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Abstract: Acoustic analysis is a proper method in vocal fold pathology diagnosis so that it can complement and in 
some cases replace the other invasive, based on direct vocal fold observation, methods. There are different 
approaches and algorithms for vocal fold pathology diagnosis. These algorithms usually have three stages which are 
Feature Extraction, Feature Reduction and Classification. While the third stage implies a choice of a variety of 
machine learning methods (Support Vector Machines, Gaussian Mixture Model, etc.), the first and second stages 
play a critical role in performance and accuracy of the classification system. In this study we present initial study of 
feature extraction and feature reduction in the task of vocal fold pathology diagnosis. A new type of feature vector, 
based on wavelet packet decomposition and Mel-Frequency-Cepstral-Coefficients (MFCCs), is proposed. Also a 
new method for feature reduction is proposed and compared with conventional methods such as Principal 
Component Analysis (PCA), F-Ratio and Fisher’s discriminant ratio. Gaussian Mixture Model is used as a classifier 
for evaluating the performance of the proposed method. The results show the priority of the proposed method in 
comparison with current methods. 
 
Keywords: Gaussian Mixture Model (GMM), Mel-Frequency-Cepstral-Coefficient (MFCC), Principal Component 

Analysis (PCA), proposed GMM-based feature reduction, vocal fold pathology diagnosis, wavelet 
packet decomposition 

 
INTRODUCTION 

 
Vocal signal information often plays an important 

role for specialists to understand the process of vocal 
fold pathology formation. In some cases vocal signal 
analysis can be the only way to analyze the state of 
vocal folds. Nowadays diverse medical techniques exist 
for direct examination and diagnostics of pathologies. 
Laryngoscopy, glottography, stroboscopy, 
electromyography, videokimography are most 
frequently used by medical specialists. But these 
methods possess a number of disadvantages. Human 
vocal tract is hardly-accessible for visual examination 
during phonation process and that makes it more 
problematic to identify pathology. Moreover, these 
diagnostic means may cause patients much discomfort 
and distort the actual signal that may lead to incorrect 
diagnosis as well (Alonso et al., 2001; Ceballos et al., 
2005, 1996; Adnene and Lamia, 2003). 

Acoustic analysis as a diagnostic method has no 
drawbacks, peculiar to the above mentioned methods. It 
possesses a number of advantages. First of all, acoustic 
analysis is a non-invasive diagnostic technique that 
allows pathologists to examine many people in short 
time period with minimal discomfort. It also allows 
pathologists to reveal the pathologies on early stages of 
their origin. This method can be of great interest for 
medical institutions. 

 
 
 
 
 
 
 
 

 
Fig. 1: The general scheme of vocal fold pathology diagnosis 
 

In recent years a number of methods were 
developed for segmentation and classification of speech 
signals with pathology. The general scheme of vocal 
fold pathology diagnosis is illustrated in Fig. 1.  

Different parameters for feature extraction are 
used. Traditionally, one deals with such parameters like 
pitch, jitter, shimmer, amplitude perturbation, pitch 
perturbation, signal to noise ratio, normalized noise 
energy (Manfredi, 2000) and others (Llorente and 
Vilda, 2004; Rosa et al., 2000; Mallat, 1989; Wallen 
and Hansen, 1996). Feature extraction, using the above 
mentioned parameters, has shown its efficiency for a 
number of practical tasks. These parameters are 
frequently used in systems for automatic vocal fold 
pathology diagnosis, in speaker identification systems 
or in multimedia database indexing systems. In the 
proposed method, we have used the Mel-Frequency-
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Table 1: Summary of some pervious works  
Reference Feature set Feature reduction approach Classifier 
Chen et al. (2007) 25 acoustic parameters given by MDVP PCA Support vector machine
Go´mez et al. (2005)  Spectral perturbation PCA K-means clustering
Michaelis et al. (1998) Acoustic feature, noise PCA Threshold 
Marinaki et al. (2004) Linear prediction coefficients PCA K-nearest neighbors
Llorente et al. (2006) Mel-frequency-cepstral-coefficients F-ratio and Fisher’s discriminant ratio Gaussian mixture model
Ritchings et al. (2002) Spectral - Artificial neural network
 
Cepstral-Coefficients (MFCCs), Energy and Shannon 
Entropy parameters for creating the initial features 
vector. 

Also different approaches for feature reduction are 
used such as Principal Component Analysis (PCA) 
(Chen et al., 2007;  Go´ mez  et   al.,  2005; Michaelis 
et al., 1998; Marinaki et al., 2004) and Fisher’s 
Discriminant Ratio (Llorente et al., 2006). In the 
proposed method, we have used the proposed GMM-
Based feature reduction and we have shown its priority 
in comparison with the PCA and Fisher’s discriminant 
ratio.  

Finally, the reduced features are used for speech 
classification into the healthy and pathological class. 
Different machine learning methods such as Support 
Vector Machines (Chen et al., 2007), Artificial Neural 
Networks (Ritchings et al., 2002), etc., can be used as a 
classifier. In the proposed method we have used 
Gaussian Mixture Model (GMM) for classification 
purpose. In Table 1, some pervious methods in the 
vocal fold pathology diagnosis are summarized. 

In this study, first, the importance of automatic 
methods of detection of vocal fold pathology is 
investigated. Also, the stages of these methods are 
described. Then by focusing on their second stage, 
which is feature reduction, a novel GMM-Based 
approach is proposed. In other words, the main 
objective of this study is to propose an efficient 
approach to reduce features vector in the field of vocal 
fold pathology diagnosis. The results of the experiments 
show better performance of the proposed GMM-Based 
method in comparison with a well-known method 
(PCA).  
 

METHODOLOGY 
 

The presence of pathology in a vocal tract 
inevitably leads to voice signal distortion. Depending 
on pathology severity the distortion may be more or 
less significant. Among all sounds that are produced by 
vocal tract, sustained vowels and some sonorant 
consonants are most easily distorted if pathology is 
present. 

The wavelet transform, as was shown in Manfredi 
(2000), is a flexible tool for time-frequency analysis of 
speech signals, especially for short data frames, like 
separate phonemes. In Fig. 2 wavelet transform of a 
stressed vowel [a:], pronounced by a healthy speaker, is 
shown. 

But the situation changes in case of pathological 
voices. In Fig. 3, 4 and 5 wavelet transforms of the 
same vowel are given, but in these cases it is 
pronounced by speakers with different voice 
pathologies. The instability of the formant frequency is 
obviously seen.  

This led us to supposition that feature vectors 
based on wavelets can show good results. The idea to 
build feature vector on wavelets for audio classification 
was previously reported by Li et al. (2003) and 
Tzanetakis and Cook (2002). These authors used the 
Discrete Wavelet Transform (DWT) coefficients for 
their method of feature extraction for content-based 
audio classification. Kukharchik et al. (2007) used 
Continues Wavelet Transform (CWT) coefficients for 
their method of feature extraction. Cavalcanti et al. 
(2010) used Wavelet Packet Decomposition (WPD) 
nodes coefficients for their method for feature 
extraction. In this study we have also used the wavelet 
packet decomposition to create the wavelet packet tree 
and to extract the features. 

The block diagram of our proposed method is 
illustrated in Fig. 6. In the first stage, by the use of 
MFCC and Wavelet Packet Decomposition, feature 
vector containing 139 features is made. In the second 
stage, by the use of the GMM-Based feature reduction 
method, the dimension of feature vector is decreased. In 
the last stage, by the use of GMM, the speech signal 
classified into two classes: pathological or healthy. 
 
Feature extraction: As it is shown in Fig. 6, first, by 
the use of cepstral representation of input signal, 13 
Mel-Frequency-Cepstral-Coefficients (MFCC) are 
extracted. Then the wavelet packet decomposition in 5 
levels is applied on the input signal to make the wavelet 
packet tree. Then, from the nodes of resulting wavelet 
packet tree, 63 energy features along with 63 shannon 
entropy features are extracted. Finally, by the 
combination of these features, the initial feature vector 
with the length of 139 features is created. 
 
Mel-Frequency-Cepstral-Coefficients (MFCCs): 
MFCCs are widely used features to characterize a voice 
signal and can be estimated by using a parametric 
approach derived from Linear Prediction Coefficients 
(LPC), or by the non-parametric discrete Fast Fourier 
Transform (FFT), which typically encodes more 
information than the LPC method. The signal is 
windowed  with a hamming window in the time domain  
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Fig. 2: Wavelet transform of a stressed vowel [a:] pronounced by a healthy speaker 
 

 
 
Fig. 3: Wavelet transform of a stressed vowel [a:] pronounced by the speaker with hypertrophic laryngitis 
 

 
 
Fig. 4: Wavelet transform of a stressed vowel [a:] pronounced by the speaker with hypertonic dysphonia 
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Fig. 5: Wavelet transform of a stressed vowel [a:] pronounced by the speaker with chronic catarrhal laryngitis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: The block diagram of the proposed method for 

detection of vocal fold pathology 
 
and converted into the frequency domain by FFT, 
which gives the magnitude of the FFT. Then the FFT 
data is converted into filter bank outputs and the cosine 
transform is found to reduce dimensionality. The filter 
bank is constructed using 13 linearly-spaced filters 
(133.33Hz between center frequencies) followed by 27 
log-spaced filters (separated by a factor of 1.0711703 in 
frequency.) Each filter is constructed by combining the 
amplitude of FFT bin. The MATLAB code to calculate 
the MFCC features was adapted from the Auditory 
Toolbox (Malcolm Slaney). The MFCCs are used as 
features in Llorente et al. (2006) to classify the speech 
into pathology and healthy class. We have used 
reduction of MFCC information by averaging the 
sample’s value of each coefficient. 

Wavelet packet decomposition: Recently, Wavelet 
Packets (WPs) have been widely used by many 
researchers to analyze voice and speech signals. There 
are many out-standing properties of wavelet packets 
which encourage researchers to employ them in 
widespread fields. The most important, multi resolution 
property of WPs is helpful in voice signal synthesis 
(Herisa et al., 2009; Fonseca et al., 2007).  

The hierarchical WP transform uses a family of 
wavelet functions and their associated scaling functions 
to decompose the original signal into subsequent sub-
bands. The decomposition process is recursively 
applied to both the low and high frequency sub-bands 
to generate the next level of the hierarchy. WPs can be 
described by the following collection of basic 
functions:  
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where  
p : Scale index  
l : The translation index  
h : The low-pass filter  
g : The high-pass filter with: 
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The WP coefficients at different scales and positions of 
a discrete signal can be computed as follows: 
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For a group of wavelet packet coefficients, energy 
feature in its corresponding sub-band is computed as: 
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The entropy evaluates the rate of information 

which is produced by the pathogens factors as a 
measure of abnormality in pathological speech. Also, 
the measure of Shannon entropy can be computed using 
the extracted wavelet-packet coefficients, through the 
following formula: 
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In this study, mother wavelet function of the tenth 

order Daubechies has been chosen and the signals have 
been decomposed to five levels. The mother wavelet 
used in this study is reported to be effective in voice 
signal analysis (Guido et al., 2005; Umapathy and 
Karishnan, 2005) and is being widely used in many 
pathological voice analyses (Fonseca et al., 2007). Due 
to the noise-like effect of irregularities in the vibration 
pattern of damaged vocal folds, the distribution manner 
of such variations within the whole frequency range of 
pathological speech signals is not clearly known. 
Therefore, it seems reasonable to use WP rather than 
DWT or CWT to have more detail sub-bands.  
 
Feature reduction: Using every feature for 
classification process is not good idea and it may be 
causes to the increasing the rate of misclassification. 
Therefore, it is better to choose the proper features from 
the whole features. This process is called as “Feature 
Reduction”. 

The goal is to reduce the dimension of the data by 
finding a small set of important features which can give 
good classification performance. Feature reduction 
algorithms can be roughly grouped into two categories: 
filter methods and wrapper methods. Filter methods 
rely on general characteristics of the data to evaluate 
and to select the feature subsets without involving the 
chosen learning algorithm. Wrapper methods use the 
performance of the chosen learning algorithm to 
evaluate each candidate feature subset. Wrapper 
methods search for features better fit for the chosen 
learning algorithm, but they can be significantly slower 

than filter methods if the learning algorithm takes a 
long time to run. The concepts of "filters" and 
"wrappers" are described in Kohavi and Jhon (1997). 

One way for feature reduction is Principal 
Component Analysis (PCA) which is used frequently in 
pervious  works  such   as  Chen et al. (2007), Go´mez 
et al. (2005), Michaelis et al. (1998) and Marinaki et al. 
(2004). PCA is a well-known filter method. Another 
way for feature reduction is Fisher’s Discriminant Ratio 
which is used in pervious works such as Llorente et al. 
(2006). It’s also a filter method. In this section we also 
propose a novel approach, the Proposed GMM-Based 
Feature Reduction, for the feature reduction which 
belongs to wrapper methods. 
 
Fisher’s discriminate ratio: The ratio (Llorente et al., 
2006) represents the relationship between within-class 
and inter-class variances under the same assumptions as 
the F-Ratio. The following assumptions must be 
enforced: 
 
• The feature vectors within each class must have 

Gaussian distribution  
• Features should be uncorrelated  
• The variances within each class must be equal  
 
Given a set of classes wk, k = 1, 2,…, K, twice scatter 
measurements can be defined as follows: 
 
Within-class scatter (Sw): is a measurement of the 
scattering of the samples that belong to a class wk 
around their respective means: 
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Interclass scatter (Sb): measures the scattering of each 
class mean around the overall mean: 
 

∑
=

−−=
K

k

t
kkb E

k
S

1
00 }))({(1 µµµµ                          (10) 

 
where,  
µk : The mean of class wk  
µ0 : The mean value of the whole dataset without 

considering the class segmentation 
 

There exist several ways to quantify the 
discriminative power. The interclass separation 
measurement can be calculated comparing the 
relationship between within-class and inter-class 
scattering. The following is a standard computation: 
 

bw SSJ 1−=
                             (11) 



 
 

Res. J. Appl. Sci. Eng. Technol., 5(6): 2245-2254, 2013 
 

2250 

A feature vector is said to be optimum if the inter-
class separation is maximized. If computing these 
measurements is carried out for every single feature 
alone, such measurements are known as Fisher’s 
discriminant ratio Fi. The higher the value of Fi, the 
more important the feature is: this means that feature 
has a low variance with respect to inter-class variance 
and this is the reason why it is desirable to discriminate 
between them. These criteria adopt a special form in the 
one-dimensional, two-class problem, quantifying the 
reparability capabilities of individual features: 
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where, sub-index C corresponds to normal voices and  
to pathological. 
 
Principal component analysis:  This method searches 
a mapping to find the best representation for 
distribution of data. Therefore, it uses a signal-
representation criterion to perform dimension reduction 
while preserving much of the randomness or variance in 
the high-dimensional space as possible (Arjmandi and 
Pooyan, 2012). The first principal component accounts 
for as much of the variability in the data as possible and 
each succeeding component accounts for as much of the 
remaining variability as possible. PCA involves the 
calculation of the eigenvalues decomposition of a data 
covariance matrix or singular value decomposition of a 
data matrix, usually after mean centering the data for 
each attribute. PCA is mathematically defined as an 
orthogonal linear transformation that transforms the 
data to a new coordinate system such that the greatest 
variance by any projection of the data comes to lie on 
the first coordinate, called the first principal 
component, the second greatest variance on the second 
coordinate and so on. The principal component W1 of a 
dataset X can be defined as:  
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with the first K-1 component, the Kth component can be 
found by subtracting the first K-1 principal components 
from X: 
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and by substituting this as the new data set to find a 
principal component in: 
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The karhunen Leove transform is therefore 
equivalent to finding the singular value decomposition 
of the data matrix, X: 
 

∑= TVWX                  (16) 
 
and then obtaining the reduced-space data matrix by Y 
projecting X down into the reduced space defined by 
only the first L singular vectors, WL: 
 

∑== T
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The matrix W of singular vectors of X is 

equivalently the matrix W of eigenvectors of the matrix 
of observed co-variances, C = XXT: 
 

∑∑= TT WWXX                                           (18) 
 

In PCA, the optimal approximation of a random 
vector X RN in N-dimensional space by a linear 
combination of M (M<N) independent vectors is 
obtained by projecting the random vector X into the 
eigenvectors corresponding to the largest eigenvalues of 
the covariance matrix of vector X (Arjmandi and 
Pooyan, 2012). The main limitation of PCA is that it 
does not consider class separately, since it does not take 
into account the class label of the feature vectors.  
 
The proposed GMM-based feature reduction: As it 
is mentioned before, the main limitation of PCA is that 
it does not take into account the class labels and it just 
focus on the sample’s value. In other words, the PCA 
searches for the features which their sample’s value 
have bigger variance in comparison with others and it 
does not collaborate with the classifier. So, we have 
proposed an approach, the GMM-Based Feature 
Reduction, to overcome this disadvantage. For this 
purpose, the sample’s value are divided into “train” and 
“test” groups and fed to the GMM classifier. Also, a 
distance criterion is defined which shows the distance 
between the results of classifier and the real classes of 
speeches. An empty result’s vector also is defined. The 
aim of the proposed method is to add the specified 
number of features from initial feature vector into the 
empty result’s vector so that the distance criterion is 
minimized. Of course this process is repeated and tested 
for possible situations till the finding desirable solution. 
The formula (19) has declared the distance criterion. 
The aim of the proposed method is the finding the 
subset of features so that they minimize the dist. The ai 
is the result of classifier and the ri is the real class for ith 
speech signal. The n is the number of speech files in the 
“train” group: 
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Gaussian mixture model: Let x  be a random 
vector that has an arbitrary distribution. The distribution 
density of x is modeled as a Gaussian mixture density, a 
mixture  of  Q component densities, given by Llorente 
et al. (2006): 
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where, pi(x), i =1,…., Q are the component densities 
and ci, i = 1,…., Q are the component weights. Each 
component density is an n-variate Gaussian function of 
the form: 
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with µi the n*1 mean vector and Ci the n*n covariance 
matrix. 

The main motive for using the GMM as a 
representation of the acoustic space is that it has been 
demonstrated that a linear combination of Gaussian 
basis functions has a capacity to represent a large class 
of sample distributions (Llorente et al., 2006).  

In the proposed method, two GMMs are trained for 
healthy and pathological speeches. For classifying a 
speech, each GMM calculates the likelihood of that 
speech. Then the GMM with greater likelihood 
identifies the class of that speech which is healthy or 
pathological. 
 

EXPERIMENTS AND RESULTS 
 

In this section, three experiments have been 
designed. These experiments are simulated in 
MATLAB 7.11.0. The whole scheme of the proposed 
method is illustrated in Fig. 6. We have adopted a 
cross-validation scheme (Duda et al., 2000) to assess 
the generalization capabilities of the system in our 
experiments.  

 
Database description: The database was created by 
specialists from the Belarusian Republican Center of 
Speech, Voice and Hearing Pathologies. We have 
selected 40 pathological speeches and 40 healthy 
speeches randomly which are related to sustained vowel 
“a”. All the records are in PCM format, 16 bits, mono, 
with 16 kHz sampling frequency. 

Results: In first experiment, we apply the t-test on each 
feature and compare p-value for each feature as a 
measure of how effective it is at separating groups. The 
result is shown in Fig. 7. There are about 28% of 
features having p-values close to zero and 50% of 
features having p-values smaller than 0.05, meaning 
there is about 70 features among the original 139 
features that have strong discrimination power. One can 
sort these features according to their p-values (or the 
absolute values of the t-statistic) and select some 
features from the sorted list. However, it is usually 
difficult to decide how many features are needed unless 
one has some domain knowledge or the maximum 
number of features that can be considered has been 
dictated in advance based on outside constraints. 

One quick way to decide the number of needed 
features is to plot the MCE (Misclassification Error, 
i.e., the number of misclassified observations divided 
by the number of observations) on the test set as a 
function of the number of features.  

In second experiment, we have applied PCA 
approach for feature reduction. Since the total number 
of our observations is 80, so it is better to use the lower 
number of features for our classification’s purpose. 
Therefore, the MCE has computed for various numbers 
of features between 1 and 20. The obtained results by 
means of GMM with 1, 2, 3 and 4 mixture are shown in 
Fig. 8. In order to reasonably estimate the performance 
of the selected approach, it is important to use the 50 
training samples to fit the PCA-Based approach and 
compute     the    MCE    on    the   remaining    30    test 
observations (blue circular marks in the Fig. 8. It is 
illustrated why resubstitution error is not a good error 
estimate of the test error; we also show the 
resubstitution MCE using red triangular marks. 

In third experiments, we have applied the proposed 
GMM-Based method for feature reduction in order to 
compare it with the PCA-Based approach. The MCE 
has computed for various numbers of features between 
1  and  20. The obtained results by means of GMM with 
 

 
 
 
 
 
 

 
 
 
 
 

 
Fig. 7: The p-value for features 
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Fig. 8: The obtained MCE by means of the PCA-based feature reduction method and different numbers of mixture for GMM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: The obtained MCE by means of the proposed GMM-based feature reduction method and different numbers of mixture for 
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Table 2: The selected features and accuracy in the best case 
Feature reduction method  Classifier The selected features Accuracy
PCA GMM with 2 mixtures The 1st and 4th coefficients of MFCC

Energy at the 17th, 18th, 32nd and 35th nodes of WP tree 
Entropy at the 1st, 4th and 34th nodes of WP tree 

96.67

The proposed GMM-based GMM with 4 mixtures The 4th coefficient of MFCC
Energy at the 16th and 19th nodes of WP tree 
Entropy at the 2nd node of WP tree

100%

Fisher discriminant ratio 
(Llorente et al., 2006) 

GMM with 6 mixtures The first 24th MFCC coefficients 97.35

 
1, 2, 3 and 4 mixture are shown in Fig. 9. In order to 
reasonably estimate the performance of the selected 
approach, it is important to use the 50 training samples 
to fit the GMM-Based approach and compute the MCE 
on the remaining 30 test observations (blue circular 
marks in the Fig. 9. It is illustrated why resubstitution 
error is not a good error estimate of the test error; we 
also show the resubstitution MCE using triangular 
marks. 

As it is obvious in Fig. 8 and 9, from the MCE 
point of view, the performance of the proposed GMM-
Based approach is better than the PCA-Based approach. 
Also, the best performance of the proposed GMM-
Based approach by means of GMM with 4 mixtures and 
4 features is better than the best performance of PCA-
Based approach by means of GMM with 2 mixtures and 
9 features. The selected features and accuracy, in the 
best case, by means of different approaches are shown 
in Table 2. 
 

CONCLUSION 
 

In this study, it is shown that features based on 
wavelet transformation have potential for detection of 
vocal fold. So, in the proposed approach, Mel-
Frequency-Cepstral-Coefficients (MFCC) along with 
the wavelet packet decomposition is used for feature 
extraction phase. 

Also a novel approach for the feature reduction 
phase in the vocal fold pathology diagnosis is proposed. 
Three experiments are designed to investigate the 
efficiency of the proposed GMM-Based method. The 
results of experiments show the priority of the proposed 
GMM-Based method in comparison with the 
conventional PCA-Based method and Fisher 
Discriminant Ratio. 

In this study, the GMM is used as the classifier. 
One of the main advantages of GMM is its ability to 
classify results correctly even when classes are similar. 
This methodology requires a shorter time for training 
than other approaches such Multilayer Perceptron 
(MLP) or Learning Vector Quantization (LVQ). 
Furthermore, the GMM approach displays comparable 
accuracy with respect to LVQ or MLP. 

Although it may be possible to try to build a 
complete multi-class classification system with a 
hierarchy of support vector machines so that detection 
of different type of pathological speech will be 
possible. For this propose, we suppose that further 
research for more sophisticated feature extraction 
phase. 
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