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Abstract: This study proposes a novel technique for detecting defects in fabric image based on the features 
extracted using a new multi resolution analysis tool called Digital Curvelet Transform. The direction features of 
curvelet coefficients and texture features based on GLCM of curvelet coefficients act as the feature-sets for a k-
nearest neighbor classifier. The validation tests on the developed algorithms were performed with images from 
TILDA’s Textile Texture Database. A comparative study between the GLCM-based, wavelet-based and the 
curvelet-based techniques has also been included. The high accuracy achieved by the proposed method suggests an 
efficient solution for fabric defect. Furthermore, the algorithm has good robustness to white noise. Note that, this 
study is the first documented attempt to explore the possibilities of a new multi resolution analysis tool called digital 
Curvelet Transform to address the problem of fabric defect. 
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INTRODUCTION 

 
Textile fabrics constitute a large proportion of the 

total cost of production in garment manufacturing. Since 
a garment with a textile defects usually sells with a 
massive discount of 45-65% (Kumar, 2003). Hence, 
quality control of fabrics before garment manufacturing 
is essential to ensure the quality of finished products and 
to increase the efficiency of the manufacturing process. 
Currently, the quality inspection process (Shady et al., 
2006) for textile fabrics is mainly performed manually. 
However, the reliability of manual inspection is limited 
by boredom and inattentiveness. Indeed, Sari-Sarraf and 
Goddard (1999) found that only about 70% of fabric 
defects could be detected by the most highly trained 
inspectors. 

Numerous approaches were proposed to address the 
problem of detecting defects (Zhang and Bresee, 1995) 
in woven fabrics, which can be broadly categorized into 
three classes: statistical, spectral and model based 
(Meihong et al., 2009). These include wavelet neural 
network (Jianli and Baoqi, 2007), morphological filters 
(Mak et al., 2009), Fourier Transform, Gabor filters 
(Mak and Peng, 2006, 2008) and the Wavelet Transform 
(WT) (Serdaroglu et al., 2006, 2007). Because the 
wavelet transform have an optimal localization in both 
the spatial domain and the spatial-frequency domain 
(Ngan et al., 2005), several fabric defect detection 
techniques based on the approaches of wavelet and sub 

band decompositions have been proposed in recent 
years. However, the usual wavelet transforms have 
wavelets with primarily vertical, primarily horizontal 
and primarily diagonal orientation, therefore, it is not 
efficient in representing the curve edges of fabric defects 
which affects the effectiveness of fabric defect 
detection, while Curvelets as proposed by Candes and 
Donoho (2004), constitute a relatively new family of 
frames that are designed to represent edges and other 
singularities along curves much more efficiently than 
the traditional wavelet-based transforms (Wong et al., 
2009). 

In this paper, a novel defect detection scheme is 

proposed to facilitate automated inspection of woven 

fabrics. The proposed scheme consists of Curvelet 

Transform (CT), Gray-Level Co-occurrence Matrices 

(GLCM), texture analysis, and k-nearest neighbor. This 

study is organized as follows: firstly, we use the direct 

multiplication of curvelet transform data at adjacent 

scales to distinguish important edges from noise and 

accomplish the task of removing noise from signals. 

Then, the proposed algorithm using CT and GLCM for 

fabric defect detection is introduced and experiment 

results are showed. Finally, conclusions are provided. 

 

Fabric defect image enhancement: Curvelet 

transforms are multi resolution decompositions that can 

be used to analyze signals and images. They describe a 
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signal by the power at each scale, direction and 

position. Edges can be located very effectively in the 

curvelet transform domain (Candes and Donohod, 

2004) proposed two Fast Discrete Curvelet Transforms 

(FDCT). The first one digital transformation is based on 

Unequally-Spaced Fast Fourier Transforms (USFFT), 

another is based on the wrapping of specially selected 

Fourier samples (FDCT-WARPING). In this study, we 

adopted FDCT-WARPING as a result of its highest 

speed in curvelet transform implementation method at 

present. 

The curvelet transform of the function f is:  

 

>=< kljfkljc ,,,),,( ϕ                              (1) 

 

where,  

φj,l,k : The curvelet  

j, l, k : The parameters of scale, direction and position, 

respectively 

 

The input is f(t1, t2), (0≤t1, t2, <n) in Cartesian 

coordinate system, the discrete form of curvelet 

transform is: 
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Implementation of FDCT-WARPING in frequency 

domain is as follows: 

 

• The 2D FFT representation of function f(t1, t2), 

(0≤t1, t2, <n) is: 

 

2/,2/],,[ˆ 2121 nnnnnnf ≤≤−                              (3) 

 

• Resample ��[n1, n2] at each pair of scale and 

direction j, l in frequency domain; the result is: 
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n1, 0 and n2, 0 are two initial positions of the window 

function  ��� [n1, n2].  

L1, j and L2, j are relevant parameters of 2
j
 and 2

j/2
, 

respectively, and they are length and width components 

of window function support interval. 

Table 1: Structure of curvelet transform coefficients 

Scale (s) Coefficient 

Number of 

direction Description 

1 c{1} 1 Coarse 

2 c{2} 16 Less coarse 

3 c{3} 32 Fine 

4 c{4} 32 More fine 

5 c{5} 1 Finest 

 

• Multiplication of the interpolated function f with 

window function ��� [n1, n2],  and the result is: 

 

],[~]tan,[ˆ],[
~

2112121, nnunnnfnnf jllj θ−=         (5) 

 

• ��[n1, n2] is wrapped around origin. 

• Transform function ���,� by 2D IFFT, yielding the 

discrete curvelet coefficients sets C
D
 (j, l, k). 

 

In this section, fabric images, which are gray 

images with 256×256 pixel, are decomposed into five 

scale curvelet coefficients using FDCT-WARPING 

(Candes and Donohod, 2004). These coefficients are 

shown as in Table 1. 

In this section, we demonstrate five fabric images 

containing different defects and their curvelet 

coefficients at different scales in Fig. 1. Original image 

and curvelet coefficients As Fig. 1-x(b) shows, there are 

strong orientations in the curvelet coefficients images. 

The white parts in the images represent partial edges of 

the defects of original image in different orientations. 

Meanwhile, it means the significant curvelet coefficients 

of images. The low frequency (coarse scale) coefficients 

are stored at the center of the display. The Cartesian 

concentric coronae show the coefficients at different 

scales; the outer coronae correspond to higher 

frequencies.  

There are four strips associated to each corona, 

corresponding to the four cardinal points; these are 

further subdivided in angular panels. Each panel 

represents coefficients at a specified scale and along the 

orientation suggested by the position of the panel. 

Noise always arises from the acquiring of fabric 

image and it results in loss of fabric defect details and 

thus affects accurate feature extraction recognition. In 

this paper, we applied our noise filtering technique (Luo 

and Ni, 2010) before feature extraction. 

 

Feature extraction: Haralick et al. (1973) first 

proposed GLCM for texture descriptions. It is still 

popular until today, because of its good performance. 

The GLCM is a second order statistics method which 

describes the spatial interrelationships of the grey tones 
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Fig. 1: Original image and curvelet coefficients 

 

in an image. It contains elements that are counts of the 

number of pixel pairs, which are separated by certain 

distance and at some angular direction. Typically, the 

GLCM is calculated in a small window, which scans 

the whole image. The texture feature will be associated 

with each pixel. 

In our studies, GLCM is computed based on two 

parameters, which are the distance between the pixel 

pair d and their angular relation θ. θ is quantized in four 

directions (0, 45, 90 and 135°). For image I, defined 

square window N×N, brightness levels i and j , the non-

normalized GLCM pij are defined by: 
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where, C{.} = 1if the argument is true and C{.} = 0 

otherwise. The signs ±  and m  in Eq. (6) mean that 

each pixel pair is counted twice: one forward and once 

backward in order to make the GLCM diagonal 

symmetric. For each direction, θ0 and θ1 are shown in 

Table 2.  

The procedures of feature extraction are as follows: 

 

Step 1: Scaling the grayscale values in curvelet 

transform coefficients into 8 levers and 

computing the GLCMs of curvelet coefficients 

at the first scale c{1}, calculating 16 texture 

features based on GLCM: 

 

• Angular Second Moment (ASM):  

Table 2: Direction values 

θ 0° 45° 90°  135° 

θ0 0 1 1  1 

θ1 1 1 0 -1 
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• Contrast (CON):  
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where, |i – j| = n 

 

• Correlation (COR): 
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Fig. 1-1(a) Fig. 1-2(a) Fig. 1-3(a) Fig. 1-4(a) Fig. 1-5(a) 

Fig. 1-1(b) Fig. 1-2(b) Fig. 1-3(b) Fig. 1-4(b) Fig. 1-5(b) 
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Fig. 2: Original image, WT-ST image, WT-HT image and curvelet transform domain filters image 
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• Entropy (ENT):  
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Step 2: Calculating Averaged l1-norm of curvelet 

coefficients in 8 interval directions at the 

second scale c{2} and acquiring 8 texture 

features according to Eq. (11): 
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Fig. 2-1(a) Fig. 2-1(b) Fig. 2-1(c) Fig. 2-1(d) 

Fig. 2-2(a) Fig. 2-2(b) Fig. 2-2(c) Fig. 2-2(d) 

Fig. 2-3(a) Fig. 2-3(b) Fig. 2-3(c) Fig. 2-3(d) 

Fig. 2-4(a) Fig. 2-4(b) Fig. 2-4(c) Fig. 2-4(d) 

Fig. 2-5(a) Fig. 2-5(b) Fig. 2-5(c) Fig. 2-5(d) 
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Step 3: Calculating Averaged l1-norm of curvelet 
coefficients in 16 interval directions at the third 
scale c{3} and acquiring 16 texture features 
according to Eq. (11) 

Step 4: Calculating Averaged l1-norm of curvelet 
coefficients in 16 interval directions at the 
fourth scale c{4} and acquiring 16 texture 
features according to Eq. (11) 

Step 5: Calculating Averaged l1-norm of curvelet 
coefficients at the second scale c{5} and 
acquiring 1 texture feature. 

 
So, a feature vector containing 57 components for 

each image can be extracted. 

 

EXPERIMENTAL RESULTS AND ANLYSIS 

 
Define abbreviations and acronyms the first time 

they are used in the text, even after they have been 
defined in the abstract. Do not use abbreviations in the 
title unless they are unavoidable. 

Some fabric images were chosen on the Tilda 
database (Workgroup on Texture Analysis of DFG, 
1996) and the image analysis was implemented on the 
Matlab platform. Ts in noising filtering technique can be 
acquired by the statistics of minus of correlation 
coefficients in adjacent directions at the same scale, and 
c can be acquired by statistics of ratio of cor (S, 2N-1) 
and  B

2
 (S, N)  (i, j)  by  many  experiments.  Finally,  

Ts = 120, c = 15 at the fourth scale. Figure 2 show 
denoising results by Wavelet Soft Threshing (WT-ST), 
Wavelet Hard Threshing (WT-HT) and curvelet 
transform. From Fig. 2, it can be seen that the proposed 
algorithm achieved better restruction of edges of 
defects than WT-ST and WT-HT. What’s more it can 
keep contrast of images much better than WT-ST and 
WT-HT. So, the proposed algorithm can distinguish the 
edge of defect and the noise nearby it, which 
established the good basis for the following defects 
detection. 
 
Experiment 1: The proposed method is compared with 
GLCM-based and wavelet-based. We use wavelet 
transform to decompose each sub-block into three 
scales wavelet coefficients using ‘db4’ and calculate 
Averaged l1-norm of wavelet coefficients at each scale. 
Finally, WT feature vector with dimension of 10 are 
acquired.  The  detection  accuracy  is shown as in 
Table 3.  

When there are not distortions on background of the 
images and defective images are visually distinctive 
(block 1 and block 4), all the methods can detect defects 
well, and results of detecting fabric defects with the 
proposed algorithm are more fine and smoother  than 
that  with  GLCM or WT. When defects are not so sharp 

Table 3: Detection accuracy on image (%) 

Sub-block\accuracy GLCM WT CT+GLCM 

Block 1 94.14 95.41 96.24 

Block 2 85.21 87.21 93.51 
Block 3 84.26 86.43 92.21 

Block 4 93.21 94.18 95.56 

Average accuracy 89.21 90.81 94.63 

 
Table 4: Detection accuracy under different levers of noise (%) 

Noise lever\σ 10 20 30 40 

Block 1 95.21 94.18 87.29 84.31 

Block 2 93.17 92.43 84.10 84.84 
Block 3 91.25 91.15 82.25 80.76 

Block 4 94.24 93.58 85.56 83.57 

Average 
accuracy 

93.47 92.83 84.80 83.37 

 

and there are distortions on background of the images 

(block 2 and block 3), the proposed method is robust 

enough to find them reasonably and to suppress the 

background noise, and the extracted defects are 

complete and clean. GLCM or WT seems to 

underestimate the defects and overestimate the noise in 

some defective images. 

 
Experiment 2: In order to test the robustness to image 
noise of the method, white noise is added into images 
with variance σ of 10, 20, 30 and 40, respectively and 
scratch is detected. The detection results are shown as 
in Table 4. From Table 4, the proposed algorithm can 
achieve the accuracy of over 90% on the condition that 
σ is less than 30. 

 

CONCLUSION 

 

In this study, aiming at the varieties of shape, 
position and texture backgrounds of fabric image, we 
proposed a novel technique for detecting defects in 
fabric image combining Gray-Level Co-occurrence 
Matrix (GLCM) and Curvelet Transform (CT). The 
proposed method is on the basis that the curvelet 
transform coefficients at the same position, same 
direction and different scales are correlated. As far as 
the fabric defect image, the edges of defect and white 
Gaussian noise both corresponds to larger curvelet 
coefficients. The former coefficients has better 
succession, however, the latter coefficients decays fast. 
So, we use the correlation at adjacent scales distinguish 
defects from noise and detect important edges of 
defection. 

To obtain more representative defect features, 

features from space and CT domain are extracted. Both 

GLCM and CT are applied on the image to form the 

feature sequence. The combination of GLCM and CT 

makes the defect feature more distinct. Upon GLCM 

and CT the eigenvector of defect is extracted, which 

reflects features of spatial transformation and frequency 
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transformation. To verify the performance of the 

proposed algorithm and check the consistency of the 

information represented by curvelet coefficients, WT-ST 

and WT-HT is compared with the proposed filtration 

technique, respectively.  
The experimental results obtained from various 

images show that the GLCM and CT can represent a 
meaningful descriptive basis of defect textures, and it 
show that this method gives better performance when 
compared to GLCM-based and wavelet-based. 
Furthermore, the algorithm has good robustness to white 
noise. 

These good performances could be ascribed to the 
high information contents of curvelet features and to the 
combination of GLCM and CT. 
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