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Abstract: Today’s world, disease outbreaks influence seriously on people's normal life. But how we can find the 
infectious diseases source in social network at short time to avoid more people affected. This problem can be as 
outbreak detection which can be modeled as selecting people in a social network. This study uses a new 
methodology which improved from normal greed algorithm for detecting this problem in this and related problems, 
exhibiting the property of “sub modularity”. This efficient algorithm scales to large problems, simulation results 
achieving near optimal solution. 
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INTRODUCTION 

 
When we explore the problem of detecting 

outbreaks in networks, we are given a network and a 

dynamic process spreading over this network and our 

goal is to select a set of nodes to detect the process as 

effectively as possible. In the process of disease spread, 

the people consider as a social network, we want to 

monitor few people to detect the disease as soon as 

possible, in order to avoid more people affected. 

In the domain of disease spread, some people 

effected diseases and through contact and air to affected 

other people. We can observe the spread of information 

in the social net work through time stamped. In this 

case, we want to select a set of people to monitor who 

are most up to date to get more information, the simple 

way is to select the big affected areas, but these areas 

contain many people, so it’s time consuming to monitor 

them. And the advisable method is to monitor small 

area but high quality information; this is our goal this 

study will present. There are several possible criteria 

one may want to optimize in outbreak detection. Such 

as minimize detection time, minimize number of people 

affected and so on. In algorithm, these criteria defined 

as objective functions. Optimizing these objective 

functions is NP-hard and this methodology our study 

present can get a nearly optimal solution in practice. 

Figure 1 give the spread of disease among areas (two 

areas for example), we want to pick a few people 

quickly to capture most cascades.  

(Each layer shows an information cascade, circles 
correspond to people and all people at the same vertical 
column belong to the same area. Edges represent the 

flow of information. The cascade starts at top-left circle 
of the top layer)  

 
ALGORITHM CAPTION 

 
In infectious diseases outbreak, we want to select a 

subset A of people in a graph G = (v, ε), which detect 
outbreaks (spreading of a virus/information) quickly.  

The links point to the destination of information 
and the cascades grow (information spreads) in the 
direction of the edges. Figure 2 presents an example of 
such a graph for social network. Each of the six areas 
consists of a set of posts. Connections between people 
represent “hyper-links” and labels show the time 
difference between the source and destination people 
(e.g., person P23 linked P31 two days demonstrate that 
P23 would be affected 2 days later than P31 was 
affected). Outbreaks (e.g., information cascades) 
initiate from a single node of the network (e.g., P11, 
P12 and P31) and spread over the graph, such that the 
traversal of every edge (s, t) ∈ε takes a certain amount 
of time (indicated by the edge labels).  

As soon as the event reaches selected node, alarm 
is triggered. E.g., selecting area A6 would detect the 
 

 
 
Fig. 1: Spread of disease between areas 
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Fig. 2: Time stamped links between the posts in blog graph 

 

cascades originating from person P11, P12 and P31, 

after 6, 8 and 2 days after the start of the respective 

cascades. 

Depending on which nodes we select, we achieve a 

certain placement score. Figure 2 illustrates several 

criteria one may want to optimize. If we only want to 

detect as many stories as possible, then supervising just 

area A6 is best. (Supervising only area A6 captures all 

cascades, but late.)  However,   supervising A 1 would 

only miss one cascade (P31), but would detect the other 

cascades immediately. In general, this placement score 

is a set function R, mapping every placement A to a real 

number R (A) (our reward), which we intend to 

maximize. 

We associate a nonnegative cost c (s) with every 

node (person) s, we also associate a cost c (A) with 

every placement A and require, that this cost does not 

exceed a specified budget B which we can spend. And 

define the cost of placement A: 

 

( ) ( )∑
∈

=
AS

scAc

                 (1) 

 

So, our goal is to solve the optimization problem: 

 

( ) ( )VAARMAX ⊂            
( ) BActs ≤.                  (2)  

 

where, B is a budget we can spend for selecting the 

posts  

An event i ∈ Γ from set Γ of scenarios originates 

from a node s’∈ V of a network G = (v, ε), and spreads 

through the network, affecting other nodes through 

citations. Eventually, it reaches a monitored node s ∈ A 

⊆ V (people we read) and gets detected. Depending on 

the time of detection t = T (i, s) and the impact on the 

network before the detection (e.g., the size of the 

cascades missed), we incur penalty πi(t). Note that the 

penalty function πi(t) depends on the scenario. Our goal 

is to minimize the expected. 

This penalty over all possible scenarios i: 

 

( ) ( ) ( )( )AiTiPA
i

,ππ ∑=                    (3) 

 

( ) ( )siT
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∈
=⊆

              (4) 

 

where, for a placement A ⊆ V, T (i, A) is the time until 

event i is detected by one of the sensors in A and P is a 

(given) probability distribution over the events. We 

assume πi(t) to be monotonically non decreasing in t. 

We also set T(I, Φ) = ∞ and set πi(∞) to some 

maximum penalty incurred for not detecting event i. So 

instead of minimizing the penalty π(A), we can 

consider the scenario specific penalty reduction Ri(A) = 

πi(∞) (T(i, A)) and the expected penalty reduction: 

 

( ) ( ) ( ) ( ) ( )AARiPAR i

i

ππ −Φ== ∑
             (5)  

 

This alternative formulation has crucial properties 

(sub modular), which exhibits a diminishing returns 

property that is to say reading a blog when we have 

only read a few people provides more new information 

than reading it after we have read many people. The 

formulation expression of the properties as following: 

  

{ }( ) ( ) { }( ) ( ) ( )VBAARSARBRSBR ⊆⊆−∪≤−∪   (6) 

 

Improved algorithm: 

Greed algorithm: having the constant cost function 

(usually c (s) = 1) and iteratively in step k, adds the 

location sk which maximizes the marginal gain: 
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The algorithm stops, once it has selected B 

elements, the greedy algorithm is guaranteed to find a 

solution which achieves at least a constant fraction 63% 

of the optimal score (Nemhauser et al., 1978).  

When cost function is non-constant: 
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The reference (Jure and Reas, 2007) have proved 

the algorithm perform arbitrarily worse than the optimal 

solution. We can add the following steps to normal 
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greed algorithm to get the new algorithm this study 

demonstrated. 
 

• Use Eq. (7) to get the people set A1 

• Use Eq. (8) to get the people set A2 

• Max {R(A1), R(A2)} (Krause and Guestrin, 2007) 
 

( ) ( ){ } ( )
( )

( )AR
BAcA

eARAR
≤

−≥
,

max
/112/1,max 21

    (9) 
 

Assume the marginal increments δs (A) = R 
(A∪{S}) - R(A(or δs (A)/c(s)) for all s ∈V\A. The key 
idea is to realize that, as our node selection A grows, 
the marginal increments can never increase. For 
A⊆B⊆V, it holds that δs (A) ≥δs (B). So instead of re-
computing δs = δs (A) for every node after adding s’ 
(and hence requiring |V| - |A| evaluations of R).  
 
We perform lazy evaluations: Initially, we mark all δs 
as invalid. When finding the next location to a node, we 
go through the nodes in decreasing order of their δs. If 
the δs for the top node s is invalid, we re-compute it and 
insert it into the existing order of the δs (e.g., by using a 
priority queue). In many cases, the re-computation of δs 
will lead to a new value which is not much smaller and 
hence often, the top element will stay the top element 
even after re-computation In this case, we found a new 
node (person) to add, without having reevaluated δs for 
every person. 

The inverted index is the main data structure we 
use in optimization algorithms. In the social networks, 
we need to consider several millions of persons, which 
make up the cascades. However, most outbreaks are 
sparse. Hence, most nodes s do not reduce the penalty 
incurred by an outbreak (i.e., Ri ({s}) = 0)). So we can 
get the R(A) without having to scan the entire data set.  
 

ALGORITHM PSEUDOCODE AND 
SIMULATION RESULTS 

 
Using data set from reference (Glance et al., 2005) 

(3.5 million people, at least 3 in-links), extracting 100 
datas for simulation and the MATLAB simulation 
result as Fig. 3.  

In Fig. 3a, the third bound shows that the unknown 
optimal solution lies between our solution bottom line 
and the bound (top line). Notice the discrepancy 
between the lines is big, which means the bound is very 
loose. On the other hand, the middle line shows the 
second bound, which again tells us that the optimal 
solution is somewhere between our current solution and 
the bound. Notice, the gap is much smaller. This means: 

 

• That the first bound is much tighter than the 

traditional third bound.  

• The proposed algorithm performs very close to the 

optimum (Huo, 2005). 

 

Figure 3b plots the running time of selecting k 

people. (A represent exhaustive search, B represent the 

naive greed algorithm and C is the algorithm this study 

present) We see that exhaustively enumerating all 

possible subsets of k elements is infeasible (the line 

jumps out of the plot for k = 3). The simple greedy 

algorithm scales as Ω (k |V|), since for every increment 

of k we need to consider selecting all remaining |V| - k 

people. The bottom line overlapping the x-axis of 

Figure shows the performance of this algorithm. For 

example, for selecting 200 people, greedy algorithm 

runs 9.0 h, while this algorithm takes 50 sec (700 times 

faster). Algorithm pseudo code as following: 

 

Function: F (g = (v, ε), R, c B) 

A ← ∅; for each s ∈ � do  δs ← + ∞; 

 while ∃� ∈ �\
; �/(
 ∪ ���) ≤ � do 

for each ∃� ∈ �\
  do 

flag s ← false; 

while true do 

if type = 1 then 

 

 

 

 

 

 

 

 

 

(a) The performance of proposed algorithm 

 
 

 

 

 

 

 

 
(b) run time 

 

Fig. 3: MATLAB simulation result 
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 if type = 2 then 
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if flags then A ← A ∪ S*; break; else δs ←R(A ∪{S}) 

– R(A); 

flags ← ture 

return A; 

then: A1 = F (g = (v, ε), R, c, B, 1; 

A2 = F (g = (v, ε), R, c, B, 2); 

return argmax {R(A1), R(A2)}; 

 

CONCLUSION 

 

Infectious diseases outbreak detection is one of the 

important application in outbreak detection, the 

researching of diseases outbreak can give us an 

important indicator of some diseases, so we can do 

some really preventive steps to reduction loss. In this 

study, using improved greed algorithm to detect the 

infectious diseases outbreak. And give multi-objective 

function, transform way also be used to decrease the 

number of objective function to make the algorithm 

easier. The application of inverted index technology 

enhances the efficient of algorithm. And the simulation 

result proves to be nearly optimal solution and can give 

us an ideally prediction. 
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