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Abstract: In this study, a single beam model has been developed to analyze the thermal vibration of Single-Walled 
Carbon Nanotubes (SWCNT). The nonlocal elasticity takes into account the effect of small size into the formulation 
and the boundary condition. With exact solution of the dynamic governing equations, the thermal-vibrational 
characteristics of a cantilever SWCNT are obtained. Influence of nonlocal small scale effects, temperature change 
and vibration modes of the CNT on the frequency are investigated. The present study shows that the additional 
boundary conditions from small scale do not change natural frequencies at different temperature change. Thus for 
simplicity, one can apply the local boundary condition to replace the small scale boundary condition. 
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INTRODUCTION 

 
Ever since Carbon Nanotubes (CNTs) discovery in 

1991 by Sumio Ijima of the NEC Laboratory in 
Tsukuba, Japan (Iijima, 1991), there has been intensive 
research on the potential applications of these unique 
nanostructure elements. Nanostructures can be modeled 
using atomistic or continuum mechanics. Compared to 
the atomistic approach, the continuum mechanics 
approach is widely used due to its computational 
efficiency and simplicity. Due to the presence of small 
scale effects at the nano scale, size-dependent 
continuum mechanics models such as the nonlocal 
elasticity theory initiated by Eringen is widely used. 
Unlike the local theories which assume that the stress at 
a point is a function of strain at that point, the nonlocal 
elasticity theory assumes that the stress at a point is a 
function of strains at all points in the continuum. Based 
on the nonlocal constitutive relation of Eringen, a 
number of studies have been published attempting to 
analyze the vibration (Aydogdu, 2009; Benzair et al., 
2008; Janghorban and Zare, 2011; Aranda-Ruiz et al., 
2012) responses of nanotubes. A review on the 
application of nonlocal models in the modeling of 
carbon nanotubes and graphenes is presented by Arash 
and Wang (2012). All of these models were based on 
Euler–Bernoulli beam theory, Timoshenko beam theory 
and higher-order shear deformation beam theories. It 
should be noted that the Euler-Bernoulli beam theory is 

suitable   for slender beams.  During the past several 
years, some researches indicated that the thermal effects 
on the mechanical behaviors of the carbon nanotubes 
are obvious. Jiang et al. (2004) developed a method to 
determine the thermal expansion coefficient for the 
nanotubes. In their research, it is concluded that the 
thermal expansion coefficient is negative for the low or 
room temperature but positive for the high temperature. 
Then some works on the mechanical characteristics of 
the carbon nanotubes with thermal effects are reported 
in literature (Yao and Han, 2007; Shen and Zhang, 
2010; Wen-Hwa et al., 2012). To solve various 
boundary value problems, Generalized Differential 
Quadrature (GDQ) method is employed to discretize 
the governing differential equations of different 
nonlocal beam theories corresponding to four common 
sets of boundary conditions namely as simply 
supported-simply supported, clamped-clamped, 
clamped-simply supported and clamped free, however 
the small scale effect of boundary conditions has no any 
investigation on free vibration of CNTs. 

In this study, a thermal vibration model is proposed 
to analyze the natural frequency of single-walled 
carbon nanotubes with clamped-free ends using Euler–
Bernoulli theory. Based on the nonlocal constitutive 
relations of Eringen, an exact solution of governing 
equation is obtained. Influence of nonlocal small scale 
effects, temperature and modes of vibration of the CNT 
on  the  frequency  are  investigated   and   discussed.
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Fig. 1: Model of a cantilever SWCNT of length l 
 

Difference of frequency results is shown for models 
with classical elasticity theory and nonlocal elasticity 
theory. 
 
Basic equations: Many studies showed that the classic 
Euler-elastic beam offers a simple and reliable model 
for an overall mechanical deformation of CNTs, 
provided the characteristic wavelength is much larger 
than the diameter of CNTs. Therefore, the present study 
the thermal effect on the vibration of SWCNTs 
described by the Bernoulli–Euler beam model. In the 
present theory the plane cross sections of the beam 
remain plane during flexure and that the radius of 
curvature of a bent beam is large compared to the 
beam’s depth. In addition, CNT is assumed to be 
clamped-free ends, shown in Fig. 1. 

According to the Euler-Bernoulli beam theory (the 
classical beam theory), the strain displacement relations 
are given by: 
 

                                                      (1) 

 
where x is the longitudinal coordinate measured from 
the left end of the beam, z the coordinate measured 
from the mid-plane of the beam, w the transverse 
displacement. Consider a cantilever SWCNT of length 
l. Young’s modulus E, material density ρ, cross-
sectional area A and cross-sectional inertia moment I, 
The free vibration equation of this beam-modeled CNT 
considering the thermal can be developed to become: 
 

                        (2)  
 

                                                            (3) 
 

where,  
M   = The bending moment  
Q   = The shear force  
NT  = The additional axial force arising due to 

thermal effects. On the basis of the theory of 
thermal elasticity mechanics, the axial force 
NT can be written as Zhang et al. (2008): 

 

                                               (4) 

where, αx is the coefficient of thermal expansion in the 

direction of x axis and v is the Poisson’s ratio, 

respectively. T denotes the change in temperature. In 

the present study, it is assumed that only axial loads due 

to temperature change exist on the SWCNT and 

temperature change is considered at low or room 

temperature. It should be noted that the Young’s 

modulus is assumed to insensitive to temperature 

change. 

The boundary conditions of the nonlocal cantilever 

beam theory are of the form as follows: 

 

 at                               (5) 

 

  at                                (6) 

 

As written, the governing equations and boundary 

conditions appear of the same form as the local beam 

theory, but it must be recognized that the bending 

moment and shear force expressions for the nonlocal 

beam theory are different due to the nonlocal 

constitutive relations as will be demonstrated below 

(Eringen and Edelen, 1972) 

 

                                     (7) 

 

where σxx is the normal stress, εxx is the normal strain 

and e0a is the scale coefficient that incorporates the 

small scale effect. Note that a is the internal 

characteristic length (e.g., lattice parameter, C–C bond 

length and granular distance) and e0 is a constant 

appropriate to each material.  

Considering M = � ����
���,  multiplying Eq. (7) 

by zdA and integrating the result over the area A yields: 

 

                                (8) 

 

By substituting the equilibrium Eq. (2) and (3) into 

Eq. (8), one obtains: 

  

        (9) 

 

  (10) 

 

In view of Eq. (9) and (10), the governing 

equations for the nonlocal Euler beams are given by: 
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On the basis of Eq. (5) (9) and (6) (10), the 
boundary conditions of the cantilever beam, associated 
with the nonlocal Euler beam theory, are given as 
follows: 

 

at x = 0                                 (12) 

 

 

  
and  
 

 = 0 at x = l     (13) 

 
Now we determine the solution of Eq. (11) with 

different boundary conditions. Let the solution be: 
 

                                         (14) 

 
where, ω is the circular natural frequency and W(x) is 
the mode shape. Term i is the conventional imaginary 
number. 
Substituting the Eq. (14) into Eq. (11) yields 
 

 (15) 

 
let  

 

 
 

 
 yields: 
 

                                              (16) 
 

For arbitrary ω, Eq. (16) has four roots 

 

 

 

                              (17) 

 

Thus 

 

                                          (18) 

 

The items Cj (j=1, 2, 3, 4) are the constants 

determined from the boundary conditions. 

By substituting Eq. (18) into the boundary conditions 

(12), (13), an eigenvalue problem may be set up as 

defined by: 

 

                                   (19) 

 

NUMERICAL RESULTS AND DISCUSSION 

 

On the basis of the vibration results obtained, we 

investigate the small scale effect of boundary condition 

on the frequency with a numerical example. Consider a 

(5, 5) armchair SWCNT with diameter d = 1 nm, lengths 

l= 10d and with the following assumed mechanical 

parameters: Young’s modulus E = 1 TPa, ρ = 2300kg/m
3
. 

It is reported that all the coefficients of thermal expansion 

for SWCNT are negative at low and room temperature 

and are positive at high temperature. In the present study, 

temperature change at low or room temperatures is 

considered. The coefficient of thermal expansion αx = -

1.6×10
6
K.

 
 

Fig. 2: The fisrt four mode shapes of the cantilever SWCNT with deferent theories for T = 50K and e0a = 1nm (dashed line: 

Local Euler; dotted line: Nonlocal euler without nonlocal boundary; continuous line: Nonlocal euler with nonlocal 

boundary) 
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Fig. 3: The fisrt four mode shapes of the cantilever SWCNT with deferent theories for T = 50K and e0a = 2nm (dashed line: 

Local euler; dotted line: Nonlocal euler without nonlocal boundary; continuous line: Nonlocal euler with nonlocal 
boundary) 

 
Table 1: Dependence of the small-scale parameter on the first five free frequencies of the cantilever SWCNT with/without nonlocal boundary 

conditions (T = 50K) (LE: Local Euler; NE: Nonlocal Euler without nonlocal boundary; NEB: Nonlocal Euler with Nonlocal 
Boundary)  

 e0a  [nm] 

 0 0.5 
------------------------------- 

1 
---------------------------- 

2 
---------------------------- 

Frequency [GHz] /Small scale / Mode                  LE NE NEB NE NEB NE NEB 

1 29.444 29.444 29.444 29.444 29.444 29.444 29.444 
2 183.35 180.80 180.80 171.89 171.89 147.06 147.06 
3 513.12 485.10 485.10 423.99 423.99 307.49 307.49 
4 1003.3 898.91 898.91 711.74 711.74 452.00 452.00 
5 1659.0 1387.8 1387.8 1008.4 1008.4 599.70 599.70 

 
Table 2: Dependence of the small-scale parameter on the first five free frequencies of the cantilever SWCNT with/without nonlocal boundary 

conditions. (T = 0K); (LE: Local Euler; NE: Nonlocal Euler without nonlocal boundary; NEB: Nonlocal Euler with Nonlocal 
Boundary)  

 e0a  [nm] 

 0 0.5 
------------------------------- 

1 
----------------------------- 

2 
---------------------------- 

Frequency [GHz] /Small scale / Mode                  LE NE NEB NE NEB NE NEB 

1 29.444 29.444 29.444 29.444 29.444 29.444 29.444 
2 182.71 180.16 180.16 171.25 171.25 145.79 145.79 
3 511.84 485.10 485.10 423.99 423.99 304.94 304.94 
4 1003.3 897.63 897.63 711.10 711.10 449.45 449.45 
5 1657.8 1386.6 1386.6 1006.5 1006.5 597.15 597.15 

 
For same temperature change T, Fig. 2 and 3 

illustrate the dependence of the first four mode shapes 
on the small scale with/whithout classical and small 
scale boundary conditions. It is clearly seen from these 
figures that for different theories, the mode shapes are 
actually significant difference. Furthermore with either 
larger values of m or lager values of e0a, this difference 
becomes very strong. This means that the application of 
the nonlocal boundary conditions for CNT analysis 
would lead to significant change for the mode shapes. 
The reason for this phenomenon is, for a cantilever 
SWCNT, the boundary conditions at the free end has an 
obvious difference between the classical and small 
scale boundary conditions. 

 However, the small scale has not effect on 
frequency of nanotube when the nonlocal elastical 
theory is considered in boundary conditions. With the 
temperature change T = 0 K and 50K, the results of the 
first five frequencies of SWCNTs based on small scale 
are listed in Table 1 and 2, respectively. It can be seen 

from Table 1 and 2 that based on nanobeam, the 
frequencies have not change with/without classical and 
small scale boundary conditions for the different T and 
mode number m. This means that the scale effect on 
boundary conditions can be neglected when the thermal 
vibration of SWCNT is analyzed based on nonlocal 
elasticity theory. On basis of virtual work principle, this 
phenomenon can be explained that the virtual work 
made from small scale shear force and moment at the 
both ends cancel each other in viewpoint of energy or 
work. 

 

CONCLUSION 

 

In this study, the thermal vibration analysis of 

SWCNT with/without small scale boundary and 

nonlocal beam theory using exact solution has been 

performed. Since the additional work made by the 

moment and shear force at the free end from small scale

0 0.5 1
-0.5

0

0.5

1

m = 1

0 0.5 1
-1

0

1

m = 2

0 0.5 1
-1

-0.5

0

0.5

1

m = 3

0 0.5 1
-1

-0.5

0

0.5

1

m = 4



 

 

Res. J. Appl. Sci. Eng. Technol., 5(9): 2729-2733, 2013 

 

2733 

effect cancel each other, small scale boundary do not 
change natural frequencies. With this finding, in the 
cases of thermal vibration analysis using analytical 
solution, the boundary conditions due to local elasticity 
and nonlocal elasticity are also equivalent. Thus for 
simplicity, we can apply the local boundary condition 
to replace the small scale boundary condition. 
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