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Abstract: We present a new fast method for 3D facial expression tracking based on piecewise non-rigid 
deformations. Our method takes as input a video-rate sequence of face meshes that record the shape and time-
varying expressions of a human face, and deforms a source mesh to match each input mesh to output a new mesh 
sequence with the same connectivity that reflects the facial shape and expressional variations. In mesh matching, we 
automatically segment the source mesh and estimate a non-rigid transformation for each segment to approximate the 
input mesh closely. Piecewise non-rigid transformation significantly reduces computational complexity and 
improves tracking speed because it greatly decreases the unknowns to be estimated. Our method can also achieve 
desired tracking accuracy because segmentation can be adjusted automatically and flexibly to approximate arbitrary 
deformations on the input mesh. Experiments demonstrate the efficiency of our method. 
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INTRODUCTION 

 
3D facial expression tracking is one of the most 

interesting yet difficult problems in computer graphics. 
It plays an important role in many applications such as 
synthetic character animation, expression recognition, 
face modeling, virtual reality, and so on. 

Many techniques for 3D facial shape acquisition in 
real time have been explored recently. These techniques 
can acquire sequence of non-rigidly deforming 3D face 
meshes at video rate. These meshes record the shape 
and time-varying expressions of a human face. Such a 
mesh sequence is inherently unstructured and 
uncompressed because at each time frame the acquired 
mesh has different geometry and connectivity. It is 
difficult to establish intra-frame correspondence on 
such a mesh sequence, and consequently, to track the 
subtle expressional variations and reanimate the 
acquired expressions. Therefore, it is needed to 
reconstruct these meshes to generate new meshes with 
the same connectivity, and integrally represent the new 
meshes into a single deformable mesh model. The new 
mesh sequence reflects the time-varying expressions, 
and the single deformable mesh model supports further 
processing such as expression editing, surface 
deformation analysis, whole filling, and so on. In this 
study, we address the problem of tracking the acquired 

video-rate face meshes to simulate dynamic facial 
expressions. 

Huang et al. (2004), Amberg et al. (2007) and 
Blanz et al. (2007) all use high-resolution deformable 
models to track facial expressions. Amberg et al. (2007) 
propose a non-rigid Iterative Closest Point (ICP) 
method for surface registration in expression tracking 
by introducing adjustable stiffness parameters into the 
traditional ICP framework. The method computes an 
affine transformation for per vertex of the high-
resolution face model so as to deform the face model to 
accurately   simulate  expressional  variations.  Huang 
et al. (2004) fit a multi-resolution face model to a 
sequence of face point clouds. They track global rigid 
deformations on the coarse level of the face model and 
local non-rigid deformations on the fine level. The non-
rigid registration integrates an implicit shape 
representation and B-spline based Free Form 
Deformation (FFD), which may increase computational 
complexity. 

Bickel et al. (2007), Bickel et al. (2008), Ma et al. 

(2008), Furukawa and Ponce (2009) and Huang et al. 

(2011) focus on tracking fine-scale facial details such as 

wrinkles and furrows. Bickel et al. (2007) and Bickel  

et al. (2008) use a video sequence and motion capture 

markers of an actor’s performance to track medium-

scale expression wrinkles. Furukawa and Ponce (2009) 
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model non-rigid tangential deformation on tangent 

planes of the source mesh to track facial wrinkles on the 

cheeks and neck. Huang et al. (2011) leverage high-

fidelity motion capture data and high-resolution face 

scans for tracking facial wrinkles and fine-scale 

stretching and compression. All these methods should 

place markers on actor’s face, and too many markers 

may make actor uncomfortable. 

Wand et al. (2007), Süßmuth et al. (2008) and 

Wand et al. (2009) consider the spatial and temporal 

coherence of the face mesh sequence in expression 

tracking. Süßmuth et al. (2008) compute an implicit 

function in R4 to approximate the time-space surface of 

the real-time point clouds. The method can get coherent 

meshes approximating the input data at arbitrary time 

instances. Wand et al. (2007) and Wand et al. (2009) 

automatically compute a fitting shape and its non-rigid 

motion from the time-varying point clouds. The 

computations of these methods are relatively complex 

since they perform on both space domain and time 

domain. 

Zhang et al. (2004), Borshukov et al. (2005), 

Dornaika and Ahlberg (2006) and Wang et al. (2008) 

utilize optical flow to guide automatic expression 

tracking. Zhang et al. (2004) compute optical flow from 

2D image sequences, and then uses optical flow to 

automatically constraint matching between the 

deformable model and the time-varying point clouds. 

Borshukov et al. (2005) use optical flow to track each 

vertex’s motion in 2D and use 3D stereo to triangulate 

3D positions of these vertices. Estimation of optical 

flow is complex and not robust in some case, e.g., for 

those points having no texture information in 2D image, 

their motions in 3D space cannot be constrained. 

In this study, we present a piecewise deformation-

based method to track facial shape and subtle 

expressional variations quickly. We use a deformable 

mesh model to match each mesh in the input sequence 

acquired at video rate. We introduce segmentation idea 

in mesh matching by representing the deformations 

between two meshes as piecewise non-rigid 

transformations. We automatically segment the 

deformable mesh using a variation of ICP framework, 

and compute a non-rigid transformation for each 

segment that will deform the deformable mesh to 

approximate the input mesh accurately. Piecewise non-

rigid transformation greatly decreases the unknowns to 

be optimized for mesh matching because it computes a 

non-rigid transformation for each segment, not for each 

vertex of the deformable mesh as do many existing 

methods. Moreover, the number of segments is small 

when there are only coarse deformations between two 

meshes. Therefore, our method can track time-varying 

expressions quickly. Additionally, segmentation can be 

adjusted automatically and flexibly to approximate 

arbitrary deformations on the input mesh, so our 

method can achieve desired tracking accuracy by 

increasing segments.  

 

GENERAL SCHEME 

 

Our method takes as input a mesh sequence 

acquired at video rate. We assume that the input mesh 

sequence consists of M frames. At the m-th frame, the 

mesh is represented as Tm = {Vm}, Vm  is vertex set. Let 

S = {V} be the source mesh, with vertex set V = {vi}. 

The source mesh can either be automatically obtained 

from the first frame of the input sequence or from a 

user-defined mesh model. Our goal is to deform the 

source mesh to match through the input sequence. 
At each frame, we automatically segment the 

source mesh and compute an affine transformation for 
each segment to match the non-rigid deformations on 
the input mesh. Take the m-th frame for example, in 
order to match the input mesh Tm, we assume that the 
source mesh S is segmented into N segments 
represented as S = {S1, S2,…, SN}, and the computed 
affine transformations are 4×4 matrices represented as 
{D1, D2,…, DN}. The source vertices in one segment 
have the same affine transformation. Applying these 
piecewise affine transformations to the source mesh, we 
can get a new mesh as follows: 

 

1 2{ },  { , , ..., }i i i NS D v D D D D′ = ∈  

 

The mesh S’ approximates Tm closely and maintains the 

connectivity of S. Therefore, by deforming the source 

mesh S to match each input mesh, we can output a new 

sequence of meshes with the same connectivity. The 

output sequence approximates the non-rigid 

deformation dynamics of the input sequence and 

reflects the time-varying expressions. 

 

MESH SEGMENTATION 

 

Basic idea: When we consider matching between the 

source mesh and the input mesh, we expect that the 

non-rigid deformations between two meshes can be 

approximated by piecewise non-rigid transformations. 

The basis of piecewise non-rigid transformations can 

be established because it spans the domain of all 

possible non-rigid deformations and in the least 

compact case each source vertex could has its own 

affine transformation that will transform the source 

mesh onto the input mesh closely. 

At each frame, we determine a segmentation of the 

source mesh together with a non-rigid transformation 
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for  each  segment.  Specifically, we   first  compute  an 

affine transformation on the source mesh using an 

improved ICP framework, and then any source vertices 

that transform further than a given threshold are 

rejected from the segment. Once a segment is computed 

we iterate the process until all source vertices have been 

segmented. 

 

Non-rigid transformation estimation: In order to 

estimate non-rigid transformations with high accuracy, 

we improve the traditional ICP framework by 

introducing a new optimization criterion that is a 

variant of the mesh matching criterion from Chi and 

Zhang (2011). The new criterion considers not only 

distance constraint but also normal constraint in closest 

point search. Specifically, to achieve optimal mesh 

matching, each source vertex, deformed with the affine 

transformation, should approach the input mesh as 

close as possible, as well as have the same normal 

direction as its corresponding point on the input mesh 

as soon as possible. Therefore, the new criterion 

consists of two constraint terms. 

The first term represented as: 

 

2

1({ })
i

i i i

v V

E D Dv qω
∈

= −∑                                   (1) 

 

is called closest-point term. It measures the distance 

between the deformed source vertex and the input 

mesh.  

 

where, 

D  = The unknown affine transformation to be 

estimated 

Dv�  = The new position of vi after transformation 

qi    = The  closest point on the input mesh from point 

Dv�  

��  = A weight factor that will be set to 0 where no 

corresponding closest point is found for vi 

 

The second term represented as: 

 
2

2 ({ }) ( , )
i i

i

i Dv q

v V

E D Agl N Nµ
∈

=∑
                       (2) 

 

is called normal-keeping term. It measures the 

directional difference between normal’s on the 

deformed source vertex and its corresponding closet 

point on the input mesh.  

 

Where, 

Dv� & qi = Defined as in Eq. (1) 

NDvi = The vertex normal on Dvi   

Nqi = The surface normal on qi 

Agl() = The angle between two normal vectors  

µi = A  weight  facto  that  takes  the  same   

value with �� in Eq. (1)  

 

The new criterion is a weighted sum of Eq. (1) and 

(2) represented as follows: 

 

1 2({ })E D E Eα β= +                                           (3) 

 

where, α and β are weights to blend two constraint 

terms. 

 

The segmentation steps: We give the segmentation 

process now. First, we compute a uniform affine 

transformation D for all the source vertices by 

minimizing Eq. (3) and then only consider those 

vertices that transform to points within a given 

threshold, i.e., classify those vertices that satisfy the 

following equation:  

 
2

{ | }n i i iS v Dv q Dis= − <                                (4) 

 

in to a segment Sn. 

 

where, 

Dis = A user-defined threshold  

 

Once a segment is generated, we repeat the above 

process for all unmatched vertices in S to get another 

new segment Sn, i.e., Let S = S - Sn, We compute a new 

subset Sn by minimizing Eq. (3) on S and using Eq. (4) 

for selection. The process is iterated until all source 

vertices have been matched. 

 

METHOD IMPLEMENTATION 

 

The implementation details of our method are 

discussed in this section. If the source mesh is 

automatically obtained from the first frame of the input 

sequence, we will directly use it to track through the 

subsequent input meshes. If the source mesh is a user-

defined mesh, then it may be very different from the 

input meshes in facial shapes. In this case, to get more 

ideal tracking results, we first match the source mesh to 

the first frame using traditional non-rigid ICP method 

with some manual aid, and then, use the deformed 

source mesh to track through the rest of the input 

sequence automatically. 
In order to use as few segments as possible to 

approximate the input mesh with high accuracy, we 
should include as many vertices as possible in each 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(5): 1804-1810, 2013 

 

1807 

segment to estimate an affine transformation. 
Therefore, we give a large Dis initially for estimate 
each segment in our method. Once the affine 
transformation is computed by optimizing Eq. (3) and 
the subset Sn is determined with the large Dis, we 
decrease Dis and perform Eq. (3) and (4) on Sn again 
until either Dis is as small as the user-defined threshold 
or the number of vertices in Sn is less than 3. The case 
that the number of vertices is less than 3 occurs when 
the user-defined threshold is too small, which can be 
solved by increasing the user-defined threshold. 

After deforming the source mesh with the 

computed segmentation and piecewise affine 

transformations, we will project each deformed source 

vertex along its normal onto the input mesh to get the 

final mesh. The projection can:  

 

• Further improve the matching accuracy  

• Efficiently compensate possible discrepancy 

between different segments since all the source 

vertices are located on the input mesh 

 

EXPERIMENTS AND RESULTS 

 

Our method is implemented using C++ under the 

Windows XP environment. We performed our method 

on  a  variety  of face mesh sequences acquired at video 

rate. All these experiments run on a  2.27 GHz  Core  i3 

processor. We present some results of our experiments 

in this section. 
Fig.1 shows results of tracking a mesh sequence 

acquired at 25 fps. Adjacent frames in the sequence are 
very close spatially and temporally, so the deformations 
between adjacent frames are very small. Therefore, 
fewer segments of the source mesh are enough to 
approximate these non-rigid deformations. As shown in 
Fig. 1(a) is the source mesh automatically obtained 
from the first frame, (b) is the second frame, and (c) is 
another frame in the sequence. (d) and (f) are 
respectively the results of matching frame (b) and (c) 
with the source mesh in tracking process. (e) and (g) 
show the segmentations of the source mesh in (d) and 
(f). Where, there are 3 segments in (e), and 5 segments 
in (g). It can be seen that the intra-frame non-rigid 
deformations in the input sequence are well 
approximated by the source mesh with fewer segments. 

Figure 2 shows results of tracking another mesh 
sequence with our method. The intra-frame 
deformations in this sequence are finer than that of the 
sequence in Fig. 1, so more segments are needed to 
track this sequence. In this experiment, we use a user-
defined mesh as the source mesh and match it to the 
first frame at first. The initial matching result is shown 
in Fig. 2 (a), (b) and (c) are two frames in the input 
sequence. (d) Shows the segmentation of the source 
mesh and the result of matching (b). Here, the source 
mesh is segmented   into  7  segments. It  can  be seen 

 

 
Fig. 1: The results of tracking a mesh sequence with our new method 
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Fig. 2: The results of tracking another mesh sequence with our new method 

 

 
 

Fig. 3: The matching of two adjacent meshes 

 
that small segments appear around the regions of nose, 
eye, and mouth to approximate the fine deformations, 
and large segments appear other regions to approximate 
coarse deformations. (e) Shows the segmentation of the 
source mesh and the result of matching (c). Here, the 
source mesh is segmented into 10 segments. Some 
segments are very small to approximate the very fine 
deformations, e.g., the small segments around the 
eyebrow as shown in rectangle. 

To evaluate the efficiency of our method, we 

compare our method with N-ICP-A method  (Amberg  

et al., 2007) in matching accuracy and running time. N-

ICP-A method computes an affine transformation for 

per source vertex to deform the source mesh towards 

the input mesh. As shown in Fig. 3 (a), (b) are two 

adjacent frames in an input sequence. We use (a) as the 

source  mesh  to  match  mesh (b). (c)  is  the   matching 

Table 1: Numbers of vertices and triangles of meshes in Fig. 3 

Mesh Vertices Triangles 

Fig. 3 (a) 10275 20037 
Fig. 3 (b) 10580 20679 

 
Table 2: The efficiency comparison of N-ICP-A and our method in 

Fig. 3 

Method N-ICP-A New method 

Accuracy 6.58E-7 1.62E-6 
Time 21.57s 12.97s 

 

result obtained with N-ICP-A method. (d) is the  
matching result and segmentation of the source mesh 
obtained with our new method, here, the number of 
segments is 5. The geometric information about meshes 
(a) and (b) is listed in Table 1 and comparisons of 
matching  accuracy  and running time are listed in 
Table 2. We use the average squared Euclidean distance 
of  all  corresponding  points  on  the  source mesh after 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(5): 1804-1810, 2013 

 

1809 

Table 3: Numbers of vertices and triangles of meshes in Fig. 2 

Mesh Vertices Triangles 

Fig. 2 (a) 9962 19459 

Fig. 2 (b) 10053 19668 

Fig. 2 (c) 9936 19374 

 
Table 4: The efficiency comparison of N-ICP-A and our method in 

Fig. 2 

 

Matching mesh (b) 

----------------------------- 

Matching mesh (c) 

----------------------------- 

Method N-ICP-A New method N-ICP-A New method 

Accuracy 6.95E-7 1.29E-6 1.56E-6 1.66E-6 

Time 35.32s 16.12s 27.95s 15.19s 

 

deformation and the input mesh to measure the 

matching accuracy. It can be seen from Table 2 that, 

our new method runs much faster than N-ICP-A method 

meanwhile maintains desired accuracy.  

We compared the efficiency for all the 

experiments. Table 3 and 4 list respectively the mesh 

information and the comparison result in Fig. 2. It can 

be seen from these comparisons that, our method 

significantly improve the speed with little decrease in 

accuracy compared with N-ICP-A method. The 

accuracy of our method is still high and perfectly 

acceptable in practice. Moreover, the accuracy of our 

method can be further improved flexibly by increasing 

segments of the source mesh. Therefore, our method 

can flexibly adjust to different application needs of 

speed and accuracy. 

 

CONCLUSION 

 

In this study, we present a new method for tracking 

video-rate facial mesh sequence. The method uses a 

source mesh to match through the whole input 

sequence. Segmentation and piecewise non-rigid 

transformations are introduced in each matching. 

Piecewise non-rigid transformations greatly decrease 

the unknowns to be computed, so the method has high 

speed. Additionally, the segmentation of the source 

mesh can be adjusted automatically and flexibly. When 

there are only coarse deformations between two 

meshes, the segments could be large, so it will 

approximate the deformations quickly. When there are 

fine deformations between two meshes, it can 

approximate the deformations with desired accuracy by 

increasing segments. 

We treat each input frame as a separate mesh for 

matching in our method, which may result in 

accumulative error in some cases. Taking into 

consideration the spatial and temporal coherence in the 

input sequence and keeping high speed and accuracy is 

our future study. 
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