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Abstract: In real life manufacturing environments, production managers often make plan to produce m products in 
turn on a single machine in order to maximize the machine utilization. This study focuses on determining an optimal 
common production cycle time for a multi-item Finite Production Rate (FPR) model with random scrap rate and 
multi-shipment plan without using the derivatives. We assume that m products are manufactured in turn based on a 
common cycle policy on a single machine and during the processes some nonconforming items are generated 
randomly. These defective items cannot be reworked, thus they are scrapped at additional costs in the end of each 
production cycle. After the entire lot is quality assured, the delivery of finished items is under a practical multiple 
shipments plan. The objective is to determine an optimal common cycle time that minimizes the long-run average 
cost per unit time using an algebraic approach. Conventional method for solving such a problem is by the use of 
differential calculus on system cost function to derive the optimal policy, whereas the proposed approach is a 
straightforward method. It helps practitioners, who may not have sufficient knowledge of calculus, to understand 
and manage the real-life multi-item production systems more effectively. 
 
Keywords: Algebraic approach, common cycle time, finite production rate, inventory, multi-item production, 

shipment, scrap 
 

INTRODUCTION 
 

For many decades, the Finite Production Rate 
(FPR) model has been a fundamental technique for 
determining the optimal lot size for items produced in-
house in most manufacturing firms (Nahmias, 2009). 
The classic FPR model considers a production planning 
for single product. However, in real life manufacturing 
sector most vendors often make plan to produce m 
products in turn on a single machine in order to 
maximize the machine utilization. Gordon and Surkis 
(1975) presented a simple and practical approach to 
determine control policies for a multi-item inventory 
environment. They considered the items are ordered 
from a single supplier and the demands for items are 
subject to severe fluctuations. The time between orders 
can either be fixed or based on accumulating a fixed 
order quantity for all products. Their model balanced 
carrying and stock-out costs. An operational system 
structure is developed and a simulation procedure was 
used to determine the appropriate value of their 
inventory factor in the model. Rosenblatt and Finger 
(1983) considered a problem of multi-item production 

on a single facility. The facility was an electrochemical 
machining system and the products are impact sockets 
of various sizes for power wrenches. A grouping 
procedure of the various items was adopted. A modified 
version of an existing algorithm was applied to insure 
production cycle times which are multiples of the 
shortest production cycle time. Byrne (1990) presented 
an approach to the multi-item production lot sizing 
problem based on the use of simulation to model the 
interactions occurring in the system. A search algorithm 
was used to adjust the lot sizes on the basis of the 
results of previous simulation runs, with the objective 
of achieving a minimum total cost solution. Studies 
related to addressing various aspects of multi-item 
production planning and optimization issues (Kohli and 
Park, 1994; Aliyu and Andijani, 1999; Lin et al., 2006; 
Ma et al., 2010; Rossetti and Achlerkar, 2011). 

Imperfect product quality has been another special 
focus in recent literatures, for in real-life production 
environment it is inevitable to produce some defective 
items. Mak (1985) developed a mathematical model for 
an inventory system in which the number of units of 
acceptable quality in a replenishment lot is uncertain 
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and the demand is partially captive. It was assumed that 
the fraction of the demand during the stock-out period 
which can be backordered is a random variable whose 
probability distribution is known. The optimal 
replenishment policy is synthesized for such a system. 
A numerical example was used to illustrate the theory. 
The results indicated that the optimal replenishment 
policy is sensitive to the nature of the demand during 
the stock-out period. Many studies have since been 
conducted to address the issues of quality assurance in 
production systems (Hariga and Ben-Daya, 1998; 
Teunter  and  Flapper,  2003;  Wee  et  al., 2007; Chiu 
et al.,  2009, 2011, 2012a;  Lee  et al., 2011). In this 
study, all defective items produced are not repairable, 
thus they are scrapped at an additional disposal cost. 

Another unrealistic continuous inventory issuing 
policy was assumed by classic FPR model to satisfy 
product demand. But in real world situations the 
multiple or periodic deliveries of finished products are 
often used. Schwarz (1973) examined a simple 
continuous review deterministic one-warehouse N-
retailer inventory problem with the purpose of deciding 
the stocking policy, for minimizing the average system 
cost. Many other studies dealing with different aspects 
of vendor-buyer supply chain optimization issues can 
also be found (Hill, 1997; Sarker and Khan, 2001; 
Abdul-Jalbar et al., 2005; Chiu et al., 2011, 2012b, c). 

Conventional approach for solving optimal lot 
sizing is by the use of differential calculus on system 
cost function. Recently, Grubbström and Erdem (1999) 
proposed an algebraic derivation to solve the Economic 
Order Quantity (EOQ) model with backlogging. Their 
algebraic approach does not reference to the first- or 
second-order derivatives. Similar approach was applied 
to solve various aspects of production and supply chain 
optimization (Chiu, 2008; Lin et al., 2008; Chen et al., 
2012). This study extends such an algebraic approach to 
resolve a multi-item FPR model with scrap and multi-
shipment policy (Chiu et al., 2012d). The objective is to 
determine an optimal common cycle time that 
minimizes the long-run average cost per unit time using 
an algebraic approach. It may help practitioners, who 
have insufficient knowledge of calculus to understand 
the real-life multi-item production systems more 
effectively. 

 
DESCRIPTION, MODELLING AND 

FORMULATIONS 
 

A multi-item FPR model with random scrap rate 
and multi-delivery policy (Chiu et al., 2012d) is 
reexamined here using mathematical modeling along 
with an algebraic derivation. Consider a FPR model 
where a machine can produce m products in turn, using 
the common production cycle policy. All items made 
are screened and unit inspection cost is included in unit 
production cost Ci. During the production of product i 

(where, i = 1, 2, …, m) an xi portion of defective items 
is produced randomly at a rate of di. All defective items 
cannot be repaired and thus they must be scrapped in 
the end of production with an additional cost CSi. Under 
the normal operation, the constant production rate for 
product i, Pi satisfies (Pi-di-λi)>0, where λi is the annual 
demand  rate  for  product i and di can be expressed as 
di = xiPi. A multi-shipment policy is employed in this 
study. It is assumed that the finished items for each 
product i can be delivered to customers only if the 
whole production lot is quality assured in the end of 
production. Fixed quantity n installments of the finished 
batch are delivered at a fixed interval of time during 
delivery time t2i (Fig. 1). Other variables used here 
include: unit holding cost hi, the production setup cost 
Ki, the fixed delivery cost K1i per shipment for product i 
and unit shipping cost Ci for product i. Additional 
notation also includes: 
 
T   = The common production cycle length, to be 

determined 
t1i  = The production uptime for product i in the 

proposed system 
Hi  = Maximum level of on-hand inventory in units 

for product i when regular production process 
ends 

Qi  = Production lot size per cycle for product i 
n  = Number of fixed quantity installments of the 

finished batch to be delivered to customers in 
each cycle, it is assumed to be a constant for 
all products 

tni  = A fixed interval of time between each 
installment of finished products delivered 
during t2i, for product i 

I(t)i = on-hand inventory of perfect quality items for 
product i at time t 

TC (Qi) = Total production-inventory-delivery costs per 
cycle for product i in the proposed system 

E [TCU (Q)] = Total expected production-inventory 
delivery costs per unit time for m 
products in the proposed system 

E [TCU (T)] = Total expected production-inventory-
delivery costs per unit time for m 
products in the proposed system using 
common production cycle time as the 
decision variable  

 
One can directly observe the following equations 

from Fig. 1: 
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Fig. 1:  On-hand inventory of perfect quality items for product 

i in a cycle (Chiu et al., 2012d) 
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1 1i i i i i i id t Px t x Q= =                              (5)  

The variable holding costs for finished products kept by 
vendor during t2i are Chiu et al. (2009): 
 

2
1

2 i i
nh H t

n
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⎜ ⎟
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Total costs per cycle TC(Qi) for m products (as 

shown in Eq. (7)) consists of variable production cost, 
setup cost, scrapped cost, fixed and variable delivery 
costs, holding cost during t1i and holding cost for 
finished goods kept during t2: 
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Taking the randomness of x into account and by 

substituting all parameters from Eq. (1) to (6) in Eq. 
(7), the expected E [TCU (Q)] can be obtained as Chiu 
et al. (2012d): 
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where, 
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One can further convert the aforementioned equation into E [TCU (T)] by applying Eq. (4): 
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THE PROPOSED ALGEBRAIC APPROACH 
 

One notes that Eq. (9) contains one single decision variable T in different forms. Therefore, one can rearrange it as: 
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or 
 

[ ] 1
1 2 3( )E TCU T T Tβ β β−= + ⋅ + ⋅

 

                         (11) 
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Further rearranging Eq. (14) one has: 
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One notes that Eq. (16) will be minimized if the 

second term of the right-hand side equal zero. That is:  
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Substituting Eq. (13) and (14) in Eq. (17), the 

optimal common production cycle time T* is obtained: 
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One notes that Eq. (18) is identical to that obtained 

by using the conventional differential calculus method 
(Appendix). Applying T* one has the E [TCU (T)] as 
follows: 
 

*
1 2 3( ) 2E TCU T β β β⎡ ⎤ = + ⋅⎣ ⎦

 

                            (19) 

 
Numerical example: For the purpose of demonstrating 
the obtained result, the same numerical example (Chiu 

et al., 2012d) is provided in this section. Reconsider 
that a manufacturing firm has employed a common 
production cycle time policy produce five products in 
turn on a single machine. The annual demand rates λi 
for 5 different products are 3000, 3200, 3400, 3600 and 
3800, respectively. Each product can be made at 
different production rates Pi as 58000, 59000, 60000, 
61000 and 62000 respectively. Random scrap rates 
during production uptime for each product follow 
uniform distribution over the intervals of (0, 0.05), (0, 
0.10), (0, 0.15), (0, 0.20) and (0, 0.25) respectively. 
Scrap items for each product have different disposal 
costs of $ 20, 25, 30, 35 and 40 per item, respectively. 
Values for other variables are as follows: 

 
Ci =  Manufacturing cost per item for each product 

are $ 80, 90, 100, 110 and 120, respectively 
Ki =  Set up costs for each product are 3800, 3900, 

4000, 4100 and 4200, respectively 
hi  =  Unit holding costs are $ 10, 15, 20, 25 and 30, 

respectively 
K1i =  The fixed delivery costs per shipment are $ 

1800, 1900, 2000, 2100 and 2200, respectively 
n  =  Number of shipments per cycle is assumed to 

be four (a constant) 
CTi  =  Unit transportation costs are $ 0.1, 0.2, 0.3, 0.4 

and 0.5, respectively 
 

The optimal common production cycle time T* = 
0.6662 (years), can be obtained by applying Eq. (18) and 
the expected system cost per unit time for m products E 
[TCU (T*)] = $ 2113194, can also be computed using 
the Eq. (19). It is noted that these results are identical to 
those obtained in Chiu et al. (2012d). 

 
CONCLUSION 

 
Conventional method for solving multi-item FPR 

model with scrap and multi-shipment policy is by the 
use of differential calculus on system cost function to 
derive the optimal policy (Chiu et al., 2012d), whereas 
this study proposed a mathematical modeling along 
with a straightforward algebraic approach. It aims at 
helping practitioners to understand and manage the 
real-life multi-item FPR systems without have to 
reference to differential calculus. 
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APPENDIX 
 

Derive the optimal common production cycle time for the 
proposed model using the differential calculus (Chiu et al., 2012d). 
By differentiating E [TCU (T)] (i.e., Eq. (9)) with respect to T gives 
first and second derivative, one obtains: 
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Equation (A-2) is resulting positive for Ki, n, K1i and T are all 

positive, thus E [TCU (T)] is convex for all T different from zero. 
The optimal common production cycle time T* can be obtained 

by setting first derivative (i.e., Eq. (A-1)) equal to zero. Let E0 = [1-E 
(xi)]-1 and E1 = E (xi) [1-E(xi)]-1, then: 
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