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Abstract: The orthomorphism on the Galois field is a kind of permutations that is the most widely used in cross-
cutting issue, the orthomorphic polynomials over the finite field is an effective method to study it, this study has 
obtained the coefficients relationship of the orthomorphisms over the Galois field by algebraic methods. In addition, 
this study have understood the maximal subgroup structure and counting in the Abelian group. It is help to in-depth 
study the application and the nature of the orthomorphism qua the theoretical support. 
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INTRODUCTION 
 

With the popularity of the computer and the 
Internet, the gate of the network is opening at the 
information age. Computer network and information 
security become more and more critical, the 
cryptography is one of the key technologies in 
information security. The permutation plays an 
important role in the cipher design; a well permutation 
can be used to design the cipher, the digital signature or 
authentication algorithms. In the cipher design, the 
cryptosystem based on mathematical hard problems has 
been usually divided into some cipher components to 
design, which these parts include the linear and 
nonlinear permutation. And the linear permutation is 
known as the P-permutation and the nonlinear 
permutation is called S-box (Haiqing and Huanguo, 
2010). It is proved that the orthomorphisms have a good 
cryptographic property in Lohrop (1995): the complete 
balance. The orthomorphisms have been researched 
widely from the perspective of mathematics and 
cryptography and are also used in the design of the 
cipher, digital signature and authentication algorithms. 
The cryptosystem SMS4 is commercial block cipher in 
China whose round function is designed in the 
nonlinear orthomorphisms (Shuwang et al., 2008). In 
addition to the commercial cipher, there are other 
related applications to the orthomorphisms, including 
the research and development product DSD (Lohrop, 
1995) enhanced security (Qibin and Cheng, 1996) and 
the construction of Boolean functions in cipher (Dawu 
et al., 1999). 

In order to explore orthomorphisms on 
cryptographic properties and applications, people have 
studied the orthomorphisms from different 
perspectives:  

 
• The Latin square angle: Latin square is used to 

study the orthomorphism over the Galois Field 
GF(2n) and which are obtained by the 
orthomorphic Latin square transversal in Baoyuan 
et al. (1997); in 2006, it is pointed out that there is 
the one to one corresponding relations between the 
orthomorphisms and the orthomorphic Latin square 
transversal (Shuwang et al., 2008), the counting 
bound of orthomorphisms have been obtained by 
the orthomorphic Latin square in Qi et al. (2008). 

• The permutation polynomials angle: The 
permutation polynomials have been studied first 
the orthomorphisms over the Galois field in Zhihui 
(2002), including the distribution of permutation 
polynomials over GF(22), GF(23), GF(24) and so 
on. The general conclusions have been obtained 
that a certain class of permutation polynomials do 
not exist in Yuan and Huanguo (2007), the degree 
distribution of the orthomorphic permutation 
polynomials on GF(24) become clear through the 
classification method and the whole the 
orthomorphic permutation polynomials on GF(24) 
are generated in Yuan and Huanguo (2007). 

• The boolean function angle: Boolean functions 
have its own advantages in the construction and 
research to the permutation, (Dengguo and 
Zhenhua, 1996) have constructed some 
orthomorphisms over the Galois field using multi-
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output Boolean function, YANG Yixian and Gu 
Dawu etc., have also studied the orthomorphisms 
and obtained better results using the Boolean 
functions as the major weapons. It is more 
convenient to construct the orthomorphisms from 
low order to high order using the Boolean 
permutation method (Dengguo and Zhenhua, 1996; 
Dengguo and Zhenhua, 1998; and Yusen et al., 
1999). 

• The loop structure angle of the permutation: 
The Mathematical knowledge knows us that any 
permutation can be written in the product of 
circulated factors which does not intersect. The 
circulated factors are known as the circle structure. 
The circle structure has been used to study the 
circle structure characteristics of orthomorphisms 
(Dawu and Guozhen, 1997) and the maximum 
linear orthomorphisms (Zhihui, 2002; Anhua, 
2003).  

• The angles of the vector representation and the 
permutation matrix: Dr. L. Mittenthal and Xiao 
Guozhen have studies the orthomorphisms from 
the angles of the vector representation and the 
permutation matrix. 
 
These different methods have their own advantages 

when the orthomorphisms are studied. If the example 
and enumeration of orthomorphisms need to be given, 
then it is more effective and convenient that we will 
utilize generally Latin square to carry on. If it needs to 
determine that the orthomorphism is linear or nonlinear, 
then we will use the multi-output Boolean permutation 
or permutation polynomial to judge it. When the 
maximum linear orthomorphisms are studied, we will 
use the circle structure of the permutation. 

After the analysis of the domestic and international 
status of orthomorphisms, it is clear that the 
orthomorphisms are divided into the linear and non-
linear from structural point of view. We have mainly 
studied the orthomorphisms issues including the 
structure, enumeration or counting upper and lower 
bounds. This study will study the relations of the 
orthomorphic permutation polynomial coefficients and 
the applications of the orthomorphisms in the maximal 
subgroups of the Galois field. 

 
PRELIMINARIES 

 
Let F2 = {0, 1} be a binary finite field. F2n or 

GF(2n) = The n-degree extension field of F2, it also can 
be considered that the n-dimension linear space on F2. 
Generally, let Fq be the finite field with an arbitrary 
prime number characteristic p, namely q = pk. 
Similarly, Fq

n = The extension field of Fq with degree n. 
Let S be a bijection on GF(2n), that is satisfied: 
  
• , (2 )nx y GF∀ ∈  if x ≠ y then S(x) ≠ S(y)  

• For the arbitrary constant a, x is the existence and 
uniqueness, so that S(x) = a. We said S a 
permutation.  

 
Definition 1: Let S be a permutation on GF (2n), l be 
the identity transformation ( ( ) , (2 )nI x x x GF= ∀ ∈ ). S is 
called an orthomorphism, if S I⊕  is still a permutation 
on GF(2n) (⊕  is the addition operation of GF(2n)). 
Further,  S = A  linear  orthomorphism on GF(2n), if 
S(X + Y) = S(X) + S(Y) set up , (2 )nX Y GF∀ ∈ .  

By the definition 1, we have simply put the Galois 
field GF(2n) as an additive group when the 
orthomorphisms on the Galois field GF(2n) are studied. 
It has presented the existence theorem of the 
orthomorphisms in Hall and Paige (1957): the 
necessary and sufficient conditions that the 
orthomorphism exists in a finite Abelian group G are 
that the Sylow-2 subgroup of the group G is not cyclic 
group or is trivial.  

It is indicated that a permutation is the 
orthomorphism if and only if the sum of the 
permutation and the identity transformation is still a 
permutation by Definition 1. The orthomorphisms is a 
special kind of the permutation and not all the 
permutations are the orthomorphisms.  
 
Example 1: Let S be the permutation on GF(22) and S 
satisfies: 
 

(0,0) (0,1), (0,1) (1,0)a a  
 

(1,0) (0,0), (1,1) (1,1)a a   
 
then S is an orthomorphism. But the identity 
transformation on GF(22) is not an orthomorphism.  
 
Definition 2: Let G be a finite group, S be a bijection 
on G. If the mapping : ( )S x xS x′ a  is still the 
permutation on G, then S is called the complete 
mapping. (xS(x) represents the multiplication between 
x and S(x) in G). 
 
Definition 3: Let G be a finite group, S be a bijection 
on G. If the mapping 1: ( )S x x S x−′ a  is still the 
permutation on G, then S is called the orthogonal 
mapping. (x-1S (x) = The multiplication between the 
inverse of x and S(x) in G).  
 
Definition 4: Let S be a permutation on GF(2n), if V is 
an arbitrary maximal subgroup in GF(2n) (or a maximal 
subspace), and the complement set (2 ) \nV GF V=  
satisfies: 

 
2| ( ) | | ( ) | 2nS V V S V V −∩ = ∩ =  
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Then S  is known as the perfectly balance mapping.  
By the above definitions, the orthomorphism is the 

complete mapping, the orthogonal mapping and the 
perfectly balance mapping. The orthomorphisms have 
been well applied in practice because of its inherent 
cryptographic properties. We have first given the 
application of the orthomorphisms in the study of the 
maximal subgroups structure on the Galois Field 
GF(2n). 

 
RESULTS 

 
The addition operation in the Galois field is 

denoted by ⊕ , the Galois field is a group for the 
addition operation and you can study the maximal 
subgroups. At the same time, the Galois field can also 
be seen as an n-dimensional vector space, you can study 
the subspace. We have known that there is the one to 
one corresponding between the maximal subgroups and 
from the (n - 1) -dimension subspace limited nature of 
the domain and its maximal subgroups on GF(2n) 
correspond to the dimension of subspace. It is easy to 
obtain the following results that we have researched the 
structure of maximal subgroups using the 
orthomorphism on GF(2n).  
 
Theorem 1: Let α1, α 2,…, α n be a arbitrary basis of the 
Galois  field  GF(2n)  on  F2,  taking out arbitrarily the 
(n - 1) vectors is spanning a subspace M on F2, then M 
is a maximal subgroup on the addition operation on 
GF(2n) and the all maximal subgroups on addition 
operation on GF(2n) can be expressed as: 

 
{ | }, (2 ) \{0}naM am m M a GF= ∈ ∈   

 
so there are (2n - 1) maximal subgroups on GF(2n).  
 
Proof: Due to the Galois field GF(2n) is a finite Abelian 
group for the addition operation, the order of the 
maximal subgroups on GF(2n) is 2n-1 because of the 
cycle decomposition to the finite Abelian group. So the 
vector space M is a maximal subgroup on GF(2n). From 
the algebra, (2 ) \{0}, {0, }nx GF N x∀ ∈ = is a minimal 
group, There is a group isomorphism (2 ) /nM GF N≅ . 
And there are the {2n - 1} groups N = {0, x}, hence the 
number of the different maximal subgroups are (2n - 1) 
on GF(2n).  

Next, we will give the evidence of the all maximal 
subgroups on GF(2n) can be expressed as: 

 
{ | }, (2 ) \{0}naM am m M a GF= ∈ ∈  

 
It is easy to understand by the definition of the 

group, if (2 ) \{0}na GF∈  then { | }aM am m M= ∈  is a 
subgroup on GF(2n). We can judge that 

{ | }aM am m M= ∈  is a maximal subgroup by the 
order. For (2 ) \{0}na GF∈ , if 1a =  then 

{ | }aM am m M M= ∈ = ; if a ≠ 1 then f (x) = ax is 
being an orthomorphism on GF(2n), the complete 
balance tells us M ≠ aM because the half elements of 

( ) { ( ) | }f M f c c M aM= ∈ =  are in M and the other 
half are in (2 ) \nM GF M= . At same reason, if ܽ, ܾ א
ሺ2ሻ/ሼ0ሽ and a ≠ b, then 1abܨܩ M M aM bM− ≠ ⇔ ≠   
and { | }aM am m M= ∈  just has the (2n - 1) non-zero 
elements. It goes to show when we have taken over all 
non-zero elements a in GF(2n), { | }aM am m M= ∈  is 
ergodic to the maximal subgroups on GF(2n). 

The orthomorphisms have a good effect on the 
study of algebraic structure as a special kind of 
mapping by the theorem 1. The orthomorphisms can 
also be used to the block design, statistical analysis, 
channel coding and the orthogonal Latin squares and so 
on. From the angle of the orthomorphic permutation 
polynomials to research the orthomorphisms in Zhihui 
(2002) and Yuan and Huanguo (2007), it is tells us that 
can study the orthomorphisms structure by the 
permutation polynomials. Let (2 ), [ ]nF GF f F X= ∈  be 
the polynomial, then ( )f c F∈  for c F∀ ∈ . The 
polynomial f(X) is a transformation on GF(2n). If f(X) 
is the one to one transformation, then f(X) is a 
permutation on GF(2n), f(X) is called the permutation 
polynomial on GF(2n). It has the following facts: that 
f(X) is the permutation polynomial on GF(2n) is 
equivalent to one of the following conditions: 

 
• : ( )f c f ca  is injective on GF(2n) 
• f is a subjective on GF(2n) 
• a F∀ ∈ the equation f(X) = a has solutions 
• a F∀ ∈  the equation f(X) = a has a unique 

solution  
 
Definition 5: Let 

2
[ ]nf F X∈  and f(X) = a0 + a1 X + … 

+ anXn, if an ≠ 0 the f(X) is said the polynomial of 
degree n, denoted deg (f(X)) = n.  

Let S be a permutation on GF(2n) and 
: ( ), (2 )nS c S c c GF∀ ∈a , the corresponding permutation 

polynomial can be derived from the interpolation 
formula:  

 
1

(2 )

( ) ( )(1 ( ) )
n

q

c GF

f X S c x c −

∈

= − −∑
 
= 

 

(2 )

[ ( ) ]
n a cc GF

a xS c
a c≠∈

−
−∑ ∏ , where 2nq =   

 
f(X) is simplified to the degree deg (f(X)) ≤q - 1. It 

indicated that the arbitrary permutation can be used the 
polynomial with the degree is no more than (q - 1) to 
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represent. It is easy to know that if f(X) is the 
permutation polynomial on GF(2n) then 

(2 ) { ( ) | (2 )}n nGF f c c GF= ∈ , for (2 )nGFγ ∈  satisfies 
(2 ) { ( ) | (2 )}n nGF f c c GFγ= ⊕ ∈ . It shows also that 

f(X) is the permutation on GF(2n)  if and only if
( )f X γ⊕  is the permutation on GF(2n). Let 

1
0 1 1( ) q

qf X a a X a X −
−= + + +L be the permutation on 

GF(2n)  if and only if f(X) + a0 = a1X + … + aq-1 Xq-1  is 
the permutation on GF(2n). So we can assume the 
constant is 0 overall.  

If f(X) is the orthomorphic permutation 
polynomial, then the regular of coefficients is as follow:  
 
Theorem 2: Let f(X) = a0 + a1X + … + aq-1 Xq-1 be an 
orthomorphic permutation polynomial on the Galois 
field GF(2n), then the coefficients have the following 
relationships:  
 

1,
0i j

i i q i j
a a

+ = − <

=∑
 
and 

2
1,

0q i j
i i q i j

a a a−
+ = − <

+ =∑  

 
Proof: Let q = 2n, denoted GF(2n) by Fq. A Galois field 
with the character 2 can be isomorphism to a residue 
class ring of the algebraic integer ring (Lang, 1994), 
namely it exists an algebraic integer ring E and its ideal 
2E, such that / 2qF E E≅ . The isomorphic field is 

regarded as the same field, simply remember Fq = E/2E. 
It is very easy to get the natural ring homomorphism 

: / 2qE F E Eη → =  and ker η = 2E. The 

homomorphism can be lift to : [ ] [ ]qE x F xη →  and the 

indeterminate met with ( )x xη = , the homomorphism η  
is restricted |Eη η=  to E. Let g be the multiplication 
generator of the Galois field, the original image of g is e 
in E, we have the following relationship: ( )e gη = ,

1 1( ) 1q qe gη − −= = , ( ) 1,1 1i ie g i qη = ≠ ≤ < − . There are 
exactly the q cossets of the algebraic integer ring E 
under  its  ideal  2E,  the  cosset  decomposition  of   E 
is as follows E = {0+2E} ڂ ሺ݁  ሻିଵܧ2

ୀଵ . And 
1 1( ) 1 (1)q qe gη η− −= = = , so they are belong to the same 

cosset between 1 and eq-1 . Hence, 1( 1) 2qe E− − ∈ , that is  
eq-1 = 1 (mod 2). 

Similarly, ei = 0 (mod 2), 1≤i<q - 1 (if ei = 1 (mod 
2), 1≤i<q - 1, we can get ( ) 1(1 1)i ie g i qη = = ≤ < − , 
which is the contradiction to the multiplication 
generator g)  

Next,  we  have  proved  that  eq-1 = 1 (mod 4), if  
eq-1 = 0 (mod 4) ≠ 1, then: 
 

1
11[ (1 2( )]

2

q
qee

−
−−

+
 
= 

1 11
1 1 1 1 1

1 1
2

1 12 [2 ]
2 2

q qq
q q i q i i

q q
i

e ee C e e C e e
− −−

− − − − −
− −

=

− −
+ +∑  

 
= 

1
1 1 12( 1) (m od 4)

2

q
q q ee q e

−
− − −
+ −  

= 2( 1) (mod 4)qe −  
 

= 
1

1 11 ( 1) 2 (mod 4)
2

q
q ee

−
− −

+ − ⋅  

 
= 1 (mod 4) 

  
(where 4 |eq-1 - 1) 

 

Owing also to ߟҧሺሾ݁ ቆ1  2 ቀషభିଵ
ଶ

ቁቇሿିଵሻ ൌ ҧሺ݁ሻߟ ൌ

 ݃ ൌ ҧሺ݁ሻߟ ൌ ݃, it is indicated that eq and e are in the 
same cosset and the representative element in the cosset 
can be select randomly, so we can select qe e′ =  as the 
representative element to satisfy: 

1( ) 1(mod 4)qe −′ ≡ , without loss of generality:  
 

eq-1 = 1 (mod 4)                  (1) 
 
Let {0, | 0 1}iS e i q E= ≤ ≤ − ⊂ , it is obvious to 
{ ( ) | } qx x S Fη ∈ = . The power sum of the elements has 
the following relationship: 
 

 3( 4) ( 1) |
0(mod 4) ( 1) |

t

x S

mod q t
x

q t∈

−⎧
= ⎨ − /⎩

∑                (2) 

 
Because of: 
 

11
2 2

0

( ) 1( ) 1 ( ) ( )
1

t qq
t t i t t t q

t
x S i

ex e e e e
e

−−
−

∈ =

−
= = + + + + =

−∑ ∑ L  

 
if  (q - 1)| t , then the above equation is: 
 

2 21 ( ) ( ) 1 2 1 3(mod4)t t t t q n

x S
x e e e q−

∈

= + + + + = − = − =∑ L  

 
 if (q - 1)| t , then the above equation is:  
 

11

0

( ) 1( )
1

t qq
t t i

t
x S i

ex e
e

−−

∈ =

−
= =

−∑ ∑  

 
Due to 1(mod 2)te ≡/ , 1≤t≤q - 1, if t is the odd, 

since  4| (eq-1 - 1)  and  (et)q-1 - 1 = (eq-1)t - 1,  then 4| 
((eq-1)t-1) that is 

1( ) 14 | [ ]
1

q t

t

e
e

− −
−

; If t is the event, then 

(e2(q-1) - 1) | ((e(q-1)t - 1)), in addition to 4|(eq-1 - 1), so 
2|(eq-1 - 1),  that  is 2|(eq-1 +1). Hence 8 | (e2(q-1) - 1), 
(e2(q-1) - 1), ((eq-1)t - 1), That is 8 | ((eq-1)t - 1). But
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1(mod 2)te ≡/ , we have the equation 
1( ) 14 | [ ]

1

q t

t

e
e

− −
−

. 

Assume: 
 

2 1
0 1 2 1( ) [ ]q

qF x b b x b x b x E x−
−= + + + + ∈L  

2 1
0 1 2 1( ) [ ]q

q qf x a a x a x a x F x−
−= + + + + ∈L  

 
and, 
 

 ( ( )) ( )F x f xη =  
 
Because f(x) is a permutation, so ൛ߟҧሺܨሺݔሻ൯|ܵ߳ݔሽ ൌ
ሼ݂ሺ0ሻ, ݂ሺ݃ሻห0  ݅  ݍ െ 2ሽ ൌ ,ܵ߳ݔ ܨ  ∑ ሻݔଶሺܨ ൌ௫אௌ
 4ሻ (by the݀2ሺ݉ݔܵאݔ = ,ܧאݕ  ,ሻ2ݕ2ݔሺܵאݔ 
definition of the cosset) = 0(mod 4) (by the Eq. (2) On 
the other hand:  
 

1 1
2 2 2 2

0 0
( ) ( ) ( ) 2

q q
i i i j

i i i j
x S x S i x S i x S i j

F x b x b x bb x
− −

+

∈ ∈ = ∈ = ∈ <

= = +∑ ∑ ∑ ∑ ∑ ∑∑  

 
1

2 2

0
2

q
i i j

i i j
i x S i j x S

b x b b x
−

+

= ∈ < ∈

= +∑ ∑ ∑ ∑  

 
By (2) and 2i | (q - 1), the above equation satisfies: 

 
1

2 2

0 1,
( ) ( ) 2 (mod 4)

q
i

i i j
x S x S i i j q i j

F x b x b b
−

∈ ∈ = + = − <

= =∑ ∑ ∑ ∑  

 
So,  
 

1,

0 2 (mod 4)i j
i j q i j

b b
+ = − <

= ∑  

 
From the nature of the congruence: 
 

1, 1,
0 (mod 2) ( ) 2 ker keri j i j

i j q i j i j q i j
bb bb E η η

+ = − < + = − <

= ⇒ ∈ = =∑ ∑  

 
So, 
  

1, 1,
( ) 0i j i j

i j q i j i j q i j
a a bbη

+ = − < + = − <

= =∑ ∑  

 
If f(x) is an orthomorphism, so is f(x) + x, then its 

coefficient must also satisfy the above property. The 
second equation in the theorem is the coefficients 
relationship of f(x) + x, it must be established. The 
theorem has been proved. 

For the orthomorphic permutation polynomials, the 
polynomials of degree (q - 2) must not exist (Daqing, 
1986). It is necessary to aq-2 = 0, the two formulas in the 
theorem are equivalent. We can also get more 
information on the relationship to the coefficients in the 

orthomorphic permutation polynomial, which needs 
further study.  

The proof of theorem 2 has only used the map
( ( )) ( )F x f xη =  and the square relationships between 

the original image and the image. We can further 
research the cubed, the fourth power relationships 
between the original image and the image and so on. 
We can get more relationship on the coefficients of the 
orthomorphic permutation polynomial. These related 
equations reveal that the coefficients of the 
orthomorphic permutation polynomials exist in the 
constraint relations. If this research is clear, then it can 
help us to obtain the counting formula of the 
orthomorphisms by solving the equation system.  

 
CONCLUSION 

 
This study has mainly studied the properties of the 

orthomorphisms over the Galois field GF(2n). Theorem 
1 tells us, the orthomorphisms are a special kind of 
mappings, such as isomorphism and homomorphism, 
which has an unexpected effect to study the algebraic 
structure itself. It is mainly to study the coefficients 
relationships of the orthomorphisms in Theorem 2. The 
coefficients of the orthomorphisms must have the 
restrictive relationships as a special kind of permutation 
polynomial. It is an important way to study counting 
formula of the orthomorphisms that such constraint 
relationships are search for. All in all, if we want to get 
more conclusions on the orthomorphisms on the Galois 
field, their applications and structure need further study.  
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