
Research Journal of Applied Sciences, Engineering and Technology 5(6): 2174-2179, 2013

DOI:10.19026/rjaset.5.4769

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: August 02, 2012 Accepted: September 08, 2012 Published: February 21, 2013

Corresponding Author: Chunyan Han, Department of Software College, Northeastern University, Shenyang, 110819, China
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

2174

Research Article
Two Improved Pseudo-Random Number Generation Algorithms Based

on the Logistic Map

1, 2
Chunyan Han,

1
Yunxiao Wang,

1
Yixian Liu and

1
Dancheng Li

1
Department of Software College,

2
Department of Information Science and Engineering, Northeastern

University, Shenyang, 110819, China

Abstract: In this study, we improve the pseudo-random number generation algorithm of Java based on the logistic
map. We replace the seed of the random generation algorithm with a sequence of numbers which is generated by the
original logistic map and the improved logistic map. And then we describe the two improved algorithms in detail
including the essence of two algorithms and the processes. Also we display a series of experiments to prove the
improved algorithms have a good randomness and they are efficient. Eventually we conclude our study and list our
future study. The two improved pseudo-random number generation algorithms take advantage of the chaotic
characteristics of the logistic map which makes it become much more efficient.

Keywords: Pseudo-random number generation, randomness tests, the logistic map

INTRODUCTION

Nowadays, random numbers are widely used in

many fields, like in the cryptography field. Random
numbers are generated by the random numbers
generator. A random numbers generator is a
computational or physical device designed to generate a
sequence of numbers or symbols that lack any pattern,
i.e., appear random (Wagenaar, 1972; Kanter et al.,
2010). The generation process of random bits is
becoming increasingly important. Since the use of a
truly random generator is very difficult as they are
generally slow and may consist of special hardware, the
importance of designing efficient pseudo-random
generators arise (Zarei et al., 2010). In the following
parts, random numbers mean pseudo-random numbers.
There are 2 kinds of generation methods, physical
methods and computational methods. Physical random
number generators always use hardware or some
special devices to generate random numbers like dice,
coin flipping, roulette wheels. While pseudo-random
number generators with computational methods are
algorithms that can automatically create long runs of
numbers with good random properties but eventually
the sequence repeats. The string of values generated by
such algorithms is generally determined by a fixed
number called a seed (Heam and Nicaud, 2011). In this
study we only concern computational pseudo-random
number generation algorithms.

In many computer languages, there are pseudo-
random number generation algorithms, like the random
() in Java and rand () in C++; Even though the

randomness of these methods is good, there still a

problem. That is efficiency. In other words, the process

of generating a pseudo-random number is relatively

slow. In this study, we study the random method of

Java language. And we figures out how it generates

random numbers. Then we improved this pseudo-

random number generation algorithm of Java language

by using the logistic map. Here the logistic map

includes the original logistic map and the improved

logistic map. In this study, we firstly improve the

pseudo-random number generation algorithm and

describe the 2 algorithms in detail. Then we list some

experiments to show the randomness and the efficiency

of these 2 algorithms. At last, we conclude our study.

TWO IMPROVED PSEUDO-RANDOM NUMBER

GENERATION ALGORITHMS

Random method of Java-RMOJ: There are many

random number generation methods of many languages

including Java language. We study the process of the

random method of the Java. In Java language, random

method is for generating random numbers. There are

many random methods in Java with different

parameters and different ranges. But the cores of these

random methods are the same. After studying the

source code of the random method in Java, we

eventually know how it generates random numbers. We

call this random method of Java RMOJ in short. Here

are the 3 key steps of RMOJ:

Res. J. Appl. Sci. Eng. Technol., 5(6): 2174-2179, 2013

2175

Fig. 1: Process of RMOJ

Step 1: Get a long type seed according to the current
time of the system as old seed.

Step 2: Process this old seed with arithmetic operations
and a bitwise operation into a new seed.

Step 3: Next Int method uses the new seed to generate a
random number according to some specific
operations including bitwise operations.

Take the method of generating an integer number

as an example. The process of RMOJ is shown in
Fig. 1.

In the process, multiplier, addend and mask are
three variables. Multiplier is 0x5DEECE66DL and
addend is 0xBL. Mask is (1L<<48) -1.

In the process, through step 1 and 2, RMOJ gets a
new seed and by using the seed, it can generate a
random number. In this 2 steps, an old seed would do a
multiply operation, a plus operation and a bitwise and
operation. These 2 steps cost much time because of the
getting old seed according to the current time and
arithmetic operations. There is no doubt that this is the
bottleneck of the efficiency problem of RMOJ. If we
can find some other faster method to generate a new
seed, it would cost less time.

Improved random method of Java by using the

logistic map-LRMOJ and ILRMOJ: We call the

improved random method of Java by using the original

logistic map the LRMOJ and the improved random

method of Java by using the improved logistic map the

ILRMOJ.

We improve this RMOJ and try to make it more

efficient. The core of our idea is to make the sequence

of numbers which is generated by the logistic map to be

the seeds of generating random numbers.

Chaos is a random movement in definite system.

Chaotic system has following characteristics: definite,

boundary, sensitivity to initial condition, topology

transmission and so on. Chaos structure is complex and

difficult to analyze or forecast (Xiao-Jun et al., 2006).

The logistic map is a polynomial mapping of degree 2,

often used in the study of chaos systems. Through the

process of RMOJ, we conclude that generating a seed is

the most important phase of the method. And in the 1
st

2 steps of RMOJ is to get a new seed by changing a

long type old seed into a new long type seed. Especially

in step 2, the old seed must do bitwise and operation

and some arithmetic operations which actually would

cost much time. If we want to make it much more

efficient, we have to find a way to solve this time

consuming problem of 1
st
 2 steps. Meanwhile we must

make the method as random as RMOJ. Based on the

chaotic characteristics of the logistic map, we decide to

use the logistic map sequence as seeds.

The logistic map can mathematically be described

as Eq. (1):

Xn+1 = r*Xn* (1 - Xn) (1)

This equation is a recursive equation. Where Xn or

Xn+1 are decimal ranges between 0 and 1, r is a

coefficient which is between 0 and 4. When the r is

beyond 3.57, most values appear chaotic behaviors

(Persohn and Povinelli, 2012). Here we let X0 = 0.75,

r = 3.935. We replace the new seeds with the sequence

of numbers that this logistic map generates. That is to

say, we substitute the step 1 and 2 of RMOJ with one

single step. In this new step, we use the sequence of the

logistic map as new seeds. Obviously the numbers that

this logistic map generates are decimals between 0 and

1; we process these decimals into long type integer by

amplifying the decimals. And the step 3 and the

following processes are the same with RMOJ. And we

can get the steps of LRMOJ:

Step 1: Get a decimal from the logistic map sequence
numbers and amplify the decimal into a long
type number as a new seed.

Res. J. Appl. Sci. Eng. Technol., 5(6): 2174-2179, 2013

2176

Step 2: Next Int method uses the new seed to generate a
random number according to some specific
operations including bitwise operations.

In step 2, Next Int method is the method to adapt

the new seed to a proper range like integral number
which ranges from 0 to 10. In this method, the new seed
would be processed by shifts operations. This is a same
method RMOJ, LRMOJ and ILRMOJ would use.

Comparing with the 2 steps of RMOJ, the new step
of LRMOJ only access one random number in the
sequence of the logistic map rather than do a series of
operations. The sequence is generated when the method
is used first time and the same time the method
initiates. And what is important to efficiency, the
sequence only is generated once and it would be stored
in the memory. When the method needs a new seed, it
would access the sequence to get a decimal.

 There are many operations to guarantee the
chaotic characteristics of the sequence:

• First, after studying the logistic map, we find that
at the first phase of the recursive process, Xn
doesn't have a good chaotic characteristic. That is
to say when the equation starts, the 1

st
 amount

values of Xn are not so random. In order to
guarantee the randomness, we cut the 1

st
 part of

sequence, in the experiments; we generated a
sequence of 100000 random numbers and started
from the 2000

th
 number.

• Second, in the method, we defined a variable to be
the index of the sequence. From above we can find
that when the method initiates, the index points the
2000

th
 number of the random numbers sequence.

And when we access the sequence and get a
random number of the sequence, the index would
point to the next number of the sequence. When it
comes to the end of the sequence, the index would
start from the head. Clearly we used the modulo
operation to implement this

• Third, we use the current time of the system as an
initial variable of Xn in the equation. After we get
the current time, we adapt this long type number
into a decimal ranges from 0 to 1 as the Xn. and
because the Xns are different, the sequences of
random numbers which is generated by the logistic
map are different. Here we defined a time-out time.
Consequently, when the method is not used, after
the time-out time period the method would get an
Xn based on the current time of the system and
generate a brand new sequence of random numbers
of the logistic map. This new sequence would
substitute the old one. This can be described as the
sequence is timely updated. By using these 3
operations, the randomness of the sequence is
guaranteed.

Fig. 2: Process of LRMOJ

Time cost of the LRMOJ mainly focuses on the

generation of the sequence of random numbers; the

access process and the sequence update process. From

the detailed description we can find the generation of

the sequence is done when the method initiates and it is

before the random number generation process. Also it is

done just once rather than every time. When it comes to

the access process, the method would access the

sequence in the memory. It is faster comparing with the

arithmetic operations and bitwise and operations. The

sequence update process is almost the same with the

generation of the sequence and it would be used less if

the user doesn't want to generate too many numbers.

Comparing with the RMOJ, we deduce that LRMOJ is

faster and much more efficient. The process of LRMOJ

is described in Fig. 2.

The logistic map we mentioned is the original

logistic map. Even though it is widely used but the

original logistic map also has many drawbacks. It

mainly has 2 obvious drawbacks. The 1
st
 is the islands

of stability problem. In the logistic map, when r is

greater than 3.57, there are still certain isolated ranges

of r that show non-chaotic behaviors; these are

sometimes called islands of stability. Obviously if the

numbers are generated in the islands of stability, these

numbers are not chaotic or not random. This drawback

sometimes can affect the chaotic features of the logistic

map. The 2
nd
 problem is the values of generated Xn+1 is

Res. J. Appl. Sci. Eng. Technol.,

no uniform. Recording the values of generated X

statistics the frequency of values, we can find they are

no uniform. The frequency of 0.6 to 0.8 is much higher

than others. In order to solve these 2 problems, there are

many kinds of improved logistic map. Here we adopted

one. It is Eq. (2) (Jianquan and Qing, 2010). Here the k

is another coefficient. It must greater than 668.7

according to the study in the study:

 Xn+1 = (k * r *Xn*(1 - Xn)) mod 1

Through a series of experiments, it is proved that
this improved logistic map solves the problems
islands of stability and no uniform. It is more chaotic
and uniform than the original logistic map. And in
Eq. (2), mod 1 operation makes the result range from 0
to 1, actually the same range with the original logistic
map.

We call this improved LRMOJ the ILRMOJ. In
ILRMOJ, we replace the logistic map with the
improved logistic map. Thus the steps of ILRMOJ are
as followed:

Step 1: Get a decimal from the improved logistic map

sequence numbers and amplify the decimal into
a long type number as a new seed.

Step 2: Next Int method uses the new seed to generate a
random number according to some specific
operations including bitwise operations.

In the next chapter, we would demonstrate the

comparison experiments.

Fig. 3: Randomness comparison in a round of experiments

Res. J. Appl. Sci. Eng. Technol., 5(6): 2174-2179, 2013

2177

no uniform. Recording the values of generated Xn+1 and

f values, we can find they are

no uniform. The frequency of 0.6 to 0.8 is much higher

than others. In order to solve these 2 problems, there are

many kinds of improved logistic map. Here we adopted

one. It is Eq. (2) (Jianquan and Qing, 2010). Here the k

s another coefficient. It must greater than 668.7

)) mod 1 (2)

Through a series of experiments, it is proved that
this improved logistic map solves the problems of
islands of stability and no uniform. It is more chaotic

original logistic map. And in
Eq. (2), mod 1 operation makes the result range from 0
to 1, actually the same range with the original logistic

LRMOJ the ILRMOJ. In
ILRMOJ, we replace the logistic map with the
improved logistic map. Thus the steps of ILRMOJ are

Get a decimal from the improved logistic map
sequence numbers and amplify the decimal into

ew seed.
Int method uses the new seed to generate a

random number according to some specific
operations including bitwise operations.

In the next chapter, we would demonstrate the

We can tell from the RMOJ process,

old seed must do arithmetic operations including

multiply and plus operations and a bitwise and

operation. It costs much time. While by using the

logistic map to generate new seeds, we only need to put

the sequence of numbers into memory and

when in need. This reduces much time.

Because the logistic map has many chaotic

characteristics, we deduce that the sequences of

numbers which are generated by the logistic map are of

good randomness.

EXPERIMENTS

We did many experiments to a

and ILRMOJ. When assessing a random number

generation algorithm, we mainly focus on two aspects.

They are randomness and efficiency. We compared

RMOJ, LRMOJ and ILRMOJ in these

respectively.

Randomness: There is no doubt that randomness is the

main consideration of a random number generation

algorithm. There are many kinds of tests to test the

randomness, like the Kendall and Smith's tests,

frequency test, serial test, poker test, gap test and so on

(Wolfram, 2002). Here we used a basic test method

frequency test to test RMOJ, LRMOJ and ILRMOJ. We

let the three random number generation algorithms

generate 10000 integral numbers and these numbers are

Fig. 3: Randomness comparison in a round of experiments

We can tell from the RMOJ process, every time the

old seed must do arithmetic operations including

multiply and plus operations and a bitwise and

operation. It costs much time. While by using the

logistic map to generate new seeds, we only need to put

the sequence of numbers into memory and access them

when in need. This reduces much time.

Because the logistic map has many chaotic

characteristics, we deduce that the sequences of

numbers which are generated by the logistic map are of

EXPERIMENTS

We did many experiments to assess the LRMOJ

and ILRMOJ. When assessing a random number

generation algorithm, we mainly focus on two aspects.

They are randomness and efficiency. We compared

RMOJ, LRMOJ and ILRMOJ in these two aspects

no doubt that randomness is the

main consideration of a random number generation

algorithm. There are many kinds of tests to test the

randomness, like the Kendall and Smith's tests,

frequency test, serial test, poker test, gap test and so on

2). Here we used a basic test method

frequency test to test RMOJ, LRMOJ and ILRMOJ. We

let the three random number generation algorithms

numbers and these numbers are

Res. J. Appl. Sci. Eng. Technol.,

Fig. 4: Comparison of efficiency

from 0 to 99. And then we recorded these 100 numbers'

appearance frequency. Obviously, the ideal and average

appearance frequency of each number is 100. Actually,

we compared each numbers' real appearance

with the ideal appearance frequency and calculated the

variance of each sequence numbers. We can conclude

that the less the variance is, the better the randomness

is. We set a round of experiments contained 1000 times

experiments.

For one single round of experiments, we displayed

the figure of variance of each method respectively in

Fig. 3. We can tell that the gap between three kinds of

curves is not much and the curves in Fig. 3 are not of

much difference. The average variance of RMOJ is

98.94, LRMOJ is 98.91 and the ILRMOJ is 99.13. We

did another test to make every algorithm generate

1000000 numbers which are from 0 to 100. And the rest

is the same with the former experiment. After getting

the curve graph of variances, we can still find the thr

curves are almost over lap. And the variances range

from 80 to 160. That is to say after increasing the

number of generated numbers, the three algorithms are

still having almost the same randomness.

As is shown in Table 1, after 1000 rounds

experiments, we found that the situations, in which the

sum of the variance RMOJ is greater than the

LRMOJ’s, appeared 501.4 times in average. While the

opposite situations appeared 498.6 times in average. In

other words, the situations in which the RMOJ

performed better appeared 498.6 times

Res. J. Appl. Sci. Eng. Technol., 5(6): 2174-2179, 2013

2178

from 0 to 99. And then we recorded these 100 numbers'

Obviously, the ideal and average

appearance frequency of each number is 100. Actually,

we compared each numbers' real appearance frequency

with the ideal appearance frequency and calculated the

variance of each sequence numbers. We can conclude

that the less the variance is, the better the randomness

is. We set a round of experiments contained 1000 times

round of experiments, we displayed

the figure of variance of each method respectively in

Fig. 3. We can tell that the gap between three kinds of

curves is not much and the curves in Fig. 3 are not of

much difference. The average variance of RMOJ is

LRMOJ is 98.91 and the ILRMOJ is 99.13. We

did another test to make every algorithm generate

1000000 numbers which are from 0 to 100. And the rest

is the same with the former experiment. After getting

the curve graph of variances, we can still find the three

curves are almost over lap. And the variances range

from 80 to 160. That is to say after increasing the

number of generated numbers, the three algorithms are

still having almost the same randomness.

As is shown in Table 1, after 1000 rounds

we found that the situations, in which the

sum of the variance RMOJ is greater than the

LRMOJ’s, appeared 501.4 times in average. While the

opposite situations appeared 498.6 times in average. In

other words, the situations in which the RMOJ

 in average, the

Table 1: Randomness comparison

Times RMOJ

1 490

2 520

3 519

4 498

5 473

... ...

1000 497

Average 498.6

LRMOJ performed better appeared 501.4 times in

average. From the statistical numbers, we can conclude

that the LRMOJ and the RMOJ had almost the same

randomness. In the same way, we compared LRMOJ

and ILRMOJ. The LRMOJ performed better appeared

489.3 times in average and the ILRMOJ performed

better appeared 510.7 times in average.

Efficiency: Efficiency of a method always indicates the

availability. Time is a good standard to measure

efficiency. As we mentioned above, according to the

process of two improved random methods, we deduced

that the two improved methods could reduce generating

time. Here we recorded the time of generation of

100000 integral random numbers to measure the

efficiency. The integral numbers ranged from 0 to 100.

As is shown in Fig. 4, after 1000 times of experiments,

the time of generating 100000 random integer numbers

by RMOJ is around 6299910.72 ns. In average, while

the LRMOJ is around 3647619.76 ns in average and the

ILRMOJ is 2906039.53 ns in average.

LRMOJ

510

480

481

502

527

...

503

501.4

LRMOJ performed better appeared 501.4 times in

From the statistical numbers, we can conclude

that the LRMOJ and the RMOJ had almost the same

randomness. In the same way, we compared LRMOJ

and ILRMOJ. The LRMOJ performed better appeared

489.3 times in average and the ILRMOJ performed

.7 times in average.

Efficiency of a method always indicates the

availability. Time is a good standard to measure

efficiency. As we mentioned above, according to the

process of two improved random methods, we deduced

that the two improved methods could reduce generating

Here we recorded the time of generation of

100000 integral random numbers to measure the

efficiency. The integral numbers ranged from 0 to 100.

As is shown in Fig. 4, after 1000 times of experiments,

the time of generating 100000 random integer numbers

RMOJ is around 6299910.72 ns. In average, while

the LRMOJ is around 3647619.76 ns in average and the

2906039.53 ns in average.

Res. J. Appl. Sci. Eng. Technol., 5(6): 2174-2179, 2013

2179

And we can tell from Fig. 4, the LRMOJ is around

900000 ns around 358
th
 experiment and it is around

600000 ns around 610
th
 experiment. That means this

method is not stable in some experiments. Sometimes

the time is way too much longer than the average value.

While the ILRMOJ and RMOJ don't have this

situations. That means these 2 methods are much more

stable than the LRMOJ.

Experiments summary: We improved the random

method of Java with using the logistic map. Briefly, we

change the seed of the random method of Java to the

sequence numbers which are generated by the logistic

map. Here the logistic map includes the original logistic

map and the improved logistic map. In this way, we

simplify the process of generating new seed and

substitute the arithmetic operations and bitwise

operations with access the sequence of numbers which

are generated by the logistic map.

Obviously we concluded that the efficiency of the

LRMOJ and ILRMOJ is way much better than the

RMOJ. And the efficiency of ILRMOJ is better than

LRMOJ's.

In conclusion, the LRMOJ, RMOJ and ILRMOJ

almost have the same randomness. But the efficiency of

the LRMOJ and ILRMOJ is much better. And ILRMOJ

is the best.

CONCLUSION

Through the experiments, we concluded that the

RMOJ, LRMOJ and the ILRMOJ almost have the same

randomness. But the efficiency of the LRMOJ and

ILRMOJ is much better; the efficiency of the ILRMOJ

is the best. According to the results of experiments,

these two improved random methods are of good

quality and good efficiency. As for generating random

numbers by algorithm, these 2 improved methods have

many advantages. Because there are more and more

researches and experiments which need to use random

method to generate random numbers like in

cryptography field, image processing and so on, we are

sure that they can be widely used and make

contributions.

On one hand, after generating the sequence of

numbers with the logistic map, we store the sequence of

numbers to the memory, which takes relatively much

memory. In the future, we are about to find a better

solution. And no matter which method of these three

methods, after generating the new seed, a same method

Next Int would be used. And we are about to study this

shifts operations method deeply and find whether we

can find a better method to replace it in order to make

this method much more efficient.

On the other hand, we only improved the random

method of Java. Because of the chaotic properties of the

logistic map, we may apply the logistic map to other

more random number generation algorithms. Even

though through the frequency test, we concluded that

the 3 algorithms had almost the same randomness, we

need a series of deliberate tests to make the conclusion

much more persuasive.

REFERENCES

Heam, P.C. and C. Nicaud, 2011. Seed: An easy-to-use

random generator of recursive data structures for

testing. IEEE 4th International Conference on

Software Testing, Verification and Validation

(ICST), France, pp: 60-69.

Jianquan, X. and X. Qing, 2010. Security analysis and

improvement of an encryption algorithm based on

logistic map. J. Chinese Comput. Syst., 31(6).

Kanter, I., Y. Aviad, I. Reidler, E. Cohen and

M. Rosenbluh, 2010. An optical ultrafast random

bit generator. Nature Photonic., 4(1): 58-61.

Persohn, K.J. and R.J. Povinelli, 2012. Analyzing

logistic map pseudorandom number generators for

periodicity induced by finite precision floating-

point representation. Chaos Solitons Fract., 45(3):

238-245.

Wagenaar, W.A., 1972. Generation of random

sequences by human subjects: A critical survey of

the literature. Psychol. Bull., 77(1): 65-72.

Wolfram, S., 2002. A New Kind of Science. Wolfram

Media, pp: 975-976, ISBN: 1-57955-008-8.

Xiao-Jun, T., C. Ming-Gen and J. Wei, 2006. The

production algorithm of pseudo-random number

generator based on compound non-linear chaos

system. International Conference on Intelligent

Information Hiding and Multimedia Signal

Processing, IIH-MSP '06, China, pp: 685-688.

Zarei, M.I., A.S. Rostami and M.R. Tanhatalab, 2010.

Designing a random number generator with novel

parallel lfsr substructure for key stream ciphers.

International Conference on Computer Design and

Applications (ICCDA), Iran, 5: V5-598-V5-601.

