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Abstract: Multi-class image segmentation (or pixel labeling) is one of the most important and challenging tasks in 
computer vision. Currently, many different methods for this task can be broadly categorized into two types 
according to their choice of the partitioning of the image space, i.e., pixels or segments. However, each choice of the 
two types of methods comes with its share of advantages and disadvantages. In this study, we construct a novel CRF 
model to integrate features extracted from pixel and segment levels. We exploit segments generated by Constrained 
Parametric Min Cuts (CPMC) algorithm in the proposed framework, instead of commonly used unsupervised 
segmentation method (e.g., mean-shift approach). Additionally, the recognition based on these segments is also 
integrated into the model, which possible corrects classification mistakes caused by the unary term based on 
information derived from pixel level. We experimentally demonstrate our model’s quantitative and qualitative 
improvements over the baseline methods. 
 
Keywords: Constrained parametric min cuts, CRF, higher order potential, non-linear support vector model  

 
INTRODUCTION 

 
As one of the most important and challenging tasks 

in computer vision, multi-class image segmentation (or 
pixel labeling) has received increasing attention in 
recent years (He et al., 2004; Shotton et al., 2006; 
Gould et al., 2008; Ladicky et al., 2009). The PASCAL 
Visual Object Classes Challenge 2007 added object 
class based image segmentation as the taster 
competition, which has been propelling this trend. Here 
multi-class image segmentation aims to assign each 
pixel in an image with a class label from a 
predetermined set, e.g., plane, car, people, sheep.  

From the early 1990s, Markov Random Fields 
(MRFs) were exploited to address this problem of 
multi-class image segmentation (Bouman and Shapiro, 
1994; Feng et al., 2002; Kumar and Hebert, 2003a), 
since these undirected graphical models allowed one to 
incorporate local contextual constraints in the labeling 
problems in a principled manner. However, the 
traditional MRF usually makes simplistic assumptions 
about the data, e.g., assuming the conditional 
independence of the observed data, which hinders 
capturing complex interactions in the observed data that 
might be required for classification purposes. 
Additionally MRF formulation often does not allow any 
use of data in label interactions. 

Kumar and Hebert (2003b) firstly applied 
Conditional Random Fields (CRFs) to segment man-
made structure from complex natural scenes. CRFs 

were proposed by Lafferty et al. (2001), which directly 
model the conditional distribution over labels given the 
observations and take observed data into account in 
label interactions. Therefore, the method presented in 
Kumar and Hebert (2003a) performed better than those 
using MRFs in Kumar and Hebert (2003b). He et al. 
(2004) and Shotton et al. (2006) used CRFs for 
semantic segmentation problems with more object 
classes other than two. 

Turning to more recent times, many different 
methods have been proposed for multi-class pixel 
labeling, which can be broadly categorized into two 
types according to their choice of the partitioning of the 
image space. Some methods are formulated in terms of 
pixels (Shotton et al., 2006) and others used segments 
or groups of segments (Rabinovich et al., 2007; 
Pantofaru et al., 2008; Gould et al., 2009). Each choice 
of the two types of methods comes with its share of 
advantages and disadvantages. Those pixel-based 
methods assign each pixel a label using features 
extracted from a regularly shaped patch around it or at 
an offset from it Shotton et al. (2006). However, these 
small patches contain a limited amount of information. 
For example, they exclude useful shape-based cues or 
robust statistics about the appearance of larger regions. 
The former is very important in recognizing objects and 
the latter can help average out the random variations of 
individual pixels. Although the segment-based (or 
region-based) methods can avoid the problem of pixel-
based methods, usually these segments do not capture 
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the boundaries between the objects in an image 
accurately (Rabinovich et al., 2007; Larlus and Jurie, 
2008). 

In this study, we construct a novel CRF model 

based on the traditional pair wise CRF model to take 

full advantage of information derived from the two 

different types of partitioning of the image space, i.e., 

pixels or segments. Our contributions are two-fold: 

first, we incorporate the segments generated by 

Constrained Parametric Min Cuts (CPMC) algorithm 

(Carreira and Sminchisescu, 2012) into the CRF model, 

instead of commonly used unsupervised segmentation 

methods, e.g., mean-shift. Second, we introduce a new 

kind of higher-order term, which takes into account the 

probability of every segment to belong to each class. 

 

METHODOLOGY 

 

In the following subsections, we will first introduce 

the CPMC algorithm and the method of predicting the 

likelihood of the segments generated by the CPMC 

algorithm to belong to each class (Li et al., 2010). Then 

we will describe how to construct the novel CRF model 

based on the traditional pair wise CRF model, which 

integrates features extracted from pixels and segments 

here provided by the CPMC algorithm. 

 

Segments generated by constrained parametric min 

cuts algorithm: A common method to unify pixels and 

segments is like that described in Kohli et al. (2009), 

which enforces the labels consistent in a segment. 

Usually multiple segmentations are needed to assure 

there is at least one segment aligning with the correct 

boundary of objects, as shown as Fig. 1. The best 

segmentation for car is (d), which almost captures the 

correct boundary of the car except the tire and gives rise 

to good pixel labeling (Fig. 4). 

Figure 1 multiple segmentations using different 

methods or parameters. (a) is an image from VOC 2007 

dataset.  (b) is  the  result   from  kmeans   segmentation  

    
 
                       (a)                                        (b)           

 

     
 
                       (c)                                        (d) 

 
Fig. 1: Multiple segmentations using different methods or 

parameters (a) original image, (b) kmeans, (c) mean-

shift 1, (d) mean-shift 2 

 
Method. (c) and (d) are unsupervised image 
segmentation results generated by using different 
parameters values in the mean-shift segmentation 
algorithm. 

However, the selection of unsupervised 
segmentation methods and decision of parameters 
values are not a trivial matter. Some methods are good 
for  some  objects,  but  may  be bad for others, e.g., 
Fig. 1b is good for the person in the car, but is bad for 
the car. The CPMC algorithm proposed by Carreira and 
Sminchisescu (2012) avoids these problems to some 
extent. 

For most images, the Constrained Parametric Min 

Cuts (CPMC) algorithm can create hundreds of figure-

ground hypotheses and those segments covering full 

objects are usually ranked top 30~80 according to their 

prediction  of  putative  overlap  with  ground truth. 

Figure 2 shows some examples from the 657 segments 

created by CPMC. There are good segments that cover 

the  object  of  interest entirely, which are all ranked top 

 

 
 
Fig. 2: Examples of segments generated by CPMC algorithm colored in green (best viewed in color) 
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50. The first segment in the first line overlaps the car 
perfectly even including the tire that results in better 
performance (Fig. 4). The segments shown in line 3 
contain only background, which further discriminate 
the object of interest from the background. The 
segments depicted in line 2 probably cause some 
clutters, since they contain not only objects but also 
background. This problem will be resolved in section 
“our proposed CRF model”. 

When use CPMC algorithm, there are few 

parameters need to be adapted for different applications 

and segments capturing correct boundary of objects are 

often among top ranked ones. Therefore, we use the top 

ranked segments (top 50 in this study) generated by 

CPMC imposed on which the segment consistency 

constraint in our CRF model. 

 

Categorization based on the segments: The shape-

based cues or robust statistics derived from larger 

segments  help  to  recognize  pixels’  class (Pantofaru 

et al., 2008; Gould et al., 2009). In this study, we 

exploit the approach proposed in Li et al. (2010). We 

will describe about how to incorporate the 

categorization results into the CRF model in section 

“our proposed CRF model”. 

Li et al. (2010) estimated the likelihood of each 

segment to belong to each class by computing the 

overlap between the segment and a ground truth object 

of that category. An image I is assumed with ground 

truth segments {Gq
I
}. A group of segments {Sp

I
} for 

image I are generated by CPMC algorithm. There are 

also K object classes {c1, c2, …, cK}. K functions f1 (Sp
I
), 

…, fK (Sp
I
) are learned by regression on an overlap 

measure Eq. (1) for segment: 
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Here, Nc
fg

 and N
bg

 are the number of foreground 

and background pixels in the entire training set, with c 

the class of the ground truth segment andS is the 

image complement of a segment hypothesis. C = 90 is a 

normalization constant. For every putative segment Sp
I
, 

we compute its overlap, given by (1). The target value 

vkp
I
 for a segment Sp

I
 and a category ck is the maximal 

overlap with ground truth segments that belong to ck: 
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where, vkp
I
 = 0, for categories that do not appear in an 

image. 
Finally, a non-linear Support Vector Model (SVR) 

is used to regress on vkp
I
 against yp

I
, the multiple types 

of features from segments Sp
I
. The SVR optimization 

problem can be derived as: 
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where, φ (yi) is a nonlinear feature transform of the 
input yi, defined implicitly by the kernel K (yi, yj) = <φ 
(yi), φ (yj) >; ε is a small constant, usually 0.05 or 0.1. It 
is notable that the input yi means seven types of 
features, including four bags of words of gray-level 
SIFT and color SIFT and three pyramid HOGs 
(pHOG). Readers can see Li et al. (2010) for details. 
 
The pair wise CRF model based on pixels: For multi-
class image segmentation, CRFs are usually the basis of 
the most successful approaches, since these models 
based on CRFs unify local appearance information 
(such as color and texture) and a smoothness prior that 
enforce the labels of neighboring pixels to be the same. 

The traditional pair wise CRF model is formulated as 
the energy function (4): 

 

( ) ( ) ( , )i i ij i j

i ij

E E x E x xλ= +∑ ∑x                 (4) 

 

Here, x means the joint labeling over all pixels of a 

given image and all the labels are from a predefined set, 

e.g., person, car, sheep. The random variable xi denotes 

the label assigned to pixel i (Shotton et al., 2006), or 

segment i (Gould et al., 2009). In this study, we adopt 
the former. Ei is the unary potential encoding local 

appearance information and Eij is the smoothness term 

that penalizes adjacent pixels i and j for taking different 

labels. The non-negative constant λ trades-off the 

strength of the smoothness prior against the unary 

potential. It’s notable that we omit the input features y 
in (4). 

In our proposed model (5), the pixel-based unary 

term Ei is identical to that used in Ladicky et al. (2009) 

and is derived from Text on Boost (Shotton et al., 

2006). It estimates the probability of a pixel taking a 

certain label by boosting weak classifiers based on a set 

of shape filter responses. Shape filters are defined by 

triplets of feature type, feature cluster and rectangular 

region and their response for a given pixel is the 

number of features belonging to the given cluster in the 

region placed relative to the given pixel. The most 

discriminative filters are found using the Joint Boosting 

algorithm. To enforce local consistency between 

neighboring pixels we use the standard contrast 

sensitive Potts model as the pair wise potential Eij on 

the pixel level. 
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Fig. 3: Behaviour of the new higher order potential (7) 

 
Our proposed CRF model: To integrate features from 
pixel and segment levels, we append higher order terms 
to the pair wise CRF (4):  
 

unary term higher-order termsmoothness term

( ) ( ) ( , ) ( )i i ij i j s s

i ij s

E E x E x x Eλ µ= + +∑ ∑ ∑x x

14243 142431442443

 (5) 

 

where, 

xs : A segment from a set of image segments generated 

by CPMC  

Es : The higher-order potential, which enforces label 

consistency in xs. Es could be formulated as (6) like 

Potts model 

|s| : The cardinality of the segment s, which in our case 

is the number of pixels constituting segment s  

 

while θ is the parameter controlling strength of the 

term. Formula (6) means that if the pixels in segment s 

are not assigned the same class label ck, the cost |s|
θ
 will 

be added into the energy of this labeling Eq. (5). In this 

way, the labels of pixels in a segment tend to be the 

same to obtain lower energy:  

 

     

     

     

     

     

     

     

 

 
 
Fig. 4: Qualitative comparison of results obtained through different approaches 
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0       if ,
( )

| |            otherwise

i k

s s

x c i s
E

s θ
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= 


x                         (6) 

 

The higher order potential in terms of (6) can 

perform very well on segments, which contain only 
objects of interest or background, e.g., the samples 

shown in line 1 and 3 of Fig. 2, but this type of 

potential will cause wrong labeling while encountering 

cluttered segments as shown in line 2 of Fig. 2. To 

resolve this problem, we redefine the higher order term 

as: 
 

max max| |
( ) min ,

| |

i k s
s s

k

x c
E E E

R s

 ≠ 
=  

 
x                 (7) 

 

where,  
| xi ≠ ck |s : The number of pixels whose class label is 

different from ck in segment s 

E
max

 : The assumed value of the maximum cost 

caused by each segment  

R : The truncation parameter, which controls the 

ratio of pixels different from the dominant 
label in a segment  

 

Unlike the old higher order potential (6), our newly 

defined potential (7) gives rise to a cost that is a linear 

truncated function of the ratio of number of inconsistent 

variables as shown in Fig. 3, which allows some 
variables xi to take different labels from the dominant 

label. Therefore, our model can work well over the 

mixed segments. It is shown in line 2
nd

 line of Fig. 2 

and this segment can also be shown in Fig. 4.  

Although the segment consistency constraint 

encoded by the higher order potential (7) improves the 
performance of original pair wise CRF model, it’s 

almost impossible to recover from any errors caused by 

the basic unary potential Ei(xi). For example, in the fifth 

line of Fig. 4, the classification results for boat and train 

are wrong because of the wrong recognition based on 

pixel level. As known to all, shape-based cues derived 
from larger regions help to recognize the class of 

objects correctly. We incorporate the recognition results 

based on these shape-based cues into the term (7), in 

the hope that these cues can complement the features on 

pixel level exploited by the unary term and improve 

further the performance: 

max| |
( ) min ,

| |

ki k s
s s s

k

x c
E E E

R s

 ≠ 
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 
x                (8) 

 

In formula (8), Es
k 

= -log (fk (s)), where, fk (s) ∈ [0, 

1] computed through this approach described in section 

“categorization based on the segments”. It is easy to 

find that if fk (s) takes larger value, the cost Es is 

smaller. In other words, variable xi tends to take the 

class label ck which is the most probable class for the 

segment s. Then, correct labels could be decided in the 

soft competition among the different potentials, which 

fully integrate the information from pixels and 

segments (see experiments). 

Now we have constructed the whole CRF model 

which allows integration of features obtained at 

different levels of image partitioning, i.e., pixels and 

segments. The final joint labeling x can be determined 

by maximizing the objective function (5) using graph 

cuts (Kohli et al., 2009).  

 

EXPERIMENTS AND RESULTS 

 

Evaluation dataset: We evaluate our model on 

PASCAL VOC 2007 dataset. VOC 2007 is one of the 

most challenging datasets, which consists of 209 

training, 213 validation and 210 test images for 

semantic segmentation task. There are 20 object classes 

and 1 background class. Some sample images are 

shown in the first line of Fig. 4. We decide the model 

parameters, e.g., λ, µ, E
max

, over the validation images 

and train the CRF model over training and validation 

images. Readers can refer to Ladicky et al. (2009) for 

details. 

 

Results: Quantitative results are shown in Table 1 and 

some qualitative results are shown in Fig. 4.  

In the experiments, the baseline models are basic 

unary CRF model, pair wise CRF model and 

associative CRF (Ladicky et al., 2009). The pair wise 

CRF model is given by formula (4), from which the 

smoothness term is removed gives rise to the unary 

CRF. These two basic CRF models consider sole 

information from pixel level and thus perform not so 

well.  It  is  shown  in  line 3
rd

 and 4
th

 of Fig. 4. Ladicky 

et al. (2009) adds segment consistency constraint 

 
Table 1: VOC 2007 multiclass image segmentation results on the test set obtained from pair wise CRF model (4), associative CRF model and our 

CRF model separately, bold numbers is denote the best performance for each class 

 Average Background Aero plane Bicycle Bird Boat Bottle Bus Car Cat Chair 

Pair wise CRF 18.2 83 12 28 24 2 2 25 8 3 1 

Associative CRF 19.2 78 14 27 26 0 0 29 10 3 0 

Cur CRF model 20.1 75 18 25 25 3 1 33 12 2 2 

 

Cow 

Dining 

table Dog Horse 

Motor 

bike Person 

Potted 

plant Sheep Sofa Train 

TV/ 

monitor 

Air wise CRF 1 23 22 17 20 40 2 15 2 30 22 

Associative CRF 1 22 24 19 22 55 2 17 0 33 22 

Cur CRF model 3 20 22 16 22 56 3 18 3 38 25 
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into the basic CRF and thus discoveries the nearly 

correct areas of objects, e.g., the results for car and boat 

in the 5
th

 line of Fig. 4. However, that depends strongly 

on the initial segmentations (e.g., mean-shift 

segmentation), since some bad initial segmentations 

probably cause bad results as shown in the 5
th

 line of 

Fig. 4 for sheep, train and plane (please see the analysis 

in section “segments generated by constrained 

parametric min cuts algorithm”). Additionally, the 

associative model possibly causes wrong labeling as 

shown in the results for boat and train. In contrast, our 

model could achieve better performance as depicted in 

the 6
th

 line of Fig. 4. The segments generated by CPMC 

can often well overlap the objects of interest (see the 7
th

 

line) and thus our model can discover the correct areas 

of objects. On the other hands, integration of the 

recognition based on segment (formula 8) obtains better 

semantic segmentation, e.g., the boat and train can be 

categorized correctly. 

Quantitatively, our model provides a small increase 

in accuracy: 2% than the pair wise model and 1% than 

the associative model (Table 1). 
In Fig. 4, the first line contains the original images 

from the VOC 2007 database, the second gives the 

human ground truth annotations of objects and the 

third, fourth, fifth and sixth show the multiclass image 

segmentation results obtained through the baseline 

unary and pair wise CRF models, associative CRF 
model and our proposed model separately. The 7

th
 line 

shows the best segment among the top ranked 50 

segments generated by CPMC. In this figure, different 

colors mean different object classes as shown in the last 

two lines. (Best viewed in color) 

 

CONCLUSION 

 

Many current works on multi-class image 

segmentation problems focus on the choice of the 

partitioning of the image space, i.e., pixels or segments. 

In this study, we have explored how to integrate 
information derived from both the two levels into a 

unified CRF model. We introduce CPMC algorithm and 

recognition based on it in our framework. The 

experiments demonstrate that our algorithm is efficient 

and performs better. 
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