptive capacities of the brain. When an 
electrophysiological signal feature that is normally 
merely a reflection of brain function becomes the end 
product of that function, that is, when it becomes an 
output that carries the user’s intent to the outside world, 
it engages the adaptive capacities of the brain. Like 
activity in the brain’s conventional neuromuscular 
communication and control channels, BCI signal 
features will be affected by the device commands they 
are translated into: the results of BCI operation will 
affect future BCI input. In the most desirable (and 
hopefully typical) case, the brain will modify signal 
features so as to improve BCI operation. If, for 
example, the feature is mu-rhythm amplitude, the 
correlation between that amplitude and the user’s intent 
will hopefully increase over time. An algorithm that 
incorporates the third level of adaptation could respond 
to this increase by rewarding the user with faster 
communication. It would thereby recognize and 
encourage the user’s envelopment of greater skill in this 
new form of communication. On the other hand, 
excessive or inappropriate adaptation could impair 
performance or discourage further skill development. 
Proper design of this third level of adaptation is likely 
to prove crucial for BCI development. Because this 
level involves the interaction of two adaptive 
controllers, the user’s brain and the BCI system, its 
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design is among the most difficult problems 
confronting BCI research.  

Some examples of used classifiers are KNN (K 
Nearest Neighbor), LDA (Linear Discriminant 
Analysis), Neural Network, SVM (Support Vector 
Machine) and etc (Tavakolian et al., 2006). 
 
MULTIDIMENSIONAL EEG DECOMPOSITION 
 

All movement-related potentials are limited in 
duration and in frequency. In addition, each channel 
contains the spatial information of the EEG data. 
Therefore multidimensional EEG decomposition 
methods are important procedure in some EEG 
processing. Two conventional algorithms, PCA and 
ICA, have been widely used in decomposition of the 
EEG multiple sensor recordings. However, an efficient 
decomposition of the data requiresincorporation of the 
space, time and frequency dimensions. There is some 
procedure for this goal that is described in following: 

 
• Time-Frequency (TF): TF analysis exploits 

variations in both time and frequency. Most of the 
brain signals are decomposable in the TF domain. 
This has been better described as sparsity of the 
EEG sources in the TF domain. In addition, TF 
domain features are much more descriptive of the 
neural activities. 

• Space-Time-Frequency Transform (STFT): 
STFT has been carried out for all the channels, 
representing the spatial information and the atoms 
are masked and clustered and used for both 
reconstruction of the desired sources and usually 
for classification of a finger movement signal 
based on the directionality of the motion of the 
sources. Using this method the location of the 
event-related sources can be tracked and effectively 
used in BCI. 

• Parallel Factor Analysis (PARAFAC): 
PARAFAC also called canonical decomposition 
(CANDECOMP) is another similar approach for 
analysis of brain signals in multidimensional 
domain for BCI purposes. In this approach the 
events are considered sparse in the space-time-
frequency domain and no assumption is made on 
either independency or uncorrelatedness of the 
sources. Therefore, the main advantage of 
PARAFAC over PCA or ICA is that uniqueness is 
ensured under mild conditions, making it 
unnecessary to impose orthogonality or statistical 
independence constraints. Harshman (1970) was 
the first researcher to suggest that PARAFAC be 
used for EEG decomposition 
 

Empirical Mode Decomposition (EMD): EMD is a 
new method of time-frequency analysis. With this 
method, any signal can be decomposed into a finite and 

often small number of “Intrinsic Mode Functions” 
(IMF). The difference between the new method and the 
previous methods is that the new method is established 
on instantaneous frequency (Huang et al., 1998). EMD 
method is adaptive and, therefore, highly efficient. 
Since the decomposition is based on the local 
characteristic time scale of the data, it is applicable to 
non-stationary processes. In last years, this method was 
very successful in EEG signal processing (Li et al., 
2008; Cui et al., 2005). 
 

OTHER TOOLS FOR STUDYING OF  
THE SOURCE'S LOCALIZATION DURING 

BRAIN ACTIVITIES 
 

As mentioned, utilization of the ERP signals 
provides another approach in BCI design. The ERP-
based BCI systems often consider a small number of 
electrodes to study the movement-related potentials of 
certain body organs and by using described procedure 
involved suitable feature and one classifier can be 
detected. However, in recent work multichannel EEGs 
have been used followed by an efficient means of the 
source separation algorithm in order to exploit the 
maximum amount of information within the recorded 
signals, such these algorithms played an important role 
in the number channel reduction. In the following, some 
strategies in this field listed and briefly explained: 
 
Source localization and tracking of the moving 
sources: Source localization can be employed here to 
estimate the location of moving sources related to the 
finger movement. Application of the conventional 
dipole fitting localization algorithms, however, is 
subject to having a pre-assumption about the number of 
sources. A simple source localizer may be designed 
using a feedback BSS system followed by an LS-based 
geometrical localization system. In this simple method 
BSS separates the EEG signals into their independent 
sources for a number of consecutive overlapping 
segments of the EEGs. For each segment the 
corresponding independent component (estimated 
source) is reprojected to the scalp using an inverse of 
the separating matrix. The resulting topographies are 
compared and the moving sources with maximum 
spatial and frequency correlations are selected. 
 
Determination of the propagation direction and 
frequency content of brain activity: Determination of 
the propagation of brain electrical activity, its direction 
and the frequency content is of great importance. 
Directed Transfer Functions (DTFs) using a 
Multivariate Autoregressive (MVAR) model has been 
employed for this purpose (Kaminski and Blinowska, 
1991). In this approach the signals from all EEG 
channels are treated as realizations of a multivariate 
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stochastic process. A short-time DTF (SDTF) was also 
developed for estimation and evaluation of AR 
coefficients for short time epochs of the EEGs. 

The direction of signal source movement is 
realized from the cross correlations between signals, 
which are computed for different time shifts in the 
procedure of correlation ܴሺ݊ሻ matrix estimation. These 
time shifts are translated into phase shifts by 
transformation to the frequency domain. The phase 
dependencies between channels are reflected in the 
transfer matrix. The DTF values express the direction 
of a signal component in a certain frequency -not the 
amount of delay- (GinterJr et al., 2001). Analysis of the 
DTF values, however, will be difficult when the 
number of channels increases, resulting in an increase 
in the number of MVAR coefficients. 
 
Estimation of brain connectivity: The coherency of 
brain activities may be presented from a different 
perspective, namely brain connectivity. This concept 
plays a central role in neuroscience. Temporal 
coherence between the activities of different brain areas 
are often defined as functional connectivity, whereas 
the effective connectivity is defined as the simplest 
brain circuit that would produce the same temporal 
relationship as observed experimentally between 
cortical regions (Astolfi et al., 2005). A number of 
approaches have been proposed toestimate how 
different brain areas are working together during motor 
and cognitive tasks from the EEG and FMRI data 
(Jancke et al., 2000; Gerloff et al., 1998). 

Structural equation modeling (SEM), Bollen 
(1989) has also been used to model such activities from 
high-resolution (both spatial and temporal) EEG data. 
Anatomical and physiological constraints have been 
exploited to change an underdetermined set of 
equations to a determined one. The SEM consists of a 
set of linear structural equations containing observed 
variables and parameters defining causal relationships 
among the variables. 
 
ASSESSMENT OF BOTH USER PERFORMANCE 

AND SYSTEM PERFORMANCE 
 

Effective assessment of BCI performance requires 
two levels of evaluation: the user and the system. The 
user must control the signal features and the system 
must recognize that control and translate it into device 
control effectively and consistently. User performance 
can be defined as the level of correlation between user 
intent and the signal feature (s) the BCI employs to 
recognize that intent. One useful measure of this 
correlation is rଶ perfect correlation produces an r2 value 
of 1.00. Evaluation of system performance has two 
parts: performance in a specific application, assessed as 
speed and/or accuracy and theoretical performance, 
measured as information transfer rate. Up to now, most 
studies have simply reported the accuracy  and/or speed  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Information transfer rate in bits/trial (Wolpaw et al., 

2002) 
 
for specific applications. These data are certainly 
important. At the same time, they are affected by the 
characteristics of the application and the success with 
which the system interfaces the user’s control of the 
signal features with that application. Thus, they make 
comparisons between different studies difficult and they 
do not reveal what might theoretically be done with the 
degree of control that the user has. The standard method 
for measuring communication and control systems is 
information transfer rate, or bit rate. It is the amount of 
information communicated per unit time. Derived from 
Shannon and Weaver (Shannon and Weaver, 1964), this 
measure incorporates both speed and accuracy in a 
single value. Figure 3 shows the relationship between 
accuracy and bit rate for different numbers of choices. 
Bit rate is shown both as bits/trial (i.e. bits/selection) 
and as bits/min when 12 selections are made per min (a 
rate comparable to that of several current BCIs 
(Birbaumer et al., 2000; Donchin et al., 2000; Wolpaw 
et al., 2002). For example, the bit rate of a BCI that 
selects between two choices with 90% accuracy is equal 
to that of a BCI that selects among 4 choices with 65% 
accuracy. Bit rate is an objective measure for measuring 
improvement in a BCI and for comparing different 
BCIs. 
 

EVALUATION IN  
RELEVANT SITUATIONS 

 
BCI evaluation should also include testing in 

circumstances like those of real-life applications. As 
noted above, assessment of online performance is 
essential. In addition, BCIs should be tested under 
conditions in which the user chooses the message or 
command. This testing can reveal how well the BCI 
adapts to spontaneous variation in the signal features 
when it does not have the advantage of knowing what 
the output is supposed to be. It is also important to 
evaluate how well BCI operation combines with other 
brain functions. A BCI that requires total user attention 
might not support a conversation or other interaction in 
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which the user must continually choose the messages to 
send and evaluate the responses they elicit from the 
other person or from an external device. 
 

CONCLUSION 
 

A BCI allows a person to communicate with or 
control the external world without using the brain’s 
normal output pathways of peripheral nerves and 
muscles. Messages and commands are expressed not by 
muscle contractions but rather by electrophysiological 
phenomena such as evoked or spontaneous EEG 
features or cortical neuronal activity. BCI operation 
depends on the interaction of two adaptive controllers, 
the user, who must maintain close correlation between 
his or her intent and these phenomena and the BCI, 
which must translate the phenomena into device 
commands that accomplish the user’s intent. 

These systems have been rapidly growing during 
the last three decades. A review of the ongoing research 
has been provided in this study. Static features 
measured in different EEG conventional frequency 
bands, dynamic features such as those characterizing 
the motion of movement related sources have been 
widely used in BCI systems. Finally, estimation of the 
cortical connectivity patterns provides a new tool in 
evaluation of the directivity of brain signals and 
localization of the movement-related sources. Although 
the advances in signal processing, especially in 
detection, separation and classification of brain signals, 
have lead to very exciting results in BCI, as yet not all 
physiological, anatomical and functional constraints 
have been taken into account. However, no robust 
solution to application of BCI for paralyzed subjects 
exists. The effectiveness of the solution depends on the 
type and the level of subject disabilities. Moreover, 
there has not been any attempt to provide BCIs for 
subjects suffering mental disorders. 

Future progress hinges on attention to a number of 
crucial factors. These include: recognition that BCI 
development is an interdisciplinary problem, involving 
neurobiology, psychology, engineering, mathematics, 
computer science and clinical rehabilitation. 

Generally, to achieve a clinically useful BCI 
(invasive or noninvasive) system stable, low noise and 
long recordings from multiple brain regions/electrodes 
are necessary. In addition, computationally efficient 
algorithms have to be developed in order to cope with 
the real-time applications. On the other hand, the 
subjects should learn how to use brain plasticity to 
incorporate prosthetic devices into the body 
representation. This will make the prosthetic feel like a 
natural part of the body of the subject and thereby 
enhance the lifestyle of the subject, our ultimate aim! 

BCI systems could provide an important new 
communication and control option for those with 
disabilities that impair normal communication and 
control channels. They might also provide to those 
without disabilities a supplementary control channel or 
a control channel useful in special circumstances. 

We hope the collected information in this study 
could be useful for researchers who want to start 
studying in this field. 
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