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Abstract: To meet the real-time diagnosis requirements of the complex system, this study proposes a novel 
framework for real-time fault diagnosis using dynamic fault tree analysis. It pays special attention to meeting two 
challenges: model development and real-time reasoning. In terms of the challenge of model development, we use a 
dynamic fault tree model to capture the dynamic behavior of system failure mechanisms and calculate some 
reliability results by mapping a dynamic fault tree into an equivalent Bayesian Network (BN) in order to avoid the 
infamous state space explosion problem. In terms of the real-time reasoning challenge, we adopt a logic compilation 
based inference algorithm, which compiles the BN into an arithmetic circuit and retrieves answers to probabilistic 
queries by evaluating and differentiating the arithmetic circuit. Furthermore, we incorporate sensors data into fault 
diagnosis, cope with the sensors reliability and propose the schemes on how to update the Diagnostic Importance 
Factor (DIF) and the minimal cut sets. Finally, a case study is given to validate the efficiency of this method. 
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INTRODUCTION 

 
Recent technological progress and innovation have 

led to a continuously increasing in the complexity and 
functionality of systems. The failures within these 
systems can cause disruption to the operational 
functionality and may lead to huge economic loss. Fault 
location has therefore become a first objective in 
engineering applications. Effective diagnostic 
approaches, which bring the system back at the fastest 
speed as well as at the lowest cost, can decrease 
downtime and consequently, enhance the operational 
functionality. Aimed at this issue, many researchers 
have developed lots of effective theory and 
methodology. As far as the reasoning model is 
concerned, there are dependency model (Tsai and Hsu, 
2011),  fault  tree  (Lin  et  al.,  2010), Petri net (Basile 
et al., 2009), directed graph (Gao et al., 2010), neural 
networks (Patan et al., 2008), BN (Mansour et al., 2012) 
and so on. Components’ DIF or minimal cut sets’ DIF 
was calculated based on the static fault tree analysis, 
which determines the order of the system diagnosis 
(Assaf and Dugan, 2006). However, this method 
determines the diagnostic sequence only by 
components’ DIF or minimal cut sets’ DIF alone, which 
usually causes minimal cut sets with a smaller DIF to be 
checked first. Assaf and Dugan (2008) put forward a 
method to incorporate evidence data from sensors into 
the diagnostic process. But, the solution for dynamic 
fault tree was based on Markov model which has the 
infamous state space explosion problem. It did not have 
the capability of incorporating the evidence into the 

reasoning and couldn’t update the components’ posterior 
failure probability based on the sensors data, which 
affects the diagnostic accuracy and efficiency. The 
online implementation of these diagnosis techniques is 
becoming an important research topic due to the 
increasing demand for higher performance, efficiency, 
reliability and safety of system equipments. An online 
fault diagnostic scheme for nonlinear systems based on 
neurofuzzy networks was proposed (Mok et al., 2008). 
This scheme needed intact historical data about the 
process operation under various normal and faulty 
conditions, which are very difficult to obtain. Nan et al. 
(2008) proposed a knowledge-based fault diagnosis 
approach (Nan et al., 2008), which used the valuable 
knowledge from the experts and operators, as well as 
real-time data from lots of sensors. Fuzzy logic was also 
used to make inferences based on the real-time data and 
the knowledge. However, this methodology is data-
driven and its performance is dependent on the quality 
of expert knowledge as well as frequency of data 
processing. 

Motivated by the problems motioned above, this 
study presents a novel framework for real-time fault 
diagnosis based dynamic fault tree analysis. It focuses 
on catering for the two challenges: model development 
and real-time reasoning. In addition, we adopt an 
efficient diagnostic decision algorithm based on the 
reliability results to optimize fault diagnosis. This 
method doesn’t need mass fault data, makes full use of 
the qualitative and quantitative information at the phase 
of system design and can also be used to perform online 
diagnosis. 
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Fig. 1: A framework for real-time fault diagnosis method 

 

PROPOSED REAL-TIME DIAGNOSIS  

SYSTEM FRAMEWORK 

 

The real-time diagnosis system uses the dynamic 

fault tree to model the complex system. All minimal cut 

sets are generated using qualitative analysis of the fault 

tree, while DIF is calculated via quantitative analysis. 

The DIF is used as the corner stone of this diagnosis 

algorithm. The DIF is defined conceptually as the 

probability that an event has occurred given the top 

event has also occurred (Assaf and Dugan, 2003). This 

quantitative measure allows us to discriminate between 

components or minimal cut sequences by their 

importance from a diagnostic point of view. The DIF of 

minimal cut sequence is defined conceptually as the 

probability that a minimal cut sequence event has 

occurred given the system failure has occurred: 

 

( ), ( )
nMCS n C

DIF P MCS S DIF P C S= =                  (1) 

 

where, MCSn is the n
th
 minimal cut sequence, C is a 

component in system S. 
The DIF of minimal cut sets is determined by: 
 

( ) / ( )
nMCS nDIF P MCS P S=                   (2)  

 

where, P(S) represents the unreliability of the system. 

Based on the analysis above, a framework for real-

time fault diagnosis method is presented in Fig. 1. It 

focuses on the two challenges: model development and 

real-time reasoning. To address the challenge of model 

development, it uses a dynamic fault tree model to 

capture the dynamic behavior of system failure 

mechanisms and calculates some reliability results by 

mapping a dynamic fault tree into an equivalent BN in 

order to avoid the infamous state space explosion 

problem. In addition, BN can deal with the evidence 

data from sensors and update the DIF after receiving 

them. To address the real-time reasoning challenge, a 

logic compilation based inference is adopted and 

divided into two phases: an offline phase, which 

compiles the network into an arithmetic circuit and is 

run once; and an online phase, which answers many 

queries each time it is invoked and which may be 

invoked multiple times. Also we introduce the evidence 

information function to determine the location of 

sensors, incorporate sensors data into fault diagnosis, 

cope with the sensors reliability and propose the 

schemes on how to update the DIF as well as the cut 

sets. In addition, an efficient diagnostic decision 

algorithm is adopted to generate a Diagnostic Decision 

Tree (DDT) which guides the maintenance crew to 

make more efficient decisions when trying to repair a 

system. This method doesn’t need mass fault data, 

makes full use of the qualitative and quantitative 

information at the phase of system design and can be 

used to perform online diagnosis. 

 

Implementation of the proposed real-time diagnosis 

system: 

Dynamic fault tree analysis: The fault tree is a 

deductive, structured methodology to determine the 

potential causes that may result in the occurrence of a 

predefined undesired event, referred to as the top event. 

Dynamic fault trees extend static fault tree to capture 

dynamic behavior of system failure mechanisms such 

as sequence-dependent events, spares and dynamic 

redundancy management and priorities of failure 

events. 

All minimal cut sets are generated using qualitative 

analysis of fault tree, while DIF is calculated via 

quantitative analysis. The Semanderes algorithm and 

Fussell-Vasely algorithm are the most effective method 

for generating minimal cut sets. But they are 

inappropriate to the dynamic fault tree. The Zero-

suppressed Binary Decision Diagram (ZBDD) can 

overcome this shortcoming (Tang and Dugan, 2004), 

which separates logic constraints and timing constraints 
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and converts the dynamic fault tree into the static fault 

tree. We generate the minimal cut sets of the resulting 

static fault tree using some set operations and expand 

each minimal cut set to minimal cut sequences by 

considering the timing constraints. 

Quantitative analysis for dynamic fault tree is used 
to calculate the minimal cut sequences’ DIF and 
components’ DIF. DIF values are usually acquired from 
marginal importance factors produced by the sensitivity 
analysis of dynamic fault trees solved via Markov 
chains. This calculation process is not only very 
complicated, but also leads to the infamous state space 
explosion problem. In this study, we map dynamic fault 
tree into an equivalent Discrete-Time Bayesian 
Network (DTBN) (Boudali and Dugan, 2005) and 
resort to its inference engine to calculate the posterior 
probability of components given that the system has 
failed, which is also components’ DIF. We enter the 
evidence that the system  has  failed, P (S = n + 1) = 0 

and ( ) 1 / ,1 1P S x n x n= = ≤ < +  and solving the BN 

using a compilation based algorithm gives the 

following posterior failure ( 1)
C
P x n= + , so we can 

calculate the component’s DIF: 
 

1 ( 1)C CDIF P x n= − = +                      (3) 

 

Incorporating sensors evidence into system 
diagnosis: When a system failure is observed, 
sometimes additional evidence is observed too, which 
may be collected from diagnostic sensors. This 
evidence information can be used to optimize the 
system diagnosis. Also, the performance of a diagnostic 
system highly depends on the number and location of 
sensors. 

DIF allows us to discriminate between components 
or minimal cut sets by their importance from a 
diagnostic point of view. The higher is DIF, the more 
important is component or minimal cut sets. So it can 
be used to decide between candidate monitor locations. 
The components which maximum the evidence 
information function will be monitored by sensors. 
Thus the designer can just select the components with 
higher DIF as the sensors location (Duan et al., 2011). 
This sensor optimization placement considers the 
quantitative and qualitative data obtained from 
reliability analysis and can guarantee a lower expected 
diagnostic cost. 

After the sensors location is determined, we can 
use sensors data to optimize the diagnostic progress. On 
one hand, we can use sensors data to narrow down the 
number of the diagnosed minimal cut sets. The Cut sets 
Under Evidence (CUE) is the set of all essential 
minimal cut sets obtained after evidence eliminates 
some cut sets. For example, a system has 5 minimal cut 
sets: {A, B}, {A, D}, {B, C}, {C, D} and {D, E}. 
These minimal cut sets are captured in the system’s 
characteristic function due to ignoring evidence: 

F AB AD BC CD DE= + + + +                             (4) 

 

If sensors detect the failure of C and D, the updated 

CUE function is generated: 

 

CUEF A B E= + +                                 (5) 

 

On the other hand, we can update the DIF of the 

components and CUE. Components’ DIF can be 

updated solving BN according to sensors data, while 

the DIF of the CUE can be calculated using: 

 

( , , )

( )
CUE

E

P CUE E S
DIF

P S DIF
=

                                        (6) 

 

where, S and E represent the system and the variables 

with given evidence, respectively. 

As is known to all, sensors might not be 

completely reliable. A sensor that provides false 

information can misguide the diagnosis process, thus a 

sensor failure can make the DDT meaningless in 

diagnosing the system failure. So we must consider the 

effect of sensors reliability. The influences of sensors 

reliability are embodied not only in the changes on the 

DIF but also in the changes of the CUE. The BN 

created from the dynamic fault tree is appropriate for 

reliability analysis. To use the BN for fault diagnosis, 

we need to add to the network nodes representing the 

evidence. Evidence nodes in the BN provide links 

connecting it with the component in the BN, which are 

observed by the sensors. The links are directed from the 

component to the evidence nodes. As to the effect on 

the DIF, we just change the conditional probability 

tables of the evidence nodes during the mapping fault 

tree into BN and update the DIF according to the 

evidence data; As far as the effect on the CUE is 

concerned, We augment the CUE function by adding 

sensors as cut sets, since a failure sensor can lead to a 

faulty diagnosis progress. The DIF for a sensor with 

respect to the system is measured by the same way the 

DIF of the components: 

 

( ) /Sensor Sensor SDIF P Sensor S q Q= =                  (7) 

 

where, qSensor and QS represent the unreliability of 

sensor and the system, respectively. 

So the updated FCUE is: 

 

CUEF A B E Sensor= + + +                         (8) 

 

Real-time diagnosis: After mapping the dynamic fault 

tree into BN, we apply inference algorithms to the 

model to calculate components’ DIF and update them 

according to the real-time evidence data. Some popular 

algorithms exploit global structure to a certain extent 
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and run in time that is exponential in a measure known 

as tree width. However, for larger tree width BN these 

algorithms are difficulty for exact and real-time 

inference. To address this problem, a number of 

approaches have been proposed (Larkin and Dechter, 

2003; Poole and Zhang, 2003), which seek to exploit 

such local structure. These techniques for exploiting 

local structure have achieved only limited success and 

haven’t answered multiple queries simultaneously. BN 

from the dynamic fault tree has lots of local structure 

information, which contains some determinism (0 or 1) 

and some equal parameters. In addition, multiple queries 

need to be calculated simultaneously. So a logic 

compilation based inference is adopted because logic 

allows many types of structure to be represented 

explicitly and allows us to leverage state-of-the-art 

algorithms for knowledge compilation. The compilation 

based inference method is divided into two phases, 

offline compilation and online inference. The offline 

phase compiles the network into an arithmetic circuit 

and is run once (Chavira and Darwiche, 2005; Darwiche 

and Corporation, 2009). In particular, the approach 

encodes the BN into a Conjunctive Normal Form 

(CNF), converts the CNF into a smooth Decomposable 

Negation Normal Form (sd-DNNF) circuit that satisfies 

some properties and then extracts an arithmetic circuit 

from the sd-DNNF circuit. The online phase answers 

many queries each time it is invoked and which may be 

invoked multiple times. The main advantage of 

compilation is that a large amount of the work required 

for inference is performed once offline; this effort is 

then amortized over many online queries. Online 

inference is typically much faster when using a 

compilation approach and can be used to infer for BN 

with large tree width. 

As cut sets represent minimal sets of component 

failures that can cause a system failure, we should 

diagnose them one by one to find the root reason of 

system failure. Only when we finish diagnosing a 

minimal cut set can we do next. The order by which cut 

sets are checked depends on its DIF ordering, while the 

order of components in the same cut set is determined 

by their DIF. The cut sets with larger DIF are checked 

first. Accordingly, components with larger DIF in a cut 

set are checked first (Duan et al., 2011). This assures a 

reduced number of system checks while fixing the 

system.  

Average diagnostic cost is often used to evaluate 

the fault diagnosis method. The diagnostic cost is lower, 

the method is better. As we all know, the output of fault 

diagnosis method is the DDT, we can evaluate it with 

the help of several decision tree evaluation measures. 

Traditional evaluation measures have the mean depth of 

the tree and the expected cost function. But these 

measures only consider the test cost and the failure 

probability of components, neglect system qualitative 

structure and the importance factors of each component. 

Also, they only diagnose one fault at a time and are not 

capable of detecting multiple faults by a single tree 

traversal. Based on these evaluation mechanisms, we 

adopt Expected Diagnostic Cost (EDC) which 

incorporates the qualitative (structure) and quantitative 

(reliability analysis) into one measure for predicting 

diagnosis cost: 

 

1

n

i i

i

S

qcutset cp

EDC
Q

==

∑
                              (9) 

 

where,  

Qs   =  The unreliability of the system 

cpi = The sum of all test costs from the top node to 

the cutset’s leaf node  

qcutseti = The unreliability of cut sequences 

 

Case study: 

Micro-computer controlled straight electro-

pneumatic braking system: The micro-computer 

controlled straight electro-pneumatic braking system 

has been the first choice braking system for urban rail 

transit, which has the advantages of the swift response, 

flexible operation, combined application with electric 

braking and anti-slip control. It is an electro-mechanic 

control system and achieves its function by the 

coordination of electrical circuit part and air circuit 

part. However, high coupling degree together with 

complicated logic relationships exists in these modules. 

Lots of current research about the micro-computer 

controlled straight electro-pneumatic braking system 

has focused on its reliability analysis using a reliability 

block diagram or static fault tree. This study uses a 

dynamic fault tree to model its dynamic fault 

characteristic and proposes an efficient real-time 

diagnostic algorithm which can guide the maintenance 

crew to recover the failed system at the lowest cost. 

 

APPLICATION OF DIAGNOSTIC METHODS 

 

Figure 2 shows a dynamic fault tree for service 

braking failure of a micro-computer controlled straight 

electro-pneumatic braking system. Any one of braking 

control failure, air supply unit failure, braking control 

output failure and braking execution unit failure will 

result in service braking failure. 

We generate all minimal cut sequences via the 

efficient ZBDD and calculate the DIF of components as 

well as minimal cut sequences by mapping its dynamic 

fault tree into the equivalent DTBN as shown in Fig. 3. 

Now we know the service braking failure, so their 

failure probability should be set as 1. Solving this BN 

using the inference algorithm mentioned above gives 

the results of some importance factors in Table 1. 

Assume   the  number  of  sensors  is  two. According to 
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Fig. 2: A dynamic fault tree for service braking failure of braking system 

 

 
Fig. 3: A DTBN for service braking failure of braking system 

 
Table 1: Detailed diagnostic data without sensors 

Components DIF Components DIF 

X18, X19 0.3240 X14 0.0147 
X22, X23 0.3240 X21, X25 0.0048 
X26 0.2780 X6 0.0020 
X1 0.1250 X3 1.55e-3 
X20, X24 0.0764 X9, X10 1.52e-3 
X2 0.0574 X16, X17 1.39e-3 
X5 0.0270 X13 1.34e-3 
X7 0.0217 X15 8.74e-4 
X12 0.0185 X4 8.2e-4 
X8 0.0177 X11 5.78e-7 

Table 1, X18 and X19 will be best location of sensors. 
Assume sensors have a fixed probability of failure of 
0.02; the DIF of the sensor is 0.357. If sensors monitor 
the failure of X18 and X19, we can use these evidences 
to optimize the diagnosis. On one hand, we can use them 
to reduce the characteristic function and generate the 
updated CUE function; On the other hand, we can 
update the DIF of components and CUE after receiving 
the evidence data. Table 2 shows the diagnostic data 
with   sensors  data.  Based  on  the  diagnostic   decision 
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Table 2: Detailed diagnostic data with sensors 

Components DIF Components DIF 

X22, X23 0.463 X14 0.0141 

X26 0.0806 X25 6.9e-3 

X24 0.0783 X6 2e-3 

X20 0.0732 X3 1.53e-3 

X1 0.0363 X9, X10 1.52e-3 

X5 0.0276 X16, X17, X21 1.37e-3 

X7 0.0217 X4 8e-4 

X8 0.0177 X13 3.9e-4 

X12 0.0176 X15 2.53e-4 

X2 0.0167 X11 5.77e-7 

 

Table 3: The comparison among two diagnosis methods 

Diagnostic methods EDC 

Diagnostic method by Assaf T 4.11 

Diagnostic method in the study 3.13 

 

Table 4: Results for different inference algorithms 

Algorithm Edges Nodes Reasoning time (ms) 

Join tree 3489 1579 14.61 

Arithmetic circuit 756 568 2.26 

 

algorithm above mentioned, we can generate its DDT 

which is shown in Fig. 4. Assuming all components and 

sensors have a unit test cost, the diagnostic cost of 

different   algorithms   is   shown   in    Table   3,  which  

indicates the proposed approach is more efficient than 

others. Experimental results demonstrate that the EDC 

is lower as sensors have higher reliability. So we should 

choose sensors with higher reliability. Table 4 shows 

results for different inference algorithms. The compiled 

algorithm based on arithmetic circuit is faster than the 

join tree algorithm. The timing measurements reported 

here were made on a PC with an Intel 4 2.1 GHz 

processor, 2 GB RAM and Windows XP. 
 

CONCLUSION 
 

In this study, we have proposed an efficient 
framework for real-time fault diagnosis based on 
dynamic fault tree analysis. Specifically, we have 
discussed the use of dynamic fault tree, BN and 
arithmetic circuits to perform diagnosis in the micro-
computer controlled straight electro-pneumatic braking 
system. This framework has emphasized two important 
issues that arise in engineering diagnostic applications, 
namely the challenges of modeling and real-time 
reasoning. The modeling challenge concerns how to 
model the dynamic behavior of system failure 
mechanisms. To meet this challenge, we  use  a  
dynamic     fault    tree    model   and     calculate    some 
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Fig. 4: DDT for service braking failure of braking system, (a) DDT without evidence from sensors, (b) DDT with evidence from 

sensors 
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reliability results by mapping a dynamic fault tree into 

an equivalent BN in order to avoid the infamous state 

space explosion problem. To meet the real-time 

reasoning challenge, we compile BN into arithmetic 

circuit, an approach that supports the real-time 

diagnosis in two ways. First, the use of arithmetic 

circuit results in more predictable diagnostic inference 

times. Second, it results in much faster inference. 

Furthermore, we incorporate sensor data into fault 

diagnosis, cope with the sensors reliability and propose 

the schemes on how to update DIF and the cut sets. In 

addition, an efficient diagnostic decision algorithm is 

developed based on these results to optimize system 

diagnosis. Finally, a case study is given to demonstrate 

the efficiency of this method. The proposed method 

makes use of the advantages of the dynamic fault tree 

for modeling, BN for inference ability and arithmetic 

circuit for real-time reasoning, which is especially 

suitable for the complex system diagnosis. 

In the future study, we will focus on the system 

model optimization and evaluate diagnostic sensitivity 

to the underlying model and parameters to improve the 

effectiveness of our algorithms and methods. 
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