
Research Journal of Applied Sciences, Engineering and Technology 5(8): 2494-2498, 2013
DOI:10.19026/rjaset.5. 4685
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2013 Maxwell Scientific Publication Corp.
Submitted: July 27, 2012 Accepted: September 12, 2012 Published: March 15, 2013

Corresponding Author: Keli Chen, School of Mathematics and Computer, Xihua University, Chendu, 610039, P.R. China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2494

Research Article

An Improved Query Tree Anti-Collision Algorithm Using Collision Location

Keli Chen and Bing Li
School of Mathematics and Computer, Xihua University, Chendu, 610039, P.R. China

Abstract: In order to reduce the identification delay and the energy consumption of the Query Tree Anti-collision
Algorithm, the disadvantage of the current query tree anti-collision algorithms is analyzed and an improved query
tree anti-collision algorithm is proposed, which is called collision Location based Hybrid Query Tree (LHQT)
algorithm. In the algorithm, Manchester code is used and collision location is detected when a collision occurs. Then
collision location is used to update quickly and accurately the query prefix in Query Tree (QT) algorithm and
Hybrid Query Tree (HQT) Algorithm. Theoretical analysis and simulation show that the proposed algorithm can
efficiently decrease the identification cycles and transmitted bits, which reduce the identification delay and the
energy consumption.

Keywords: Anti-collision algorithm, collision location, query tree

INTRODUCTION

Radio Frequency Identification (RFID) technology

is the most crucial to the Internet of Things, which is
called as the "third information revolution" after the
computer and the Internet. With a large number of
applications of RFID technology in the Internet of
things, there are a large number of identification tags in
the range of a reader and the reader should be able to
accurately identify all tags in a timely manner.
However, when multiple tags transmit their IDs
simultaneously, data collision resulted from the data
transaction between more tags and the reader at the
same time occurs. Anti-collision algorithms for passive
RFID tags are critical to identify tags correctly and
efficiently.

Numerous existing anti-collision algorithms can be
divided into two categories: probability algorithm and
deterministic algorithm (Klair et al., 2010). In
probability algorithm such as Pure Aloha (PA), Slotted
Aloha (SA) and Framed Slotted Aloha (FSA), tag
generates a random time delay to respond to readers
when collisions. However, there is a “tag starvation”
problem in probability algorithm. It means that a
specific tag cannot be identified for a long time, which
cannot guarantee 100% identification ratio. In order to
solve the problem, a series of deterministic algorithms
such as Tree Splitting (TS), Query Tree (QT), Binary
Search (BS) and Bitwise Arbitration (BTA), has been
proposed. In deterministic algorithm, readers continue
to send the query prefix of the tag ID and tags which
prefix of tag ID is matched to the query prefix is
response to reader, reader detects the collision and the
reader splits tags into smaller subsets recursively

through extending the query prefix until only one tag
responds in each round of the tag-reader
communication. Deterministic algorithm can provide
100% recognition success rate and has been widely
used. However, due to the continuously splitting
procedure, they have the relatively longer identification
delay and higher power consumption. In TS variants,
tags require random number generator and a counter to
track their tree position, thus making them costly and
computationally. QT algorithms overcome these
problems by storing tree construction information at the
reader and tags only need to have a prefix matching
circuit.

LITERATURE REVIEW

Before presenting the proposed LQT algorithms,

we first present the related previous work about query
tree algorithm, because it is the bases of the LQT and
necessary for understanding LQT.

Query Tree algorithm (QT): Query Tree (QT) (Law
et al., 2000) is considered to be a milestone in the
development of binary tree-based algorithms (Haosong
and Younghwan, 2011). The reader sends out a query
prefix, the tag in the range of the reader compares the
prefix with its ID and transmits its ID to the reader if its
ID matches with the prefix. Collision occurs when
multiple tags have the same prefix. If a collision
happens, the reader extends the previous prefix by
adding bit 0 or 1 and starts the next query. In a recent
query, previous responding tags are divided into two
subsets. Reader can identify the tag immediately until
there is only one tag matching with the prefix in a

Res. J. Appl. Sci. Eng. Technol., 5(8): 2494-2498, 2013

2495

subset. The query procedure will not stop until all tags
are identified. Although the QT algorithm can
guarantee reliable performance, it needs a long time to
converge the identification process. There are some
reasons resulted in the long time as follows:

• Only one bit is added to the previous prefix in

extending the query prefix. This may result in more
querying procedure.

• There are many Idle Cycles in extending the query
prefix. There are numerous extensions to the QT
such as shortcutting, Aggressive enhancement,
AQT, HQT and Unified Q-ary Tree (UQT)
(Prapassara and Bela, 2009) etc.

Hybrid Query Tree algorithm (HQT): Ryu et al.
(2007) extends the QT protocol with aggressive
enhancement and a slotted random back-off
mechanism. In a new query, the query prefix is
appended with two bits (even more bits), instead of a
single bit. The extension reduces the collision cycles
but increases the idle cycles. In order to reduce collision
cycles and eliminate idle cycles, HQT combined the QT
with a slotted random back-off mechanism. When a
new query prefix is received, the tags matching the
prefix do not respond immediately but respond after a
back-off delay. The duration of the back-off timer is
determined by the last two bits of the prefix. The
extension may reduce the idle cycles resulted from
aggressive enhancement. There are some extensions to
the HQT (Haosong and Younghwan, 2011; Zhou and
Cai, 2012; Sun and Chen, 2011; Jiang and Ma, 2012).

Collision location: By using Manchester Encode
(Finkenzeller, 2003), if two (or more) transponders
simultaneously transmit bits of different values, then
the positive and negative transitions of the received bits
cancel out each other and lead to an error. When the
collision occurred in the RFID system, the error can be
used to locate the position of the collision bit. By using
the collision position information, the reader may
extend the query prefix by adding more bits to the
previous prefix and reduce idle cycles in the
identification process (Haosong and Younghwan, 2011;
Jiang and Ma, 2012; Choi et al., 2006).

THE PROPOSED ALGORITHM

In order to reduce collision cycles and idle cycles
and to minimize total identification delay, we propose
an enhanced algorithm with integration of the present
algorithms in section II. The proposed algorithm is
named as collision Location based Hybrid Query Tree
(LHQT) algorithm.

The idea description of LHQT: We assume that:

• The Manchester Encode is used in the algorithm

for locating the collision positions.

• The reader uses a prefix stack to maintain the query
prefix.

• The memory-less tag has a circuit matching the
query prefix and all the tags in the range of reader
can respond simultaneously.

The algorithm is combined with QT and a slotted
random back-off mechanism. The following
optimizations are made in LHQT:

• The reader stops to receiving the bits transmitted

by tags when it locates two collision bits.
• The reader updates the query prefix by adding the

received bit to it when no collision occurs.
• After that, the responding tags are split into four

subsets by updating the two collision bits.
• With the difference of HQT, the duration of the

back-off timer is determined not by the last two
bits of the query prefix but by the last two bits of
the tag ID. The reason is that the last two bits of the
query prefix may be the same for the query prefix
may mean the category of the identification objects
in EPC. Duration of the back-off timer is similar
and a slotted random back-off mechanism has no
effect to reduce the idle cycles. However the last
two bits of tag ID are changed randomly for these
bits means the numbers of objects.

• The duration of the back-off timer is determined
not by the value of last two bits of the tag ID but by
the count of bit 1 in the last two bits of the tag ID.
In the case, there only three slots: slot 0 means that
the last two bits are 00, slot 1 means that the last
two bits are 01 or 10, slot 2 means that last two bits
are 11. It reduces the total slots and reduces the idle
slots.

Procedure description of LHQT: The LHQT consists
of the following steps:

• The reader initializes a null query prefix string and

a null prefix stack and pushes the query prefix into
prefix stack

• The reader fetches a query prefix from prefix stack
and broadcasts it to all tags and each tag sends
back a response to the reader. However, a tag gives
response after the back-off timer which is decided
by the count of last two bits and a collision may
occur

• The reader locates the collision positions and
generates the new query prefixes which are pushed
into prefix stack. There are some cases in
generating the new query prefix as following:

o Idle cycle: No tag responds; idle cycle should be as
little as possible, until zero

o Identification cycle: Only one tag responds the
reader in which the reader may identify the tag; the
number of identification cycles should be equal to

Res. J. Appl. Sci. Eng. Technol., 5(8): 2494-2498, 2013

2496

Table 1: LHQT algorithm example
Step Query prefix Respond tags Updated prefix Query stack Identified tags
1 Null A: 001110 *0* 100
 B: 000011 001
 C: 100110 000
 D: 100011
2 100 C: 100110 100*1* 001 C
 D: 100011 000 D
3 001 A: 001110 001110 000 A
4 000 B: 000011 000011 Null B

or less than the number of tags. Less identification
cycles are, the better the performance of the
algorithm is

o Collision cycle: Collision occurs. In the case, the
reader tracks collisions and then updates the query
prefix. If received bit is not the collision bit, the
reader updates the query prefix with the received
bit. If received bit is the collision bit, the reader
updates the query prefix with the char ’*’. Then,
the reader counts the number and position of
collision bits in query prefix until the number of
collision bits is two or the length of the updated
query prefix is equal to the length of tag ID. It also
has several cases:

o Only one collision: It means that there are two tags
which collision bits of ID are 0 or 1. So the reader
updates the QP by replacing the char ‘*’ with bit 0
or 1 and identifies the two tags

o More than one collision: The reader updates the
collision bit of query prefix with 0 or 1 and pushes
them into the prefix stack. As HQT algorithm, the
reader updates two collision bits of query prefix
not only one. For example, the updated query
prefix is “1*00*1”, then generates the four query
prefixes: 100001, 100011, 110001 and 110011

• Query stacks checking: If the prefix stack is not
empty, continue to step b; if the prefix stack is
empty, the identification process is terminated

Example: In order to understand our proposed LHQT
algorithm, we walk through the identification process in
Table 1 with the assumption that there are four tags.

PERFORMANCE EVALUATION

In this study, all the IDs are randomly generated.
Like all the previous works, the time delay to identify
all the tags is decided by the number of queries sent by
the reader and the communication overhead. The
communication overhead is measured by the number of
bits transmitted by tags and the number of bits
transmitted by the reader. Performance of LHQT is
compared with QT and HQT and LQT which is updated
only collision bit in every round. Performance was
evaluated with different number of tags. The number of
tags is set up from 20 to 250 in step of 20. Each data
point shown in the figures is the average of 100 runs.

It is supposed firstly that the length of tag ID is
eight statically to analyze the numbers of tags on the
performance of the algorithm.

Fig. 1: Comparison of query cycles

Fig. 2: Comparison of collision cycles

Query cycles: Query cycles are divided into three types
such as idle cycles, collision cycles and identified
cycles. Figure 1 and 2 compares query cycles and
collision cycles for identification against different
numbers of tags. In these figures, it shows that the
LHQT protocol outperforms the others in respect of the
number of query cycles. The reason is: in LHQT and
LQT, the collision location is introduced to update the
non-collision bit of query prefix and avoid idle queries.
With the difference of LQT, extending two collision
bits in a query is adopted in LHQT as HQT in order to
minimize the idle cycles. So the number of query cycles
and idle cycles is less than LQT. In HQT, it employs
slotted back-off mechanism to reduce the prefixes
which resulting in idle cycles. In QT, the reader detects
only the collision occurs but does not make full use of
collision position information and extends only one bit
to the prefix, so there are more idle cycles and query
cycles. It is worst one.

0

 50

100

150

200

250

300

350

400
20 60 10
0

14
0

18
0

22
0

25
0

Tag numbers

C
yc

le
s

QT
HQT
DQT
DHQT

0

100

200

300

400

500

600

700

800

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

25
0

Tag numbers
C

yc
le

s

QT
HQT
DQT
DHQT

Res. J. Appl. Sci. Eng. Technol., 5(8): 2494-2498, 2013

2497

Fig. 3: Comparison of transmitted bits

Fig. 4: Comparison of ID length

Transmitted bits: Figure 3 compares the transmitted
bits for identification against different numbers of tags.
It can be seen from the figure that transmitted bits in
LHQT is the least. The reasons are:

• Transmitted bits for identification are composed of

bits sent by the reader and bits transmitted by tags.
Although the bits sent by the reader in a query
cycle are same in four algorithms, bits sent by the
reader for identification in LHQT are least
comparing with others as it has the least query
cycles.

• In LHQT and LQT, the reader stops receiving a bit
of responding tag’s ID once it has tracked one or
two collision bit. But in QT and HQT, the reader
receives a few of bits from k+1 to N (k is length of
prefix and N is length of ID). The greater the value
of N is, the better the performance of LHQT
algorithm.

Length of tag ID: In order to evaluate the length of ID
on the performance of algorithms, the length of ID is
changed from 8 to 128 bits. And the number of tags is
200 statically. Figure 4 compares transmitted bits for
identification 200 tags against different length of ID. It
can be seen from the figure that transmitted bits in
LHQT is almost the same as HQT and LQT, but is less

than QT. With the increasing of the length, the
transmitted bits are more. It is because the query prefix
sent by reader and bits transmitted by a tag in a query is
more.

CONCLUSION

Tag anti-collision is a crucial technique for RFID
system. The approach of using collision location in
HQT algorithms to shorten the identification process is
presented to provide for energy-aware RFID tag
identification. Simulation results show that LHQT can
achieve a significant reduction in processing time for
tag identification. The algorithm, like the existing
Hybrid Query Tree algorithm, is memory-less requiring
the tags to store no state of the identification process
and offer guarantees on the time required to read all
tags. LHQT does not only employ the individual
collision location but also adopt the relevant
information to update quickly the query prefix. Then
the 4-ary tree is used to extend the two collision bits in
updated query prefix. It may reduce the collision cycles
but increase the idle cycles. LHQT combined the QT
with a slotted random back-off mechanism. The
duration of the back-off timer is determined by the last
two bits of the tag ID which changes faster and can
really play a random effect.

ACKNOWLEDGMENT

This study was supported by the Research Fund of

Key Laboratory of Xihua University (No. XDZ0818-
09), China. We also thank the anonymous reviewers for
giving valuable suggestions to further improve on this
work.

REFERENCES

Choi, J.H., D. Lee, Y. Youn, H. Jeon and H. Lee, 2006.

Scanning based pre-processing for enhanced RFID
tag anti collision protocols. International
Symposium on Communications and Information
Technologies (ISCIT), Bangkok, Thailand, pp:
1207-1211.

Finkenzeller, K., 2003. RFID Handbook. Carl Hanser
Verlag, Munich, FRG, pp: 200-219.

Haosong, G. and Y. Younghwan, 2011. A bit collision
detection based hybrid query tree protocol for anti-
collision in RFID system. 11th IEEE International
Conference on Computer and Information
Technology, South Korea, pp: 158-163.

Jiang, Y. and M. Ma, 2012. RFID bit match anti-
collision algorithm in Internet of things. Appl. Res.
Comput., 29(1): 88-91.

Klair, D.K., C. Kwan-Wu and R. Raad, 2010. A survey
and tutorial of RFID anti-collision protocols. IEEE
Commun. Surveys Tutorial, 12(3): 400-421.

0

8000

10000

20 60 10
0

14
0

18
0

22
0

25
0

Tag numbers

QT
HQT
DQT
DHQT

6000

4000

2000

B
its

0

2500

 3000

8 16 32 96 12
8

Length

B
its

QT
HQT
LQT
LHQT

2000

1500

1000

64

 500

Res. J. Appl. Sci. Eng. Technol., 5(8): 2494-2498, 2013

2498

Law, C., K. Lee and K.Y. Siu, 2000. Efficient
memoryless protocol for tag identification
(extended abstract). Proceedings of the 4th
International Workshop on Discrete Algorithms
and Methods for Computing and Communications,
Toronto, CA, pp: 75-84.

Prapassara, P. and S. Bela, 2009. Unified Q-ary tree for
RFID tag anti-collision resolution. 20th
Australasian Database Conference (ADC 2009),
Wellington, New Zealand, pp: 49-58.

Ryu, J., H. Lee, Y. Seok, T. Kwon and Y. Choi, 2007.
A hybrid query tree protocol for tag collision
arbitration in RFID systems. IEEE International
Conference on Communications (ICC), Scotland,
pp: 5981-5986.

Sun, W. and A. Chen, 2011. An effective tag
anticollision algorithm in RFID System. Appl. Res.
Comput., 28(1): 3717-3719.

Zhou, Q. and M. Cai, 2012. Improved hybrid query tree
anti-collision algorithm in RFID system. Comput.
Eng. Design, 33(1): 209-213.

