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End-Regularity of the Join of n Split Graphs 
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Technology, Luoyang, 471003, China 
 

Abstract: A graph X is said to be End-regular if its endomorphism monoid End (X) is a regular semigroup. In this 
study, End-regular graphs which are the join of n split graphs are characterized. We give the conditions under which 
the endomorphism monoid of the join of n splits graphs is regular. 
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INTRODUCTION 

 
Endomorphism monoids of graphs are 

generalizations of automorphism groups of graphs. In 
recent years much attention has been paid to 
endomorphism monoids of graphs and many interesting 
results concerning graphs and their endomorphism 
monoids have been obtained. The aim of this research is 
try to establish the relationship between graph theory 
and algebraic theory of semigroups and to apply the 
theory of semigroups to graph theory. Just as Petrich and 
Reilly pointed out in Petrich et al. (1999), in the great 
range of special classes of semigroups, regular 
semigroups take a central position from the point of 
view of richness of their structural “regularity”. So it is 
natural to ask for which graph G the endomorphism 
monoid of G is regular (such an open question raised in 
Marki (1988). However, it seems difficult to obtain a 
general answer to this question. So the strategy for 
answering this question is to find various kinds of 
conditions of regularity for various kinds of graphs. In 
Wilkeit (1996) the connected bipartite graphs whose 
endomorphism monoids are regular were explicitly 
found. An infinite family of graphs with regular 
endomorphism monoids were provided in Li (2003) and 
the joins of two trees with regular endomorphism 
monoids were also characterized. Hou et al. (2008) 
explored the endomorphism monoid of the complement 
of a path pn with n vertices.  It was shown that the 
endomorphism monoid of the complement of a path is 
an orthodox semigroup. The split graphs and the join of 
split graphs with regular endomorphism monoids were 
studied in Li et al. (2001), Fan (1997) and Hou et al. 
(2012), respectively. The split graphs with orthodox 
endomorphism monoids were characterized in Fan 
(2002). In this study, we continue to explore the 

endomorphisms monoids of the joins of n split graphs 
and characterize such graphs whose endomorphism 
monoids are regular. 

The graphs considered in this paper are finite 
undirected graphs without loops and multiple edges. Let 
X be a graph. The vertex set of X is denoted by V(X) 
and the edge set of X is denoted by E(X). The 
cardinality of the set V(X) is called the order of X. If 
two vertices x1 and x2 are adjacent in the graph X, the 
edge connecting x1 and x2 is denoted by {x1, x2} and 
write 1 2{ , } ( )x x E X∈ . For a vertex v of X, denote by 
NX(v) the set { ( ) { , } ( )}x V X x v E X∈ ∈  and called it the 
neighborhood of  v  in X, the cardinality of Nx(v) is 
called the degree or valency of v in X and is denoted by 
dX(v). A subgraph H is called an induced subgraph of X 
if for any ,a b H∈ ,{ , }a b H∈  if and only if 
{ , } ( )a b E X∈ .  We denote by Kn a complete graph with 
n vertices. A clique of a graph X is the maximal 
complete sub graph of X. The clique number of X, 
denoted by ( )Xϖ , is the maximal order among the 
cliques of X.  Let X1, X2, …, Xn be n graphs. The join of 
X1, X2, …, Xn, denoted by X1 + X2 + … + Xn, is a graph 
with V(X1 + X2 + … + Xn) = V(X) U V(X2) U L  U
V(Xn) and E(X1 + X2 + … + Xn) =  1( )E X U E(X2) U

( )nE XLU U  {{ , } ( ), ( }i ja b a V X b V X∈ ∈ ,  (where i ≠ j). 

Let G be a graph. A subset ( )K V G⊆  is said to 
be complete if { , } ( )a b E G∈ for any two vertices 

,a b K∈ . A subset ( )S V G⊆  is said to be independent 
if { , } ( )a b E G∉  for any two vertices ,a b S∈ . A graph 
X is called split graph if its vertex set V(X) can be 
partitioned into two disjoint (non-empty) sets S and K, 
such that S is an independent set and K is a complete 
set. We can always assume that any split graph X has a 
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unique partition ( )V X K S= U  , where K a maximal is 
complete set and S is an independent set. Since K is a 
maximal complete set of X, it is easy to see that for any 
y S∈ , 0≤dX(y) ≤n-1,  where ( )n Xϖ= . 

Let X and Y be two graphs. A mapping from V(X) 
to V(Y) is called a homomorphism if { , } ( )a b E X∈  
implies that{ ( ), ( )} ( )f a f b E Y∈ . A homomorphism 
from X to itself is called an endomorphism of X. An 
endomorphism f of X is said to be half-strong if 

{ ( ), ( )} ( )f a f b E X∈  implies that there exist 1( )c f a−∈  

and 1( )bd f −∈  such that{ , } ( )c d E X∈ . Denote by 
End(X) and hEnd(X) the set of endomorphisms and 
half-strong endomorphisms of X. It is known that 
End(X) forms a monoid with respect to the composition 
of mappings and is called the endomorphism monoid 
(or briefly monoid) of X. Denote by Idpt(X) the set of 
all idempotents of End(X). It is known that every 
idempotent endomorphism is half-strong. 

A retraction is a homomorphism f from a graph X 
to a sub graph Y of X such that the restriction f|Y of f to 
V(Y) is the identity map on V(Y). It is easy to see that 
the idempotents of End(X) are retractions. Let f be an 
endomorphism of a graph X. A sub graph of G is called 
the endomorphic image of G under f, denoted by If, if 
V(If) = f(V(If) = f(V(G)) and { ( ), ( )} ( )

f
f a f b E I∈  if and 

only if there exist 1( ( ))c f f a−∈   and 1( ( ))d f f b−∈  such 
that { , } ( )c d E G∈ .  By ρf we denote the equivalence 
relation on V(X) induced by f, i.e., for , ( )a b V X∈ , 
{ , }

f
a b ρ∈  if and only if f(a) = f(b). Denote by [a]ρf  the 

equivalence class containing ( )a V X∈  with respect to 
ρf. 

An element a of a semigroup S is called regular if 
there exists x S∈  such that axa = a. A semigroup S is 
called regular if all its elements are regular.  A graph X 
is said to be End-regular if its endomorphism monoid 
End(X) is regular. The reader is referred to Godsil et al. 
(2000) and Howie (1995) for all the notation and 
terminology not defined here. We list some known 
results which will be used frequently in the sequel to end 
this section. 
 
Lemma 1 (Li, 2003): Let X be a graph and ( )f End X∈ . 
Then: 
 
• ( )f hEnd X∈  if and only if If is an induced sub 

graph of X 
• If f is regular, then ( )f hEnd X∈  

 
Lemma 2 (Li, 1994): Let X be a  graph  and 

( )f End X∈ . Then  f  is   regular  if   and  only  if   there 
exists  , ( )g h Idpt X∈  Such  that ρg = ρf and Ih = If. 

Lemma 3 (Li, 2003): Let X and Y be two graphs.  If X 
+ Y is End-regular, then both X and Yare End-regular. 
Lemma 4 (Li, 2003): Let X be a graph. Then X is End- 
regular if and only if X + Kn is End-regular for any n≥1. 

The following are some known results about split 
graphs which are essential for our consideration. 

 
Lemma 5 (Li et al., 2001): Let X be a connected split 
graph with ( )V X K S= U , where S is an independent 
set and K is a maximal complete set, |K| = n. Then X is 
End-regular if and only if there exists {1, 2, , 1}r n∈ −L

such that d(x) = r for any x S∈  . 
 
Lemma 6 (Li et al., 2001): A non-connected split 
graph X is End-regular if and only if X exactly consists 
of a complete graph and several isolated vertices. 
 

END-REGULAR JOINS OF n SPLIT GRAPHS 
 

The End-regular split graphs have been 
characterized in Lemma 5 and 6. In this section, we will 
characterize the End-regular graphs which are the join 
of n split graphs. 

Let Xi be a split graph with ( ) ( )i i i
V X V K S= U , 

where,  Si = {xi1 , … , xipi} is an independent set and 
V(Ki) = {ki1 ki2 ,L kiqi} is a maximal complete set. 
Then the vertex set V(X1 + X2 + … + Xn) of X1 + X2 + 
+…+ Xn can be partitioned into n + 1 parts K , S1, S2, 
…, Sn  i.e., V(X1 + X2 +…+ Xn) = 1 2 n

K S S SU U ULU

, where V(K) = V(K1) U V(K2) U  L U V(Kn) is a 
complete set, S1, S2, …, Sn are independent sets. 
Obviously the subgraph   of X1 + X2 + … + Xn induced 
by K is a complete graph and the subgraph of X1 + X2 
+…+ Xn induced by S1 U S2 U L n

SU  is a complete n 
partite graph. By Lemma 3, we know if X + Y is End-
regular, then both of X and Y are End-regular. Clearly, 
If X1 + X2 +…+ Xn is End-regular, then Xi is End-
regular for any 1≤i≤n. So we always assume that Xi are 
End-regular sprit graphs in the sequel unless otherwise 
stated. Moreover, let di be the valency of the vertices of 
Si in Xi. Clearly, if Xi is connected, then 0<di n-1; if Xi 
is non-connected, then di = 0. 

 
Lemma 7: If X1 + X2 +…+ Xn is End-regular, then qi - 
di = qj - dj for any 1≤i≤n and 1≤j≤n. 
 
Proof: Supose that qi - di ≠ qj - dj, Then we have q1 + q2 
+…+ qn - di ≠ q1 + q2 +…+ qn - dj . Let q1 + q2 +…+ qn - 
di<q1 +q2 +…+ qn - dj.  As qi<n, for any i

x S∈ , x is not 
adjacent to exactly qi - di vertices of  V(Ki)  in Xi, so x 
is not adjacent to exactly qi - di vertices of  V(Ki) in X1 
+ X2 + … + Xn, take such a vertex and write kx. 

Let x1 be a vertex of  Si  and  y1 be a vertex of Sj, 
since we have |V(K)∩N(x1)| = di + qi<dj + qj = 
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|V(K)∩N(y1)|, there exists a permutation τ on  V(K) 
such that  1( ( ) ( ))V K N xτ ⊂I ( )V K I 1( )N y . 
Let f be a mapping from V(X) to itself defined by: 
 

1 ,1

1 2 1

,

( ), ( ),( )
( ), .x n

y if x x

x if x V Kf x
k if x S S S and x x

τ

τ

=⎧
⎪
⎪ ∈= ⎨
⎪ ∈ ≠⎪
⎩

U ULU

 

 
Then it is easy to see that f  End (X1 + X2 +...+ 

Xn). Sinc |V(K)∩N(x1) < |V(K)∩N(y1)|,  If  is not an 
induced sub graph of X1 + X2 +…+ Xn. Hence 

21
( )nf hEnd X X X∉ + ++ L . It follows from Lemma 

1 that X1 + X2 + … + Xn is not End-regular. A 
contradiction.  Therefore qi - di = qj - dj. 

 
Lemma 8: Let X1, X2, …, Xn be n End-regular split 
graphs, qi - di = qj - dj for any 1≤i≤n  and 1≤j≤ n. If X1 + 
X2 + … + Xn is End-regular, then there are no two 
vertices x1, x2  St such that 1 2( ) ( ) ( )

tt t
N x N x V KX X =U  

for any 1≤i≤n.              
 
Proof: Suppose there exist two vertices x1 and x2 of St 
such that 1 2( ) ( ) ( )

tt t
N x N x V KX X =U for some 1≤t≤n. 

Then we can obtain that 1 2( ( ) \ ( )) ( ( ) \ ( ))
t tt t

V K N x V K N xX XI

= φ . Let y1 be a vertex of Sk (1 k n≤ ≤ and k t≠ ). 
Then there exists a permutation τ of V(K) such that 
τ(V(K)\NXt(x1)) = (V(K)\NXt(y1)) = and τ(V(K)\NXt(x2)) 
= (V(K)\NXt(x2)). For i

x S∈ , kx have the same meaning 
as in the proof of Lemma 7. Let f be a mapping from V 
(X1 + X2 + … + Xn) to itself defined by: 
 

1, 1

2 2

,

, ,
( )

( ), ( ),

( ), .x

y x x

x x x
f x

x x V K

k otherwise

τ

τ

⎧ =⎪
⎪ =⎪

= ⎨
⎪ ∈
⎪
⎪⎩

 

 
Then 21

( )nf End X X X∈ + ++ L . It is easy to see 
{y1, x2} ∈  E(X1 + X2 +…+ Xn). But f-1(x2) = x2, f-1(y1) 
= x1, and , }

1 2
{ ( )x x E X∉ . Thus ( )f hEnd X∉  and so 

X1 + X2 + … +Xn is not End-regular. 
We next prove the conditions in Lemma 7 and 8 

are the sufficient conditions such that X1 + X2 + … + 
Xn being End-regular. Note that in case of qi - di = qj - 
dj, X1 + X2 + … + Xn has a unique clique of order q1 
+q2 +…+ qn if and only if di≤qi - 2 for any 1≤i≤n. So we 
can go process into two cases: di≤qi - 2 and di = qi - 1 
for any 1≤i≤n. 

Lemma 9: Let X1, X2, …, Xn  be n split graphs with 
di≤qi - 2, qi - di = qj - dj for any  1≤i≤n and 1≤j≤. Then 
for any endomorphism f of X1 + X2 +…+ Xn, If is an 
induced subgraph of X1 + X2 + … + Xn if and only if 
there are no two vertices 1 2

,
t

x x S∈ such that NXt (x1) 

 NXt(x2) = V(Kt)  for any 1≤t≤n. 
 
Proof: Necessity follows from the proof of Lemma 8. 
Conversely, assume there are no two vertices 1 2

,
t

x x S∈  

such that 1 2( ) ( ) ( )
tt t

N x N x V KX X =U   for any 1≤t≤n. As 

the proof of Lemma 8, it is easy to show that for any 
two vertices

1 2
,

t
s s S∈ , there is no endomorphism f 

such that 
1

( )
i

f s S∈ and 
2

( )
j

f s S∈ for any  1≤i, j≤n and 

i ≠ j. 
Let ( )f End X∈  and let ,

f
a b I∈ with {a, b}  

E{X1 + X2 + ...+ Xn). We need to prove that there exist
1( )c f a−∈ , 1 ( )d f b−∈  such that{ , }c d ∈E(X1 + X2 +…+ 

Xn). If both of a and b are in ( ( ))f V K , then there exist 

two vertices 1 ( )c f a−∈ , 1( )d f b−∈  such that { , }c d ∈

( )E X  since f(V(K)) = V(K).  If exactly one of a and b 
is in f(V(K)), without loss of generality, assume that

( ( ))a f V K∈ , ( ( ))b f V K∉ , then there exists a vertex 
( ( ))c f V K∈  such that f(c) = a. Suppose that{ , }c v ∉  

E(X1 + X2 + … Xn) for any vertex 1( )v f b−∈ , let 
1( )u f b−∈ . Then u is adjacent to exactly q1 + q2 = … + 

qn - di  (1≤i≤n)  vertices  in  V(K)\{c}, say, x1, x2 ,L  
xq1 = q2 +…+ qn - di. So b is adjacent to f(x1), f(x2),…, f(xq1 
+ q2 +…+ qn - di). Clearly f(x1), f(x2),…, f(xq1 + q2 +…+ qn) 
a  are distinct. We get that b is adjacent to q1 + q2 +… + 
qn - di +1 vertices in V(K), a contradiction. If both a and 
b are not in f(V(K)) and 21

{ , } ( )nc d E X X X∉ + ++ L
 

for any 1( )c f a−∈ , 1( )d f b−∈  , then f-1(a) and f-1(b) are 
contained  in the same Si (i = 1, 2, … , n).  From the 
discussion in the last paragraph, we have that a = f(f-

1(a)) and b = f(f-1(b)) are in the same Si (i = 1, 2) and so 
{ , }a b ∉E(X1 + X2 + … + Xn), a contradiction, as 
required. 
 
Lemma 10: Let X1, X2, …, Xn be n split graphs with  
di≤qi – 2 for any 1≤i≤n. Then X1 + X2 + … + Xn is End-
regular if and only if: 
 
• qi - di = qj - dj For any 1≤i≤n  and 1≤j≤n 
• There are no two vertices 1 2

,
t

x x S∈  such that 

1 2( ) ( ) ( )
tt t

N x N x V KX X =U  for any 1≤t≤n 
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Proof: Necessity follows immediately from Lemmas 7 
and 8. 

Conversely, let 21
( )nf End X X X∈ + ++ L . To 

show that f is regular, we need to prove that there exist 
two idempotents g and h in End(X) such that ρg = ρf and 
Ih = If. 

Since d1≤n - 2  and d2≤m - 2, f(V(K)) = V(K) and 
for any 1 2 n

x S S S∈ U ULU , there exists a vertex

( )
x

k V K∈  such that x is not adjacent to kx. Let h be the 
mapping from V(X) to itself defined by: 

 

1 2, ( ),
( )

, .
nx x f X X X

h x
k otherwisex

⎧ ∈ + + +⎪
= ⎨
⎪⎩

L
 

  
Then ( )h End X∈  and ( ( )) ( )h V K V K= . If 

1 2
( )

n
x f X X X∈ + + +L , then 2 ( ) ( )h x h x x= = ; If x∈

V(X1 + X2 + … + Xn) \ f(X1 + X2 + … + Xn), then it is 
easy to check that h2(x) = h(kx) = kx h(x) ( )xk h x= =

since ( ) ( )xk V K f X∈ ⊆ . Henc 1 2( )nf Idpt X X X∈ + + +L . 
Clearly, If and Ih have the same set of vertices. Note 
that an idempotent endomorphism is half-strong. It 
follows from Lemmas 1 and 9 that both Ih and If are 
induced  sub  graph  of  X1 + X2 + … + Xn.  Therefore 
Ih = If 

Since f(V(K)) = V(K), [x]ρf contains at most one 
vertex of V(K) for any 21

( )nx V X X X∈ + ++ L . 
Without loss of generality, we can suppose that V(X1 + 
X2 + … + Xn) /ρf = {[k1]ρf, [k2]ρf , … , ,L [kr]ρf, [s1]ρf, 
…, [st]ρf where ik K∈ , and 

1 2i n
s S S S∈ U ULU . Let g 

be a mapping from V(X1 + X2 + … + Xn) to itself 
defined by: 
 

, [ ] ,
( )

, [ ] .

f

f

i

i

k if x ki
g x

s if x si

ρ

ρ

⎧ ∈
⎪

= ⎨
∈⎪⎩

 

 
Then 21

( )ng End X X X∈ + ++ L . If any [ ]
fi

x k
ρ

∈ , 

then  g2(x) = g(ki)  = k = g(x)i; if [ ]
fi

x s
ρ

∈ , then g2(x) 

= g(si) = si = g(x).  Hence g2 = g. Clearly, ρg = ρf, as 
required. 

 
Lemma 11: Let X1 + X2 + … + Xn be End-regular split 
graphs, di = qi - 1 for any 1≤i≤n. Then X1 + X2 + … + 
Xn is End-regular if and only if NXi(x1) = NXi(x2) for 
any  

1 2
,

i
x x S∈   (where 1≤i≤n). 

Proof: Necessity follows immediately from Lemma 8. 
Conversely, since NXi(x1) = NXi(x2) for any

1 2
,

i
x x S∈ , 

there is a unique vertex ki in Ki such that { , }
i i

x k ∉  

E(X1 + X2 +…+ Xn) for any
i i

x S∈ . Now the subgraph 

induced by 
1 2

S SU UL  ,
1 2

{ , , }
n n

S k k kU U L  is a 
complete n partite graph, denote it by T. Hence X1 + X2 
+ … + Xn is isomorphic to Kq1 +q2 + … + qn - n + T.  Since 
any  complete  n partite graph is End-regular, by 
Lemma 4, X1 + X2 + … + Xn is End-regular.  

Now we are ready for our main result in this 
section. 
 
Theorem 12: Let X1, X2, …, Xn be n split graphs. Then 
X1 + X2 + … + Xn is End-regular if and only if: 
 
• Xi is End-regular for any 1≤i≤n. 
• qi - di = qj - dj For any 1≤i≤n and 1≤i≤n 
• There are no two vertices 1 2

,
t

x x S∈  such that

1( )
t

N xX U  2( ) ( )
tt

N x V KX =  for any 1≤i≤n 
 

Proof: It follows directly from Lemmas 3, 5, 6, 10 
and 11. 
 
END-ORTHODOX JOINS OF n SPLIT GRAPHS 

 
In this section, we will give the conditions under 

which the endomorphism monoids of the joins of the 
split graphs is orthodox. 

 
Lemma 13: Let G1, G2, …, Gn be n graphs. If G1 + G2 + 
… + Gn is End-orthodox, then Gi is End- orthodox for 
any 1≤i≤n.   
 
Proof: Since G1 + G2 +…+ Gn is End-orthodox, G1 + 
G2 +…+ Gn is End-regular. By Lemma 3, Gi is End-
regular for any 1≤i≤n. To show Gi is End-orthodox; we 
only need to prove that the composition of any two 
idempotent endomorphisms of Gi is also an idempotent.  

Let f1 and f2 be two idempotents in End(Gi). Define 
two mappings g1 and g2 from V(G1 + G2 +…+ Gn) to 
itself by:  
 

1
1

1 2

( ), ( )
( )

, ( )\ ( )
i

n i

f x if x V G
g x

x if x V G G G V G
⎧ ∈⎪

= ⎨
∈ + + +⎪⎩ L

 

 
2

2
1 2

( ), ( )
( )

, ( )\ ( )
i

n i

f x if x V G
g x

x if x V G G G V G
⎧ ∈⎪

= ⎨
∈ + + +⎪⎩ L

 

 
Then g1 and g2 are two idempotents of End(G1 + G2 

+ … + Gn) and so g1g2 is also an idempotent of End(G1 
+ G2 + … + Gn) since G1 + G2 + … + Gn is End-
orthodox. Clearly, f1f2 = (g1g2)|Gi, the restriction of g1g2 
to Gi. Hence f1f2 is an idempotent of End(Gi) as 
required. 
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Lemma 14: Let G be a graph. Then G is End-orthodox 
if and only if G + Kn is End-orthodox for any positive 
integer n. 
 
Proof:  If G + Kn is End-orthodox, then by Lemma 4, 
G is End-orthodox.   

Conversely, for any positive integer n, by Lemma 
4, if X is End- regular, then X + Kn is End-regular. Let f 
be an idempotent of End(G + Kn). Note that

( ) ( )
n

G K G nϖ ϖ+ = + , ( )n f
V K I⊂ and 1

nn KKf = , the 

identity mapping on Kn. Hence ( ( )) ( )f V G V G⊆ and
( )Gf Idpt G∈ . 

If f1 and f2are two idempotents of End(G + Kn), let 
g1 = f1|G and g2 = f2|G. Then , ( )1 2g g Idpt G∈  and so 

( )1 2g g Idpt G∈ .   Now   (f1f2)  |Kn = 1|Kn  and  (f1f2)|G 
= g1g2 imply that f1f2 is an idempotent of End(G + Kn).  
Consequently G + Kn  is End-orthodox. 

Let Xi (i = 1, 2, …, n) be two split graphs. If X1 + 
X2 + … + Xn is End-orthodox, then X is End-regular 
and Xi is End-orthodox for any 1≤i≤n. The following 
lemma describes the idempotent endomorphisms of 
certain End-regular graphs X1 + X2 + … + Xn. 
 
Lemma 15: Let X1, X2, …, Xn be n split graphs with 
di≤qi - 2 for any 1≤i≤n. If NX(x1) ≠ NX (x2) for any two 
vertices x1, x2∈ 1 2 n

S S SULU U , then f ∈  End(X1 + 
X2 + … + Xn) is a retraction (idempotents) if and only 
if: 
 
• f(x) = x For any ( )x V K∈  
• For any 1 2 n

y S S S∈ ULU U , either ( ) ( ) \ ( )f y V K N y∈ , 
or ( )f y y=  

 
Proof: Note that under the hypothesis of lemma X1 + 
X2 + … + Xn has a unique maximum clique K. 
 
Lemma 16: Let X1 + X2 + … + Xn be n split graphs 
with di≤qi - 2 for any 1≤i≤n. Then X1 + X2 + … + Xn is 
End-orthodox if and only if: 
 
• X1 + X2 + … + Xn is End-regular 
• NX(x1) ≠ NX(x2) for any two vertices x1, x2∈

1 2
S S UU L  n

SU  
 
Proof: Necessity is obvious. 

Conversely, since X1 + X2 + … + Xn is End-
regular, we only need to prove that the composition of 
two idempotent endomorphisms is also an idempotent. 
Let f be an arbitrary idempotent of End (X1 + X2 + … + 
Xn ). Then f|V(K) = V(K) and either f(x) = x or f(x) = kx 
for any 1 2 n

x S S S∈ ULU U , where kx is a vertex in  

V(K) such that 21
{ , } ( )nx

x k E X X X∉ + + +L . Now the 
assertion follows immediately. 
 
Lemma 17: Let X1, X2, …, Xn be n split graphs with 
di≤qi - 1 for any 1≤i≤n. Then X1 + X2 + … + Xn is End-
orthodox if and only if |S1| = |S2| = … = |Sn|. 
 
Proof: Necessity is obvious. 

Conversely, X1 + X2 + … + Xn is a join of a 
complete graph and a complete n partite graph. Since 
any complete n partite graph is End-orthodox, it follows 
from Lemma 14 that X1 + X2 + … + Xn is End-
orthodox. 
 
Theorem 18: Let X1 + X2 + … + Xn be n  split graphs. 
Then X1 + X2 + … + Xn is End-orthodox if and only if: 
 
• X I  is End-regular for any 1≤i≤n  
• qi - di = qj - dj For any 1≤i≤n and 1≤j≤n 
• There are no two vertices 1 2, tSx x ∈  such that 

1 2( ) ( ) ( )X X tt t
N x N x V K=U  for any 1≤i≤n 

• NX(s1) ≠ NX(s2) for any two vertices 

1 2 1 2
,

n
S S Ss s ∈ ULU U  

 
Proof: If X1 + X2 + … + Xn is orthodox, then X1 + X2 + 
… + Xn is regular and so both of Xi is regular for any 
1≤i≤n. Now it follows immediately from Lemma 3, 16 
and 17.   
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