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Abstract: This study uses mathematical modeling along with an algebraic technique to resolve the production-
distribution policy for a single-producer multi-retailer integrated inventory system with scrap in production. We 
assume that a product is manufactured through an imperfect production process where all nonconforming items will 
be picked up and scrapped in each production cycle. After the entire lot is quality assured, multiple shipments will 
be delivered synchronously to m different retailers in each cycle. The objective is to determine the optimal 
replenishment lot size and optimal number of shipments that minimizes total expected costs for such a specific 
supply chains system. Conventional method is by the use of differential calculus on system cost function to derive 
the optimal policy (Chiu et al., 2012c), whereas the proposed algebraic approach is a straightforward method that 
enables practitioners who may not have sufficient knowledge of calculus to understand and manage more effectively 
the real-life systems. 
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INTRODUCTION 
 

The mathematical techniques for determining the 
most economical production lot for an inventory model 
was first proposed by Taft (1918). It is also known as 
Economic Production Quantity (EPQ) model (Hillier 
and Lieberman, 2001; Nahmias, 2009). EPQ model 
assumes a continuous inventory issuing policy for 
meeting customer’s product demand. However, in real 
world vendor-buyer business environment, the multiple 
or periodic delivery are often used. Hence, one of the 
critical decisions for effectively managing such a 
vendor-buyer integrated system is to accurately 
determine the optimal number of delivery so that the 
total production-delivery costs can be minimized. 
Schwarz (1973) first investigated a one-warehouse N-
retailer inventory system with the objective of 
determining the stock refilling policy that minimizes 
the expected cost per unit time for the proposed model. 
Schwarz et al. (1985) examined the system fill-rate of a 
one-warehouse N-identical retailer distribution system 
as a function of warehouse and retailer safety stock. 
They used an approximation model from a prior study 
to maximize system fill-rate subject to a constraint on 
system safety stock. As results, properties of fill-rate 
policy lines are suggested and these may be used to 
provide managerial insight into system optimization 
and as the basis for heuristics. Many studies on 

different aspects of the supply chain optimization have 
since been extensively conducted (Goyal, 1977; 
Banerjee, 1986; Aderohunmu et al., 1995; Parija and 
Sarker, 1999; Abdul-Jalbar et al., 2005; Hoque, 2008; 
Sarker and Diponegoro, 2009; Chiu et al., 2011). 

Product quality issue in the vendor side is another 
special focus of the present study. One notes that the 
classic EPQ model implicitly assumes all items 
produced are of perfect quality. However, in a real life 
manufacturing environment, due to unpredictable 
factors it is inevitable to generate defective items. Shih 
(1980) considered two inventory models to the case 
where the proportion of defective units in the accepted 
lot is a random variable with known probability 
distributions. Optimal solutions to these amended 
systems were developed and comparisons with the 
traditional models were also presented via numerical 
examples. Many studies have since been conducted to 
address the issues of defectiveness and quality 
assurance in production systems (Bielecki and Kumar, 
1988; Chern and Yang, 1999; Teunter and Flapper, 
2003; Ojha, et al., 2007; Chiu et al., 2009a, b; Sana, 
2010; Lee et al., 2011; Chiu et al., 2012b). In this 
study, we consider that all defective items will be 
picked up at the screening and scrapped in each 
production cycle. After the entire lot is quality assured, 
multiple shipments are delivered synchronously to m 
different retailers in each cycle. The objective of this 
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study is to determine the optimal replenishment lot size 
and optimal number of shipments that minimizes total 
expected costs for such a specific supply chains system. 

Conventional approach uses the differential 
calculus on system cost function to derive the optimal 
policy. Recently, Grubbström and Erdem (1999) 
proposed an algebraic derivation to solve the Economic 
Order Quantity (EOQ) model with backlogging. Their 
algebraic approach does not reference to the first- or 
second-order derivatives. Similar approaches were 
applied to solve various aspects of production and 
supply chain optimization (Chiu, 2008; Lin et al., 2008; 
Chiu et al., 2010; Chen et al., 2012). This study extends 
such an algebraic approach to resolve a single-producer 
multi-retailer integrated inventory model with scrap in 
production (Chiu et al., 2012c). 
 

MODEL DESCRIPTION AND MODELLING 
 

In this study, we proposed an algebraic technique 
to resolve a single-producer multi-retailer integrated 
inventory model with scrap in production (Chiu et al., 
2012c). The specific supply chains model studied here 
is described as follows. Consider that a product can be 
made at an annual production rate P, all items produced 
are screened and the inspection expense is included in 
the unit production cost C. The process may randomly 
generate an x portion of defective items at a rate d and 
all defective items picked up are assumed to be scrap, 
they are discarded in each cycle. Under the normal 
operation, to prevent shortages from occurring, the 
constant production rate P must satisfies (P-d-λ)>0, 
where λ is  the  sum of annual demands of retailers and 
d = Px.  

This study considers a multi-shipment policy and 
the finished items can only be delivered to the retailers 
when the entire lot is quality assured in the end of 
regular production. Each retailer has its own annual 
demand rate λi. Fixed quantity n installments of the 
finished batch are delivered to multiple retailers 
synchronously at a fixed interval of time during the 
downtime t2 (Fig. 1). 

The cost related parameters used in this study 
include: the unit production cost C, unit disposal cost 
CS, production setup cost K, unit holding cost h, the 
fixed delivery cost K1i per shipment delivered to retailer 
i, unit shipping cost Ci for item shipped to retailer i and 
unit holding cost h2i for item kept by retailer i. Other 
notation also includes: 

 
n = Number of fixed quantity installments of the 

finished batch to be delivered to retailers for 
each cycle, a decision variable (to be 
determined) 

Q = Production lot size per cycle, a decision variable 
(to be determined) 

m = Number of retailers 

 
 
Fig. 1: On-hand inventory of perfect quality products in 

vendor side 
 
H = Maximum level of on-hand inventory in units 

when the production process ends 
t1 = The production uptime for the proposed system 
t2 = Time required for delivering all quality assured 

finished products to retailers 
tn = A fixed interval of time between each installment 

of finished products delivered during production 
downtime t2 

T = Production cycle length 
 I (t) = On-hand inventory of perfect quality items at 

time t 
Ic (t) = On-hand inventory at the retailers at time t 
TC (Q, n) = Total production-inventory-delivery 

costs per cycle for the proposed system 
E[TCU(Q, n)] = Total expected production-inventory-

delivery costs per unit time for the 
proposed system 

 
Figure  1  and  with reference to the work of Chiu 

et al. (2012c), one notes that the total production- 
inventory-delivery cost per cycle TC (Q, n) consists of 
the following (as shown in Eq. (1)): TC (Q, n) consists 
of the variable production cost, setup cost, disposal 
cost, fixed and variable delivery cost, holding cost 
during production uptime t1 and holding cost for 
finished goods kept by both the manufacturer and the 
customer during the delivery time t2: 
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Taking the randomness of scrap rate into account, 

the expected values of x is used in the cost analysis. 
Substituting all parameters (Chiu et al., 2012c) and with 
further derivations, E [TCU (Q, n)] can be obtained: 
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THE PROPOSED ALGEBRAIC APPROACH 
 

One notes that Eq. (2) contains Q and n two decision variables and there are several forms of decision variables 
Q and n in the right-hand side of Eq. (2): such as Q, Q-1, nQ-1 and Qn-1. Therefore, one can rearrange Eq. (2) as: 
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Let: 
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Eq. (3) becomes: 
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With rearrangement of Eq. (9) one obtains: 
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One notes that Eq. (10) will be minimized if its second and third terms equal zero. That is: 
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3
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and: 
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Substituting Eq. (5) and (6) in Eq. (11) and substituting Eq. (7), (8) and (11) into Eq. (12), the optimal number of 

shipments n* is: 
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One notes that Eq. (13) is identical to that obtained by using the conventional differential calculus method (Chiu 

et al., 2012c). 
Now, in order to find the integer value of n* that minimizes the expected system cost, the two adjacent integers 

to n must be examined respectively for cost minimization (Chiu et al., 2012d). Let n+ denote the smallest integer 
greater than or equal to n (derived from Eq. (13)) and n- denote the largest integer less than or equal to n. Because n* 
is either n+ or n-, we can first treat E [TCU (Q, n)] (Eq. (2)) as a cost function with a single decision variable Q and 
do the following rearrangements: 
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In Eq. (15), one notes that E [TCU (Q, n)] will be minimized if the second term of the right-hand size of Eq. 

(15) equals zero. That is: 
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Substituting Eq. (5), (6), (7) and (8) in Eq. (16), the optimal production lot size is: 
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                                                         (17) 
 
One notes Eq. (17)  is  identical  to  that obtained 

by using the conventional differential calculus method 
(Chiu et al., 2012c). 

Finally, in order to find the optimal (Q*, n*) policy 
one substitutes all related system parameters along with 
n+ and n- in Eq. (17) and then applying (Q, n+) and (Q, 
n-) in Eq. (3) respectively and selecting the one that 
gives the minimum expected system cost as the optimal 
(Q*, n*) policy. 
 
Numerical example: This section uses a numerical 
example to verify the proposed algebraic approach and 
its resulting Eq. (13), (17) and (3), by using the same 
numerical example as given in Chiu et al. (2012c). In a 
single-producer multi-retailer integrated inventory 
model with scrap, suppose a product can be made at a 
rate P = 60,000 units per year and its annual demands λi 
from 5 different retailers are 400, 500, 600, 700 and 
800, respectively (total demand λ = 3000 per year). The 
random defective rate x follows a uniform distribution 
over the range of [0, 0.3]. All defective items are 
considered to be scrapped items. 

Other values of parameters are C = $ 100, K = $ 
35000, h = $ 20, h1 = $ 60, CS = $ 20, K1i for retailer i are 
100, 200, 300, 400 and 500 $, respectively, h2i for 
retailer i are 75, 70, 65, 60 and 55 $ per item, 

respectively, Ci for retailer i are 0.5, 0.4, 0.3, 0.2 and 0.1 
$, respectively. 

We first determine the optimal number delivery by 
computing Eq. (13), one has n = 5.39. Then, examine 
the two adjacent integers to n and applying Eq. (17), one 
obtains (Q, n+) = (3231, 6) and (Q, n-) = (3122, 5). 
Finally, substituting these (Q, n+) and (Q, n-) in Eq. (3), 
respectively. Choosing the one that gives the minimum 
system cost as our optimal policy, one obtains (Q, n+) = 
(3122, 5) and total expected cost E [TCU (Q*, n*)] = $ 
460, 408. 

One notes that the results from the aforementioned 
numerical example are confirmed to be identical to those 
obtained in Chiu et al. (2012c). 

 
CONCLUSION 

 
This study proposed a mathematical modeling 

along with algebraic derivation for resolving for the 
optimal production-shipment policy for a single-
producer multi-retailer integrated inventory model with 
scrap in production. Unlike the conventional method 
by the use of differential calculus to find the optimal  
policy (Chiu et al., 2012c), the proposed algebraic 
approach demonstrate a straightforward derivation that 
may enable students and/or practitioners with little 
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knowledge of calculus to understand and manage such 
a real-life supply chains system more effectively. 
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