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Abstract: In this study, to reduce information uncertainty of integrated navigation model for underwater vehicle, we 
present a multi-sensor information fusion algorithm based on evidence theory. The algorithm reduces attribution by 
rough set in order to acquire simplified ELMAN neural network and improve basic probability assignment. And 
then it uses improved D-S evidence to deal with the inaccuracy and fuzzy information, make the final decision. The 
simulation example shows feasibility and effectiveness of the algorithm. 
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INTRODUCTION 

 
Significant interest exists in applying underwater 

vehicles to perform useful missions in the harsh 
underwater environments. It is one of the primary 
challenges for navigation and control that acquires 
accurate position by sensors. The common navigation 
sensors (Zhao et al., 2010) mainly include: Strapdown 
Inertial Navigation System (SINS), Doppler Velocity 
Log (DVL), Magnetic Compass (MCP) and Terrain 
Aided Navigation (TAN) and so on. The single 
navigation sensor can’t meet the position accuracy of 
underwater vehicle due to complexity of underwater 
environments and limitation of single sensor. 
Underwater navigation research currently focuses on 
multi-sensor information fusion

 
(Fan et al., 2011). This 

is done by combining the data from sensors that measure 
more or less the same thing and estimating the result. 
Existing fusion algorithm improves the accuracy by 
kalman filter (Song and Yuan, 2011). From single 
kalman filter to disperse kalman filter and then federated 
kalman filter, the premise to improve the navigation 
accuracy is normal data from sensors and certain 
measure statistical property (Faa-Jeng et al., 2009). At 
the environment of strongly interference and large 
cluster wave, the information from navigation sensors 
has the feature of incomplete, vague, so that navigation 
system is hard to get high accuracy from data fusion. 
Even the same sensor and same accuracy, different 
environments will lead to different reliability, it is 
essential for validity and reliability of the system to the 
reliability of data source.  

The D-S data fusion algorithm is presented in order 
to reduce uncertainty and make decision for reliability of 

navigation sensor information. The algorithms apply the 
output of ELMAN network, which is reduced by rough 
set, to describe the Basic Probability Assignment (BPA) 
of evidence theory. Then the improved D-S evidences 
are used to judge the measure information of navigation 
sensor and increase the accuracy and reliability of 
integrated system. 

In this study, we present a multi-sensor information 
fusion algorithm based on evidence theory. The 
algorithm reduces attribution by rough set in order to 
acquire simplified ELMAN neural network and improve 
basic probability assignment. And then it uses improved 
D-S evidence to deal with the inaccuracy and fuzzy 
information, make the final decision. The simulation 
example shows feasibility and effectiveness of the 
algorithm. 

 

INTERGRATED NAVIGATION MODEL OF 

UNDERWATER VEHICLE 

 
Based on features of underwater navigation 

information, the system adopts the mixed data of the 
SINS, DVL, MCP, underwater terrain map and 
bathometer. In Fig. 1, the structure of the integrated 
navigation system is shown. The correlation is 

calculated, which by comparing measured depth 
Tĥ  

with the corresponding map depth 
Cĥ  at position ˆˆ(L, )λ

from SINS, to obtain the accuracy position in TAN. 
Measure vector of longitude and latitude is the 

difference ˆˆ( L, )∆ ∆λ  between the output of TAN and 

ˆˆ(L, )λ   of   SINS.   Velocity   measure   vector   is   the 

difference 
E N U

ˆ ˆ ˆ( V , V , V )∆ ∆ ∆  between the output
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Fig. 1: Principle of integrated navigation system 

 

DE DN DU
ˆ ˆ ˆ(V ,V ,V )  of DVL and 

E N U
ˆ ˆ ˆ(V ,V ,V )  of SINS. 

Water depth measure vector is the difference between 

the output Tĥ  of bathometer and ĥ  of SINS. Heading 

angle measure vector is the difference between the 

output DĤ  of MCP and Ĥ  of SINS. The fusion model 

of integrated navigation system is shown in Zhang 

(2009). 

The kalman filter algorithm of integrated 

navigation can provides higher navigation accuracy on 

the premise that each navigation subsystem output 

normal data. However, only data level integration will 

lead to incorrect result unless the data offered by 

navigation subsystem is distort data. The method solved 

the problem is to judge whether data offered by sensors 

are credible before information fusion. 

 

NAVIGATION INFORMATION FUSION AND 

JUDGEMENT BASED ON D-S 

 

D-S evidence theory (Zhang et al., 2008) was 

originally developed by Dempster, who concerned 

about the lower and upper probabilities and later Shafer 

made his contribution by offering belief functions to 

model uncertain knowledge on the basis of 

mathematical foundations. D-S evidence theory is an 

efficient method to process uncertain, incomplete and 

vague information in data fusion. 

 

Basic concept of D-S evidence theory: A simple set 

with isolated evidence is treated as a distinguish frame 

U. Ais a subset of U, m(A)U , describes BPA for A. If 

1 2
, , ,

n
m m mL are BPA for 

1 2
, , ,

n
A A AL  in 2U , the 

formula for BPA together with multi-evidence data is 

set as:  
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The step of D-S evidence theory are as followed: 

 

• The credible vector of sensor network node ,i j  for 

target Ω can be defined as Zi = (pi1, pi2, …, pim), 

credible matrix X is converted as *T

i jX Z Z=  

• The sum of main diagonal elements in X is credible 

factor
1

( )
i

n

i i

A A i

m A
⊂ =

∑ ∏
I

，respectively the sum of non-

diagonal elements constitutes uncertainty factor K  

by: 

 

1
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A i

K m A
φ= =

= ∑ ∏
I  

 

• Add another sensor network nodes
m

Z  

• Combination rule of multi-evidence is calculated 

as: 
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Information reduction based on rough set: Evidence 
data samples are collected as much as possible in order 
to improve the decision accuracy, however, excessive 
data will not only take up large storage space and 
calculate time, but also lower accuracy of decision. In 
this section, rough set

 
(Li et al., 2005) are used to 

reduce attributes in system frame, delete abundant 
structure and improve accuracy of decision. 

An initial information system can be represented 
as:  
 

{ }( ), , ,S U V f A d= U   

 
where,  

U  : The universe, a finite set of N objects 

{ }1 2 Nx x xL   

A  : A finite set of attributes  

f : The total decision function such that 
af (x,a) V∈  

for every a A,x U∈ ∈   

a A a
V U V∈=  

(where 
a

V  is a domain of the attribute a )  

 
An attribute ∈a A  is called indispensable in the set A  if 

{ }( ) ( ) ( )AA a
POS d POS d

−
≠ . Otherwise the attribute a  is 

dispensable in A . The set of all indispensable attributes 
in the set A  is called the core of A  in S  and it is 

denoted byCORE(A) . Algorithm calculates CORE(A)  

by relative domain and computes degree of importance

SIG(a,R,d)  according to attribute dependence
R

k (d) . 

The maximal importance of attribute 
max

a  is selected by

Rk (d) . The algorithm updates Core vector by 

{ }CORE(A) CORE(A) a= U , computes circularly until the 

result is accurate to the demand and output CORE(A) . 

 
Constitute basic probability assignment by ELMAN 
network: The key of D-S evidence theory is BPA. The 
common methods such as expert knowledge

 
(Yang and 

Bai, 2006) and fuzzy decision
 
(Zhang and Chu, 2009) 

have shortage of certain subjectivity. Therefore, BPA is 
expressed as the output of ELMAN network due to 
characteristic of self-study and parallel computing

 
(Nie 

et al., 2010). 

Figure 2 shows the structure of a simple ELMAN 

neural  network.  ELMAN  neural  network
  
(Faa-Jeng 

et al., 2009) is a kind of partial recurrent neural 

network, which consists of two-layer back propagation 

networks with an additional feedback connection from 

the output of the hidden layer to its input layer. 

Compared with common BP neural network, a special 

context unit is used to record output value before 

hidden units. The output of context unit at time n  is 

described as: 
 

, ,( ) ( 1) ( 1)c l c l lx n x n x nα= ⋅ − + −
 

 

where,  

 
 
Fig. 2: Structure of ELMAN neural network 

 

, ( )c lx n  & ( )
l
x n  : The output of context element and 

hidden layer element 

α  : Feedback gain factor 

 

Suppose that there are measure data of N 

navigation sensors, which be improved by pretreatment 

and collected m feature vectors. Consider that output of 

log-sigmoid function is at the interval of (0, 1) it is 

calculated by ELMAN neural network to achieve n  

output, which are normalized as BPA of n  targets to be 

identified. 

 

Step of D-S evidence judgment for underwater 

sensor data: The system integrates the sensor data by 

federated kalman filter algorithm, including 

SINS/DVL, SINS/MCP and SINS/TAN. Accuracy of 

SINS is corrected by Redundancy compensator. When 

SINS and other navigation modules are integrated, the 

difference between current output value of SINS and 

output value of other navigation sensors can be the data 

source of evidence decision.  

The specific step of evidence decision for 

underwater navigation data fusion is described as 

follow: 

 

• Primary data are discrete to construct information 

system { }( ), , ,S U V f A d= U  

• Calculate the degree of dependence by importance 

of attribute and output CORE(A)  

• Optimize the structure of ELMAN network by 

simplified decision table and delete redundant node 

• Apply ELMAN neural network to design BPA: 

 
n

i i i n

i 1

m(A ) y(A ) / ( y(A ) E )
=

= +∑  

 

where 
n

E is network sample error 
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• Judge whether the navigation data is credible. Data 

is entered into the filter to fuse and calculate if it is 

credible,  on  the  contrary,  the data will be 

deleted.  

 

SIMULATION AND ANALYSIS 

 

The computational simulation of the integrated 

navigation system was carried out by Visual C++ 6.0 

tools. Gyro’s constant error is 5º/h, random noise is 

10º/h; acceleration’s error is gµ50 , random noise is 

gµ50 . The initial latitude is 38º, longitude is 120º and 

altitude is -100 m, the initial velocity is 5 m/s, the pitch 

angle and roll angle are 0º, the yaw angle is 45º, the 

initial latitude error is 0.00254º, longitude error is 

0.00446º, altitude error is 10 m, the initial attitude error 

is 0.15º, the output of DVL and MCP are 0.4 m/s and 

0.3º, the error of matching algorithm is 100 m. 

In simulation two typical faults is set as: 

 

• Measure data of DVL in 1800, 3600, 5400, 7200 

and 10000s are outliers, which increase more than 

20% of normal value. 

• Simulation time is 5 h, in time of 0-2 and 3-5 h, 

TAN works in match area, while location correct 

information is lost caused by flat terrain in time of 

2-3 h. 

 

Suppose framework for target identification is {O1, 

O2}, where O1 represent no fault and O2 represent fault. 

According to the front theory, the ELMAN network, 

which  includes  2  input  neurons, 9 hidden units and 2 

output  neurons,  is  designed  to  output  {O1,  O2}. The 

 

Table 1: BPA of sensor 

Sensor 

BPA 

---------------------------------------------------------- 

O1 O2 U 

SINS 0.963 0.026 0.011 

DVL 0.872 0.104 0.024 

MCP 0.825 0.084 0.091 

TAN 0.725 0.252 0.023 

 
Table 2: The integrated outcome of m (SINSDVL) (.) 

mSINS (.) 

mDVL (.) 

------------------------------------------------------------ 

O1 (0.872) O2 (0.104) U (0.024) 

O1 (0.963) O1 (0.839) φ (0.1001) O1 (0.023) 

O2 (0.026) φ (0.023) O2 (0.003) O2 (0.0006) 

U (0.011) O1 (0.009) O2 (0.0011) U (0.0003) 

 

system adopts rough set to reduce attributes of ELMAN 

network and delete abundant weight connection to 

improve convergence rate. 

The algorithm trains the ELMAN network by 

sensor sample data unless the network error meet 

demand of threshold, input sensor measure data to 

ELMAN network and obtains BPA of each sensors, 

shown in Table 1.  

mSINS (.) and mDVL (.) are integrated with D-S 

evidence to compute BPA of fault target identification 

for SINS and DVL. The integrated outcome is shown in 

Table 2. 

φ  is null, inconsistency factor of mSINS (.) and 

mDVL (.) can be calculated as: 

 

1K 0.963 0.104 0.026 0.872 0.123= × + × =  

 

Following the integration between SINS and DVL, 

BPA is calculated as: 

 

 
 
Fig. 3: Location error of filter with evidence algorithm 
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Fig. 4: Location error of filter with improved evidence algorithm 

 
Table 3: Simulation result comparison of navigation parameter 

Navigation parameter 

Error of filter with evidence algorithm 
--------------------------------------------------------------- 

Error of filter with improved evidence algorithm 
----------------------------------------------------------- 

Mean Variance Mean Variance 

Latitude (“) -0.5764 0.5065 -0.0437 0.1880 
Longitude (“)

  
-0.3376 0.4176 -0.0183 0.0938 

Altitude (m) 1.8662 0.3557 1.5912 0.3420 

 
Table 4: Simulation result comparison of navigation parameter 

Navigation parameter 

 Error of filter with evidence algorithm 
 ---------------------------------------------------------- 

Error of filter with improved evidence algorithm 
------------------------------------------------------------ 

 Mean Variance Mean Variance 

Latitude (“) -0.5764 0.5065 -0.3714 0.3612 
Longitude (“) -0.3376 0.4176 -0.2986 0.3367 
Altitude (m)   1.8662 0.3557 1.8659 0.3561 

 

( ) ( )1SINS DVL

1

0.839 0.009 0.023
m O 0.993

1 K
⋅

+ +
= =

−
 

 

( ) ( )2SINS DVL
m O 0.005

⋅
=  

 

( ) ( )SINS DVL
m U 0.001

⋅
=

 
 

Similarly to SINS/MCP sub-filter and SINS/TAN 

sub-filter, BPA of fault target identification are 

computed as:  

 

( ) ( )1SINS MCP
m O 0.992

⋅
= , 

( ) ( )1SINS TAN
m O 0.986

⋅
=  

 

( ) ( )2SINS MCP
m O 0.006

⋅
= , 

( ) ( )2SINS TAN
m O 0.013

⋅
=  

 

( ) ( )SINS MCP
m U 0.001

⋅
= , 

( ) ( )SINS TAN
m U 0.001

⋅
=  

 

BPA of data uncertainty is reduced to 0.001. 

Compared with traditional algorithm, sensor fault will 

be detected accurately by navigation system.  

Aiming to the set fault, integrated navigation filter 

calculation is determined by the evidence algorithm in 

this study. Under the first fault, the simulation curves of 

location error with evidence decision algorithm and 

improved evidence decision algorithm are separately 

shown on Fig. 3 and 4. Table 3 shows the comparison 

of location error mean and variance between the two 

algorithms.  

Under the second fault, the simulation curves of 

location error with evidence decision algorithm and 

improved evidence decision algorithm are separately 

shown on Fig. 5 and 6. Table 4 shows the comparison 

of location error mean and variance between the two 

algorithms.  

From the treatment affection for two typical fault, 

it is obvious that the system can recognize accurately 

the sensor fault, which is judged by evidence theory. 

However, traditional evidence theory utilizes expertise 

to assign the credibility subjectively. Suppose that the 

distort data are compensated with synthesis calculation 

of other normal sensors, then the system makes a 

erroneous instruction and fuses the fault data so that 

reduce  navigation accuracy. In the study, the novel D-S 
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Fig. 5: Location error of filter with evidence algorithm 

 

 
 
Fig. 6:  Location error of filter with improved evidence algorithm 

 

algorithm, which assigns credibility by rough set 

ELMAN neural network, avoid the interference of the 

subjective factors, reduce the uncertainty of navigation 

system. 

 

CONCLUSION 

 

A novel D-S evidence algorithm is presented that 

makes decision level fusion to reduce the uncertainty of 

navigation information and improve the accuracy of 

integrated navigation for underwater vehicles. The 

algorithm adopts rough set to optimize structure of 

ELMAN network and eliminate redundant connections. 

Then ELMAN network is trained with navigation data 

sample and the output of network, which is BPA of 

evidence theory, can be contributed to judge the 

reliability of underwater navigation data fusion. The 

simulations show that the algorithms improve 

effectively reliability of navigation system and 

recognize ability for sensor fault and provide theoretical 

reference for precision navigation of underwater 

vehicles. 
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