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Abstract: This study is concerned with the natural action (as Möbius transformations) of some subgroups of 

)(2 ΖPGL  on the elements of quadratic number field over the rational numbers. We start with two groups- the full 
modular group )(= 2 ΖPSLG  and another group of Möbius transformations 1==:,= 62 yxyxM . We consider 
different sets of numbers with fixed discriminants in the quadratic field and look at structure of the orbits orbits of 
the actions of MG , , MG∩  and their subgroups on these sets. The results of earlier studies on the number of orbits 
and the properties of elements belonging to them are extended by similar results related to the new twist connected 
to the group M which has nontrivial intersection with G and opens a possibility to look at orbits which were not 
computed in earlier studies. 
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INTRODUCTION 

 
A non-empty set Ω with an action of the group G 

on it, is said to be a G set. We say that Ω is a transitive  
G-set if, for any qp,  in Ω there exists a g in G such that 

qpg = . Since every element of 
},0:{=\)( QQQ ∈≠+ wtmwtm  can 122ଷbe expressed 

uniquely as 
c

na + , where mkn 2= , K is any positive 

integer and 
c

naba −
=

2

,  and c are relatively prime 

integers and we denote it by ),,( cbaα . Then: 
 

1}=),,(  =,,:{=)(
2

* cbaand
c

nabca
c

nan ZQ ∈
−+

 
 
is a proper G-subset of }{)( ∞∪mQ  and since 

ϕ=)()( ** nn ′∩QQ  for distinct nn ′,  non-square 
integers so QQ \)( m  is the disjoint union of )( 2* mkQ  
for all Ν∈k . Thus it reduces the study of action on 

Qm /)(Q  to the study of action on )(* nQ . If 
)(),,( * ncba Q∈α  and its conjugate α  have opposite 

signs then α  is called an ambiguous number (Mushtaq, 
1988). The actual number of ambiguous numbers in 

)(* nQ   has  been  discussed  by  Husnine et al. (2005) 
as a function of n. The classification of the elements of 

)(* nQ  in the form ],,[ cba  modulo p has been given by 
Farkhanda et al. (2012). 

This study is concerned with the natural action (as 
Möbius transformations) of some subgroups of 

)(2 ΖPGL  on the elements of quadratic number field 
over the rational numbers. That is it investigate the 
study of action on projective line over rationals with 
emphases on irrationals of the form 

c
na +  with 

1=),,(
2

c
c

naa − . We start with two groups-the full 

modular group 〉′′′′〈 1= = :,= 32 yxyxG  where 
z

zx 1=)( −′  

and 
1

1=)(
+
−′

z
zy  and another group of Möbius 

transformations 1==:,= 62 yxyxM , 
z

zx
3

1=)( −  and 

1)3(
1=)(
+
−
z

zy  (Sahin and Bizim, 2003). We consider 

different sets of numbers with fixed discriminants in the 
quadratic field and look at different orbits of the action 
of G, M, MG∩  and their subgroups on  these  sets.  The 
results  of  earlier studies (Aslam et al., 2003-04, 2012; 
Aslam and Zafar, 2011) on the numbers of orbits and 
the properties of elements belonging to them are 
extended by similar results related   to   the   new  twist 
connected to the group M which has nontrivial 
intersection  with  G and opens a possibility to look at 
orbits which were not computed in earlier studies. 
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Table 1: The action of elements of G on )(* nQ∈α  

ߙ ൌ
ܽ  √݊

ܿ
   a b c

ݔ ′ሺߙሻ ൌ
െ1
ߙ

 
 -a c b 

ሻߙሺ′ݕ ൌ
ߙ െ 1

ߙ
 

-a + b -2a + b + c c 

ሺݕ′ሻଶሺߙሻ ൌ
1

െܽ  1
 

-a + c c -2a + b + c 

ݔ ሻߙሺ′ݕ′ ൌ
ܽ

െܽ  1
  a - b b -2a + b + c 

ݔ′ݕ ′ሺߙሻ ൌ ߙ  1  a + c 2a + b + c c 
ሺݕ′ሻଶݔ ′ሺߙሻ ൌ

ܽ
ܽ  1

  a + b b 2a + b + c 

 
Since xyxy ′′=  and 3)(= yxyx ′′  so one of the 

interesting subgroups of MG ∩  is yxxyM ,=* . We 
determine, for each non-square n, the all M*-subsets of 

)(* nQ  by using classes ) ](,,[ nmodcba  and we prove 
that for each M* subset A of 

}|3:)(),,({=) **** cncban QQ ∈α  or )(\)( **** nn QQ , 
)(AxA ′∪  is a G-subset of )(* nQ . We also prove that 

for each M* subset A of )(*** nQ , )(AxA∪  is an M-
subset of )(*** nQ  or )(* n:Q  according as 

9) 0(modn ≡/    or   9) 0(modn ≡   similarly  if  A  is  an  

M* subset of )(\)( **** nn QQ  then )( AxA∪  is an M-
subset of )9())(\)((=)9( ******** nnnn QQQQ : ∪  for 
each non-square n. Thus  M*-subsets (resp. M*-orbits) 
help us in determining the M-subsets and G-subsets 
(resp.  M-orbits and  G-orbits) of QQ \)( m .  
 

PRELIMINARIES 
 

We  quote  from Andrew and John (1995), Aslam 
et al. (2003-2004, 2005), Aslam and Zafar (2011) and 
Afzal et al. (2012) the following results for later 
reference. Also We tabulate the actions on 

)(),,( * ncba Q∈α  of yx ′′,  and yx, ,the generators of 
G and H  respectively, in Table 1 and 2.  
 
Theorem 1:   
 
• If 1=),( pa , then ) (2 kpmodax ≡  has no solutions 

if ) (2 pmodax ≡  is not solvable and exactly two 
solution if ) (2 pmodax ≡  is solvable. 

• Suppose a is an odd integer. Then )2 (2 kmodax ≡ , 
with 3≥k , is solvable if and only if 

 
Table 2: The action of elements of M on )(),,( * ncba Q∈α   

ߙ ൌ
ܽ  √݊

ܿ
   a b c 

ሻߙሺݔ ൌ
െ1
3ܽ

 
 -a ܿ

3
 3ܾ 

ሻߙሺݕ ൌ
െ1

ߙ3  3
 

 -a - c ܿ
3

 3 ሺ2ܽ  ܾ  ܿሻ 

ሻߙଶሺݕ ൌ
െሺߙሻ  1

3ܽ  2
 

-5a - 3b - 2c 2ܽ  ܾ  ܿ 12ܽ  9ܾ  4ܿ 

ሻߙଷሺݕ ൌ
െሺ3ܽ  2ሻ
ሺ6ߙ  3ሻ

 
-7a - 6b - 2c 12ܽ  9ܾ  4ܿ

3
 

3 ሺ4ܽ  4ܾ  ܿ) 

ሻߙସሺݕ ൌ
െሺ2ߙ  1ሻ

3ܽ  1
 

-5a - 6b - c 4ܽ  4ܾ  ܿ 6ܽ  9ܾ  ܿ 

ሻߙହሺݕ ൌ
െሺ3ܽ  1ሻ

3ܽ
 

-a - 3b 6ܽ  9ܾ  ܿ
3

 3ܾ 

ሻߙሺݕݔ ൌ ܽ  1  a + c 2ܽ  ܾ  ܿ ܿ 

ሻߙଶሺݕݔ ൌ
ߙ3  2
ߙ3  3

 
5a + 3b + 2c 12ܽ  9ܾ  4ܿ

3
 3 ሺ2ܽ  ܾ  ܿሻ 

ሻߙଷሺݕݔ ൌ
2ܽ  1
3ܽ  2

 
7a + 6b + 2c 4ܽ  4ܾ  ܿ 12ܽ  9ܾ  4ܿ 

ሻߙସሺݕݔ ൌ
ߙ3  1
ߙ6  3

 
 5a + 6b + c 6ܽ  9ܾ  ܿ

3
 3 ሺ4ܽ  4ܾ  ܿሻ 

ሻߙହሺݕݔ ൌ
ߙ

ߙ3  1
  a + 3b ܾ 6ܽ  9ܾ  ܿ 

ሻߙሺݔݕ ൌ
ߙ

െ3ߙ  1
  a - 3b ܾ െ6ܽ  9ܾ  ܿ 

ሻߙሺݔଶݕ ൌ
െ3ߙ  1
ߙ6 െ 3

 
 5a - 6b - c െ6ܽ  9ܾ  ܿ

3
 3 ሺെ4ܽ  4ܾ  ܿሻ 

ሻߙሺݔଷݕ ൌ
െ2ߙ  1
ߙ3 െ 2

 
 7a - 6b - 2c െ4ܽ  4ܾ  ܿ െ12ܽ  9ܾ  4ܿ 

ሻߙሺݔସݕ ൌ
െ3ߙ  2
ߙ6  3

 
 5a - 3b - 2c െ12ܽ  9ܾ  4ܿ

3
 3 ሺെ2ܽ  ܾ  ܿሻ 

ሻߙሺݔହݕ ൌ ߙ െ 1  5a - 3b - 2c െ2ܽ  ܾ  ܿ ܿ 
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8) 1(moda ≡ , in which case there are exactly four 
solutions. In particular, if s  is any solution, then 
all of the solutions are given by ±s and ±s + 2k-1. 
For k = 3, x = 1, 3, 5, 7 (mod 23) are exactly four 
solutions (Andrew and John, 1995). 

 
Theorem 2: 1,3}= ),(:{=)( *' tn

t
n QQ ∈′′ αα  is 

invariant under the action of M (Aslam et al., 2003-
2004). 
 
Theorem 3: For each 9) 7(  1,3,4,6 modorn ≡ , 

}|3:)(),,({=) **** cncban QQ ∈α  is an M -subset of 
)(' n′′Q  (Aslam et al., 2003-2004). 

 
Theorem 4: Let 3) 0(modn ≡ . Then the sets 

3)} 1(:)({= *3
1 modcnA ≡∈Qα and )({= *3

2 nA Q∈α  
3)} 2(: modc ≡  are two M*-subsets of 

)(\)( **** nn QQ  depending upon classes [a, b, c] 
modulo 3 (Afzal et al., 2012).  
Theorem 5: Let 3) 0(modn ≡ . Then the sets 

3)} 1(:)({= ***3
1 modbnB ≡∈Qα and )({= ***3

2 nB Q∈α  
3)} 2(: modb ≡  are two M*-subsets of )(*** nQ  

depending upon classes [a, b, c]  modulo 3 (Afzal et al., 
2012). 
 
Theorem 6: If 4) 3(  0 modorn ≡ , then 

4)} 1(  :)({= * modcorbnS ≡∈Qα  and )({= * nS Q∈− α  
4)} 1(  : modcorb −≡  are exactly two disjoint G-subsets 

of )(* nQ  depending upon classes [a, b, c] modulo 4 
(Aslam et al., 2005). 
 
Theorem 7: If 4) 1( modn ≡ , then =)(' nQ  

)},(|2:)({ * cbnQ∈α  and  )('\)(* nn QQ  
)},(2:)({= * cbn  Q∈α  are both G-subsets of )(* nQ

(Aslam et al., 2005). 
 
Theorem 8: Let p be an odd prime factor of n. Then 
both of 1}=)/(  )/(:)({= *

1 pcorpbnS p Q∈α  and 
1}=)/(  )/(:)({= *

2 −∈ pcorpbnS p Qα  are G-subsets of 
)(* nQ . In particular, these are the only G-subsets of 
)(* nQ  depending upon classes [a, b, c] modulo p 

(Aslam and Zafar, 2011).  
 

ACTION OF PSL2 (Z)∩(x, y: x2 = y6 = 1) ON )(* nQ  
 

Recall that 1= = :,= 32 yxyxG ′′′′ , =M
 

1==:, 62 yxyx , where 
α

α 1=)( −′x , 
α

αα 1=)( −′y , 

α
α

3
1=)( −x  and 

1)3(
1=)(
+

−
α

αy . The proper subset 

)(* nQ  of QQ \)( m  is invariant under the action of 
modular group G but )(* nQ  is not invariant under the 
action of Möbius group M. Thus it motivates us to 
establish a connection between the elements of the 
groups  G  and M  and hence to deduce a common 
subgroup yxxyM ,=*  of both groups under the action 
of which both )(*** nQ  and )(\)( **** nn QQ  are 
invariant.  Which  helps  us  in  finding  the G-subsets 
of )(* nQ  and M-subsets of )(*** nQ ,

)())
9

(\)
9

((=)( ******** nnnn QQQQ : ∪ according 

as 9) 0( modn ≡/  or 9) 0( modn ≡  and 
)9())(\)((=)( ******** nnnn QQQQ : ∪  for all non-

square n. The following Lemma shows the relationships 
between the elements of G and  M (Table 1 and 2). 

 
Lemma 1: Let yx ′′,  and x, y be the generators of G 
and M respectively defined above (Afzal et al., 2012). 
Then we have:  
 
•  ))(()(= 222 xyxyxy ′′′′′  and 

))()()()()((
3
1= 223 xyxyxyxy ′′′′′′′   

• 
2224 )])(()[(= xyxyxy ′′′′′  and 

)())()((
3
1= 2225 xyyxyxy ′′′′′′   

• xyxy ′′=  and 
3)(= yxyx ′′   

• 
))(()(

3
1= 222 xyxyxy ′′′′

 and 
))()()((= 223 xyxyxyxy ′′′′′′  

• 
2224 )()(

3
1= xyxyxy ′′′′

                   and 
325 ))((= xyxy ′′  

• xx 3=′                                                  and 
))(3)(3(3= xyxy′   

• 3
1)3(= yxyx ′′

                                      and 
xyyx 52 =)( ′′ . In particular 

3
1)3(=)( yxyx ′′  and 

xyyx 52 =))(( ′′   
 
The following corollary is an immediate 

consequence of Lemma 1. 
 

Corollary 1:   
 
• By Lemma 1, since xyxy ′′=  and 3)(= yxyx ′′  so 

yxxyM ,=*  is a common subgroup of G and M 
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where yxxy ,  are the transformations defined by 
1=)( +ααxy  and 

α
αα
31

=)(
−

yx . 

• As yxxy = y2, xyyx = xy2x, so xxyy 22 ,  is a proper 

subgroup of M*. 
,כܯۃ • ۄݔ ൌ ,כܯۃ ۄݕ ൌ ,כܯۃ and ܯ ۄԢݔ ൌ ,כܯۃ ۄԢݕ ൌ

ܩ  
 
We now see the action of this subgroup M* on 

)(* nQ  where n has an odd prime factor. 
 

Theorem 9: Let 3≠p  be an odd prime factor of n. 
Then 1}=)/(  )/(:)({= *

1 pcorpbnS p Q∈α  and 
1}=)/(  )/(:)({= *

2 −∈ pcorpbnS p Qα  are two M*-subsets 
of )(* nQ . In particular, these are the only M*-subsets 
of )(* nQ  depending upon classes [a, b, c] modulo p. 

Before proving this theorem and running through a 
few quick consequences, we quote here two Lemmas 2 
and 3 from Malik and Asim (2012). These results give 
us the classification of the elements of )(* nQ  in the 
form of classes [a, b, c] modulo p. 

 
Lemma 2: Let P be prime and ) 0( pmodn ≡ . Then Ep

0 
consists of classes [0, 0, qr], [0, 0, qnr], [0, qr, 0], [0, 
qnr, 0], [qr, qr, qr], [qnr, qr, qr], [qr, qnr, qnr] or [qnr, 
qnr, qnr]. 

 
Lemma 3: Let 1=)/( pn  and let ) ](,,[ pmodcba  be the 
class of ),,( cbaα  of )(* nQ . Then: 
 
• If p = 1 (mod 4) then [a, b, c] (mod p) has the 

forms ],[0, qrqr , ],[0, qnrqnr , ],0,[ qrqr , 
],0,[ qnrqr , ,0],[ qrqr , ,0],[ qnrqr , ],0,[ qrqnr , 
],0,[ qnrqnr , ,0],[ qrqnr ,  ,0],[ qnrqnr , ,0,0][qnr  

or ሾݎݍ, 0, 0ሿ only. 
• If p = 3 (mod 4) then [a, b, c] (mod p) has the 

forms ],[0, qrqnr , ],[0, qnrqr , ],0,[ qrqr , 
,0],[ qrqr , ],0,[ qnrqr , ,0],[ qnrqr , ],0,[ qrqnr , 
,0],[ qrqnr , ],0,[ qnrqnr , ,0],[ qnrqnr , ,0,0][qnr  or 

,0,0][qr  only. 
 

Proof of theorem 9:  Let ) ](,,[ pmodcba  be the class 
of )(),,( * ncba Q∈α . In view of  Lemma 2, either 
both of b, c are qrs or qnrs and the two equations 

) ,2 ,(=)),,(( ccbacacbaxy ' +++αα , )),,(( cbayx α
)96 , ,3(= cbabba' ++−−α  fix b, c modulo p. If 

) 0( pmodba ≡≡  then 1=))/((2 pcba ++  or 

1=))/((2 −++ pcba  according as 1=)/( pc  or 
1=)/( −pc . similarly for ) 0( pmodca ≡≡ . This shows 

that the sets S1
p and S2

p
  are M*-subsets of )(* nQ  

depending upon classes modulo p . ■ 
The following corollary is an immediate 

consequence of Theorem 1. 
 

Corollary 2:  Let 3≠p  be an odd prime such that 
)2 0( pmodn ≡ . Then )(* nQ  is the disjoint union of 

S1
p
 and S2

p
  depending upon classes modulo 2p . 

 
Proof: Since bcna =2 −  implies that 

)2 (2 pmodbca ≡ . This is equivalent to congruences 
) (2 pmodbca ≡  and 2) (2 modbca ≡ . As 1 is the 

quadratic residue of every prime and second 
congruence forces that b, or c is 1. Hence by Theorem 
1, S1

p, S2
p
  are M*-subsets of )(* nQ . ■ 

 
Remark 1:  For an odd prime 3≠p , ∅=)(*** nQ  if 
and only if )2 0( pmodn ≡ . 

 
Corollary 3: Let p = 3 be an odd prime and 

6) 0(modn ≡ . Then )(\)( **** nn QQ  is the disjoint 
union of S1

p
 and S2

p. Furthermore )(*** nQ  is the 
disjoint union of 1}=)/(:)(),,{= ***

1 pbncbaB p Q∈  and 
1}=)/(:)(),,({= ***

2 −∈ pbncbaBp Qα  depending upon 
classes modulo 6. 
 
Proof: Let )(),,( * ncba Q∈α  and suppose 3) 0(modc ≡/ . 
The two equations ) ,2 ,(=)),,(( ccbacacbaxy ' +++αα  
and )),,(( cbayx α )96 , ,3(= cbabba' ++−−α  fix b, c in 
modulo 3. So ),,( cbaα  belongs to S1

p
 or in S2

p
 

according as 1=/3)(c  or 1=/3)( −c . Similarly B1
p and 

B1
p
 are M*-subsets of )(*** nQ . Hence 

pp BBn 21
*** =)( ∪Q . ■ 

The next theorem is more interesting in a sense that 
whenever 1=)/( ±pn , 3≠p , )(* nQ  is itself an M*-set 
depending upon classes [a, b, c] modulo p. 

 
Theorem 10: Let 3≠p  be an odd prime and 

1=)/( ±pn . Then )(* nQ  is itself an M*-set depending 
upon classes [a, b, c] modulo p. 
 
Proof: Follows from Lemma 3 and the equations 

1=)( +ααxy  and 
13

=)(
+− α

ααyx  given in Table 2. ■ 

Let us illustrate the above theorem in view of Lemma 3. 
If (n/5) = 1, then the set: 
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[1,0,4][2,2,4],[3,2,4],[4,0,4],{[0,1,4], , 
,[0,3,3][2,1,3],[4,0,3],[1,0,3], [3,1,3] , 

[4,4,0][1,1,0],[1,4,0],[1,2,0],[1,0,0],[1,3,0], , 
[4,0,0][4,2,0], ,[4,3,0] , [0,4,1][4,0,1],[4,1,0], , 

[4,0,2][2,4,2],[0,2,2],[3,4,2],[3,3,1],[2,3,1],[1,0,1], , 
[1,0,2]}  is an  M* set. That is, )(* nQ  is itself an M*-
set depending upon classes [a, b, c] modulo 5. Similarly 
for 1=/5)( −n . The next two theorems discuss the cases 

)2 ( pmodpn ≡  and 1=)/2( ±pn . 
 

Theorem 11: Let 3≠p  be an odd prime and 
)2 ( pmodpn ≡ . Then )(\)( '* nnQ Q   is the disjoint  

union   of  S1
p    and  S2

p.   Furthermore  )(' nQ  is the 
disjoint union of 1}=)/(  )/(:)(),,({= '

1 pcorpbncbaC p Q∈α  
and 1}=)/(  )/(:)(),,({= '

2 −∈ pcorpbncbaC p Qα  
depending upon classes modulo 2p . 
 
Proof: Let )(),,( * ncba Q∈α . we show that 

)),,(( cbaxy α  and )),,(( cbayx α  are belong to S1
p
  

according as (b/p) or 1=)/( pc . Similarly )),,(( cbaxy α  
and )),,(( cbayx α  are belong to S2

p
  according as (c/p) 

or (b/p) = -1. As ) ,2 ,(=)),,(( ccbacacbaxy ' +++αα  
and 2)( ca+ nccba =)(2 ++− , so we have the 
congruence )2 ()(2)( 2 pmodpccbaca ≡++−+  
which is equivalent to the congruences 

2) ()(2)( 2 modpccbaca ≡++−+  and 
) ()(2)( 2 pmodccbaca ++≡+ . First congruence is 

trivially true so we discuss the second congruence only. 
Let 0=)/( pa  then 1=))/((2 ±++ pcba  or 

0=))/((2 pcba ++  according as  0=)/( pc  or 
1=)/( ±pc . Let 1=)/( ±pa  then 1=)/(=))/((2 pcpcba ++  

or 1=)/(=))/((2 −++ pcpcba  because 1=)/)(( 2 pca+ . 
Now )96 , ,3(=)),,(( cbabbacbayx ' ++−−αα  and 

ncbabba =)96()3( 2 ++−−− . With similar arguments 
we can show that )),,(( cbayx α  belongs to S1

p or S2
p. 

Hence the sets S1
p
 and S2

p
 are M*-subsets of )(* nQ  

depending upon classes modulo 2p. Similarly it is easy 
to see that C1

p
  and C2

p
  are M*-subsets. ■ 

 
Theorem 12: Let 3≠p  be an odd prime and 

1=)/2( ±pn . Then )(' nQ  and )(\)( '* nnQ Q  are two 
M*-subsets of )(* nQ . 
 
Proof: Follows from Theorem 6 and 7. ■ 
The following result is a generalization of Theorem 1. 

Theorem 13: Let 3≠p  be an odd prime and 
) 0( rpmodn ≡ . Then S1

p
 and S2

p
 are exactly two M*-

subsets of )(* nQ  depending upon the classes [a, b, c] 
modulo pr. 
 
Proof: Let P be an odd prime such that ) 0( rpmodn ≡  
and rpmodcba  ](,,[ ) be the class of )(),,( * ncba Q∈α . 
Then:  
  

) (2 rpmodbca ≡                                                    (1) 
  
 implies  
 

) (2 pmodbca ≡                                                     (2)     

 
By Theorem 9, the congruence: (1) has exactly two 
solutions (i.e., two values of a) if (2) is solvable. So it is 
enough to see the class ) ](,,[ rpmodcba  in modulo p. 
Thus by Theorem 9 we get the required result. ■ 

The following lemma is a particular case of the 
above theorem. 

 
Lemma 4: Let 1≥r  and )3 0( rmodn ≡ . Then 

1}=)/(  )/(:)(***\)(*{=3
1 pcorpbnnS QQ∈α

1}=)/(  )/(:)(***\)(*{=3
2 −∈ pcorpbnnS QQα  

are M*-subsets of )(* nQ . Moreover 
,1}=/3)(:)({= ***3

1 bnB Q∈α  
1}=/3)(:)({= ***3

2 −∈ bnB Qα  are M*-subsets of )(*** nQ . 
In particular, these are the only M*-subsets of )(* nQ  
depending upon classes [a, b, c] modulo 3r. 
 
Proof:  Follows from Theorems 4, 5 and 13.  

Next theorem discuss the G and M-subsets with the 
help of M*-subsets. 

 
Theorem 14:  
 
• If A is an M*-subset of )(*** nQ  or 

)(\)( **** nn QQ , then )(AxA ′∪  is A G-subset of 
)(* nQ . 

• If A is an M*-subset of )(*** nQ , then )(AxA ∪  
is an M-subset of )(*** nQ  or )(* nQ :

 according 
as 9) 0(modn ≡/  or 9) 0(modn ≡ . 

• If A is an M*-subset of )(\)( **** nQnQ , then 
)( AxA∪  is an M-subset of )9(* nQ :  for all non-

square n. 
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Proof:   
 
• Follows by the equation: 

 
)(\)(=))(( ******* nQnQnQx′  

 
• Follows by the equations )(=))(( ****** nQnQx  or: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
9

***\
9

*=))(***(
n

Q
n

QnQx
  

 
according as 9) 0(modn ≡/  or 9) 0(modn ≡ . 

• Follows by the equation: 
 
 ( ) )9(=)(\)( ******* nnnQx QQ ■ 
 

The following example describes the above theorem. 
Example: Let 27=n . Then: 
 

 )27(*
1

271
= Q∈

+
α   

 
but  

 

)243(***
9

2433
=

3

271
=

3
Q∈

++α  

 
Also  
 

)27(*
1

273
= Q∈

+
β   

 
but  
 

)3(***\)3(*
1

31
=

3
QQ∈

+β   

 
Similarly  
 

)27(***
18

273
= Q∈

+
γ   

 
whereas  
 

)243(***
162

2439
=

3
Q∈

+γ   

 
The next three theorems are the generalization of 

Theorem 9 to the case when n involves two distinct 
prime factors. 

Theorem 15: Let 31 ≠p  and 32 ≠p  be distinct odd 
primes factors of n. Then 2

1
1

11,1 = pp SSS ∩ ,

,= 2
2

1
11,2

pp SSS ∩ 2
1

1
22,1 = pp SSS ∩  

and 2
2

1
22,2 = pp SSS ∩   are 

four M*-subsets of )(* nQ . More precisely these are 
the only M*-subsets of )(* nQ  depending upon classes 
[a, b, c] modulo p1p2. 
 
Proof: Let ) ](,,[ 21 ppmodcba  be any class of 

)(),,( * nQcba ∈α  with ) 0( 21 ppmodn ≡ . Then 
bcna =2 −  implies that: 

 
) ( 21

2 ppmodbca ≡                                               (3)  
 
This is equivalent to congruences ) ( 1

2 pmodbca ≡  
and ) ( 2

2 pmodbca ≡ . By Theorem 9, the 
congruence ) ( 1

2 pmodbca ≡  gives two M*-subsets 

1}=)/(  )/(:)({= 11
*1

1 pcorpcnQS p ∈α  and 

1}=)/(  )/(:)({= 11
*1

2 −∈ pcorpcnQS p α  of )(* nQ . 
As ) ( 2

2 pmodbca ≡ , again applying Theorem 9 on 
each of S1

p1 and S2
p1 we have four M*-subsets S1,1, S1,2, 

S2,1 and S2,2 of )(* nQ . ■ 
 

Theorem 16: Let 3≠p  be any odd prime and 
)3 0( pmodn ≡ . Then 3

111,1 = ASA p ∩ , 3
211,2 = ASA p ∩ , 

3
222,2 = ASA p ∩  and 3

122,1 = ASA p ∩  are four M*-subsets 
of )(\)( **** nn QQ  depending upon classes [a, b, c] 
modulo 3p .  
Proof:  Follows from Theorems 4 and 15. ■ 
 
Theorem 17: Let 3≠p  be any odd prime and 

)3 0( pmodn ≡ . Then 3
111,1 = BSB p ∩ , 3

222,2 = BSB p ∩ , 
3
211,2 = BSB p ∩  and 3

122,1 = BSB p ∩  are four M*-subsets of 

)(*** nQ  depending upon classes [a, b, c] modulo 3p. 
 
Proof:  Follows from Theorems 4 and 15. ■ 
We now state the concluding theorem of this study. 

 
Theorem 18: Let rk

r
kkk pppn ⋅⋅⋅2
2

1
13=  where 

rppp ,...,, 21  are distinct odd primes. Then the number 
of M*-subsets of )(* nQ  is 2r namely 2,...,3,2,11 ≤≤ riiiiA  if 

0=k . Moreover if 1≥k , then each M*-subset X of 
these M*-subsets further splits into two proper M*-
subsets 3)} 1(  :{ modcorbX ≡∈α  and 

3)} 1(  :{ modcorbX −≡∈α . Thus the number of M*-
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subsets of )(* nQ  depending upon classes [a, b, c] 
modulo n is 2r+1 if 1≥k . 
 
Proof: Let 0=k . Then, by Theorem 13 and 15, 

)(* nQ  is the disjoint union of 2r subsets 2,...,3,2,11 ≤≤ riiiiS  

which are invariant under the action of M*. However if 
1≥k  then by Theorems 16 and 17 we know that each 

of these M*-subsets splits into four M*-subsets 
3
12,...,3,2,11 AS

riiii ∩≤≤
, 3

22,...,3,2,11 AS
riiii ∩≤≤

, 3
12,...,3,2,11 BS

riiii ∩≤≤
 

and 3
22,...,3,2,11 BS

riiii ∩≤≤
 . Thus by lemma 4, )(* nQ  is 

the disjoint union of 22 +r  subsets of )(* nQ  which are 
invariant under the action of M*. More precisely these 
are the only M*-subsets of )(* nQ  depending upon 
classes [a, b, c] modulo n. Hence the result. ■ 
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