
Research Journal of Applied Sciences, Engineering and Technology 5(16): 4071-4076, 2013     
DOI:10.19026/rjaset.5.4627 
ISSN: 2040-7459; e-ISSN: 2040-7467 
© 2013 Maxwell Scientific Publication Corp. 
Submitted: March 23, 2012                        Accepted: January 11, 2013 Published: April 30, 2013 

 
Corresponding Author: Xiao Liang, Dalian Maritime University, Dalian 116026, China 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

4071 

 
Research Article 

Fault Diagnosis of Autonomous Underwater Vehicles 
 

1Xiao Liang, 2Jundong Zhang and 3Wei Li 
1College of Traffic Equipment and Ocean Engineering, 

2College of Marine Engineering, 
3College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China 

 
Abstract: In this study, we propose the least disturbance algorithm adding scale factor and shift factor. The dynamic 
learning ratio can be calculated to minimize the scale factor and shift factor of wavelet function and the variation of 
net weights and the algorithm improve the stability and the convergence of wavelet neural network. It was applied to 
build the dynamical model of autonomous underwater vehicles and the residuals are generated by comparing the 
outputs of the dynamical model with the real state values in the condition of thruster fault. Fault detection rules are 
distilled by residual analysis to execute thruster fault diagnosis. The results of simulation prove the effectiveness. 
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INTRODUCTION 

 
With the development of the activities in deep 

ocean, the application of underwater vehicles is 
widespread (Xu and Xiao, 2007; Blidberg, 1991). 
Underwater vehicles are frequently performing mission 
in unstructured, complicated and hazardous environment 
(Adam, 1985). For autonomous underwater vehicles, the 
ability to detect and tolerate fault is a crucial issue to 
realize its autonomy. Model-based technique has the 
merits such as low cost, high reliability and easy 
realization for autonomous underwater vehicles, so it is 
a suitable approach. However, for the influence of 
model error, measurement noise, outer disturbance and 
so on, it is difficult enogh to build up the accurate model 
for autonomous underwater vehicles. Neural network 
has the characters of strong input-output nonlinear 
mapping, distributed store of information, parallel 
process and especially strong self-organizing and self-
learning ability, which make neural network become an 
effective method for fault diagnosis. Moreover, it has 
been applied in practice (Alessandri et al., 1999). 

Wavelet neural network is a new radial basis 
function neural network developed from wavelet 
transform. The orthonormality of wavelet function used 
as the hidden layer function makes wavelet neural 
network more suitable in learning function of local 
variation and discontinuities. By adjusting scale factor 
and shift factor of wavelet function and weights of 
network to affect output of network, wavelet neural 
network has strong ability of distilling signal details and 
mapping nonlinear function (Li and Wei, 1998; Zhao 
and Zhou, 2003). In this study, we propose a least 
disturbance wavelet neural network to build up the 

dynamic model of underwater vehicles and add scale 
factor and shift factor of wavelet function to dynamic 
learning rate algorithm based on steepest descent 
method. Then, we compare the output of model with the 
real state value to achieve residuals and distill the fault 
information from the residuals to detect fault. 

In this study, we propose the least disturbance 
algorithm adding scale factor and shift factor. The 
dynamic learning ratio can be calculated to minimize the 
scale factor and shift factor of wavelet function and the 
variation of net weights and the algorithm improve the 
stability and the convergence of wavelet neural network. 
It was applied to build the dynamical model of 
autonomous underwater vehicles and the residuals are 
generated by comparing the outputs of the dynamical 
model with the real state values in the condition of 
thruster fault. Fault detection rules are distilled by 
residual analysis to execute thruster fault diagnosis. The 
results of simulation prove the effectiveness. 
 

LEAST DISTURBANCE WAVELET  
NEURAL NETWORK 

 
The common training algorithm of wavelet neural 

network is steepest descent method and learning rate is 
extremely significant for the convergence and stability 
of c network. The hidden layer function of wavelet 
neural network is wavelet function and its scale factor 
and shift factor are also adjusted to minimize the least 
square error. For wavelet neural network, outputs of 
neural network are affected by both net weights and 
scale factor and shift factor of wavelet function. From 
the perspective, we add scale factor and shift factor of 
wavelet function to the least disturbance dynamic 
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learning rate algorithm based on steepest descent 
method (Liu et al., 2001). 

Define the input-output relationship of wavelet 
neural network as: 

 
( )1

i ij j
j

y w h= ∑                                                  (1) 

 
( )( ) /j j j jh f net b a= −                                         (2) 

 
( )2

j jk k
k

net w x= ∑                                                          (3) 

 
The error function is given by: 
 

( )21
2 i i

i
E d y= −∑                           (4) 

 
where, yi is the ith component of an output vector and hj denotes the output of jth wavelet in hidden layer and netj  denotes the input of  jth wavelet in hidden layer, xk is the 
kth component of input vector. di is the ith desired target 
output. aj, bj is scale factor and shift factor of wavelet 
function in hidden layer. 
Make difference operation for (4) as follows: 
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If we make ∆E = - E through the modifying 

weight, input-output relationship will satisfy the need of 
the goal function. However, owing to first-order 
approximation of the difference operation; there will be 
errors for nonlinear neural network and it is very hard 
to get ∆E = - E through once modification, so η  is 
introduced which is usually given by 0< η < 1. ∆E. is 
defined as: 

 
E E∆ = −η = −Ω                                                 (6) 

 
where η  has the same meaning as the training ratio of 
the steepest descent method, but the higher certainty is 
obtained compared with the standard steepest descent 
method. If the training ratio is selected in the adjacent 
area of 1, the similar results can be obtained. From (5) 
and (6), the variation of net weights can be described 
as: 
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The solution of (7) is indefinite, namely, there are 
infinite appropriate solutions. To obtain the definite 
solution condition, we construct a performance 
function: 
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The significance to minimize the performance 

function is to adjust net weights and scale factor and 
shift factor of wavelet neural network as small as 
possible and make the current error be zero. The 
smaller the adjustable value is, the less the disturbance 
of the previous learning knowledge would be. 
Therefore, the performance function is called least 
disturbance function. The equivalent expression of (7) 
is: 
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where, λ is an unknown coefficient. We can use 
Lagrange extreme value theory to get the solution 
which satisfies (7) and minimizes J. The algorithm in 
detail is as follows. To make the derivative of the 
weight modified value be zero, we can obtain: 
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(10) to (13) can be rewritten as: 
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Substituting (14), (15), (16) and (17) into (7): 
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That is: 
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We can obtain: 
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Substituting (20) into (14), (15), (16) and (17), we 

can obtain the suitable variation of net weights, scale 
factor and shift factor. Considering when error 
approaches zero, the numerator and denominator of 
(20) will both approach zero, we add a small value ε > 
0 into the denominator, then we can obtain: 
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               (21) 

 
The variation of net weights, scale factor and shift 

factor also use steepest descent method, but since λ will 
change timely with the current state and the current 
input of the system, it will be of benefit to the 
convergence and robustness of the network. From (21), 
we can conclude that this change will lead to that the 
reducing of error is always at the suitable level which is  

 
 

Fig. 1: Effect of trained network in two methods 
 
determined by η  of (6), that is, the reducing of error 
will not be large to cause unnecessary oscillation and 
will not be small to cause the convergence too low. On 
the other hand, since η is equal to the expected 
reduction ratio of the error, whose value is a little less 
than 1 which will not influence the convergence of 
network seriously, but in steepest descent method the 
convergence is sensitive to the learning ratio. 

In the standard steepest descent method, when the 
number of hidden layer points is added, it is necessary 
to reduce the learning ratio to assure the convergence of 
the network. In (21), when Σj h2

j is added, λ  is reduced 
simultaneously. While adding the number of hidden 
layer points means to add Σj h2

j and thus λ is reduced. 
This dynamic learning ratio is helpful for the 
convergence stability of the network. 

With the same initial value of neural network, the 
effect of two different algorithms is shown as Fig. 1. 
The training data are from a certain yawing motion of 
one underwater vehicle. As can be seen, the 
convergence velocity of the network using least 
disturbance algorithm is much better. 
 

MODELING USING LEAST DISTURBANCE 
WAVELET NEURAL NETWORK 

 
The proposed approach has been verified on a 

certain autonomous underwater vehicle named ZS4 
(made in HEU, China) for simulation study. The 
vehicle has eight thrusters and they can be divided into 
four groups based on the function of the thrusters: 
horizontal plane thrusters, vertical plane thrusters, side 
thrusters and vertical thrusters. Each group has two 
thrusters. Horizontal and vertical plane thrusters are the 
ducted thrusters and side and vertical thrusters are the 
tunnel thrusters. As the velocity increases in the surge 
direction, thruster deduction becomes serious enough, 
thus we close four tunnel thrusters in the high velocity 
to save energy. So in this study, we mainly discuss the 
thruster fault diagnosis for four main thrusters. Figure 2 
shows the thruster configuration of ZS4. 
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Fig. 6: North velocity of left thruster fault experiment 

 
The net weights is less critical and the parameters 

are initialized to small random value between [-1, + 1]. 
The training data are from the simulation 

experiments such as surging, yawing, swaying and so 
on. The trained neural network can simulate the motion 
of the autonomous underwater vehicle very well. The 
Fig. 3, 4 and 5 show the results and we can see that the 
least disturbance wavelet neural network can 
approximate the whole function outline and also distill 
the change detail. 
 

ANALYSIS OF SIMULATION RESULTS 
 

Comparing the outputs of wavelet neural network 
with the real state values, we can obtain the residuals 
and analyze them to distill fault information. To 
minimize the effect of environment noise, the residuals 
are analyzed as: in a solid period of gathering a group 
of residuals, max value and min value are cut and the 
mean valve of the left data is used as the threshold 
value. The period and the threshold value are based on 
plenty of experiments. If the residual is beyond the 
threshold value, we consider there occurs a fault. 

In simulation, the faults of the thrusters are 
considered as zero outputs of the controller. Simulation 
is shown as the example of setting a fault of a certain 
thruster in certain time and then analyzing the residuals. 
Figure 6, 7, 8 and 9 show the real state values and the 
outputs of wavelet neural network in the fault of the left 
or the right thruster when the autonomous underwater 
vehicle surges. We can see when the main thruster has a 
fault,   the   surge   velocity   changes   and   the change 
increases to a steady value as time goes. Meanwhile, 
the yaw value increases infinitely. For the fault of the 
left thruster, the yaw is negative. For the fault of the 
right thruster, the yaw is positive. So we can set one 
threshold value for each degree. If both the residual of 
the real velocity and the estimated velocity and the 
residual of the real yaw and the estimated yaw are 
beyond the separate threshold value and the yaw 
residual  is  negative, the left thruster has a fault. If both  

 
 
Fig. 7: Yaw of left thruster fault experiment 
 

 
 
Fig. 8: North velocity of right thruster fault experiment 
 

 
 
Fig. 9: Yaw of right thruster fault experiment 
 
the residual of the real velocity and the estimated 
velocity and the residual of the real yaw and the 
estimated yaw are beyond the separate threshold value 
and the yaw residual is positive, the right thruster has a 
fault. For the other thrusters, the approach is the same. 
 

CONCLUSION 
 

Aiming at the character that hidden layer wavelet 
function of wavelet neural network can adjust scale 
factor and shift factor to affect output of the network, 
the least disturbance algorithm adding scale factor and 
shift factor is proposed. The algorithm can calculate the 
dynamical learning ratio to improve the stability and the 
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convergence of the wavelet neural network. Meanwhile, 
for strong ability of distilling signal details and 
mapping nonlinear function of wavelet neural network, 
the algorithm is applied to build the dynamical model 
of the autonomous underwater vehicle and the residuals 
are achieved by comparing the outputs of the neural 
network with the real state values. Fault detection rules 
are distilled from the residuals to execute actuator fault 
diagnosis. The results of simulation prove the approach 
is effective. 
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