
Research Journal of Applied Sciences, Engineering and Technology 5(2): 370-373, 2013

DOI:10.19026/rjaset.5.4960

ISSN: 2040-7459; E-ISSN: 2040-7467

© 2013 Maxwell Scientific Publication Corp.

Submitted: April 17, 2012 Accepted: May 14, 2012 Published: January 11, 2013

Corresponding Author: Manxiang Miao,

Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, 450015, China

This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).
370

Research Article
Algorithm Researching in Infectious Diseases Outbreak Detection

1
Manxiang Miao and

2
Yijin Gang

1
Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, 450015, China

2
Intelligent and Information Institute, Sippr, Zhengzhou, 450000, China

Abstract: Today’s world, disease outbreaks influence seriously on people's normal life. But how we can find the
infectious diseases source in social network at short time to avoid more people affected. This problem can be as
outbreak detection which can be modeled as selecting people in a social network. This study uses a new
methodology which improved from normal greed algorithm for detecting this problem in this and related problems,
exhibiting the property of “sub modularity”. This efficient algorithm scales to large problems, simulation results
achieving near optimal solution.

Keywords: Greed algorithm, infectious diseases outbreak detection, social network, sub modularity

INTRODUCTION

When we explore the problem of detecting

outbreaks in networks, we are given a network and a

dynamic process spreading over this network and our

goal is to select a set of nodes to detect the process as

effectively as possible. In the process of disease spread,

the people consider as a social network, we want to

monitor few people to detect the disease as soon as

possible, in order to avoid more people affected.

In the domain of disease spread, some people

effected diseases and through contact and air to affected

other people. We can observe the spread of information

in the social net work through time stamped. In this

case, we want to select a set of people to monitor who

are most up to date to get more information, the simple

way is to select the big affected areas, but these areas

contain many people, so it’s time consuming to monitor

them. And the advisable method is to monitor small

area but high quality information; this is our goal this

study will present. There are several possible criteria

one may want to optimize in outbreak detection. Such

as minimize detection time, minimize number of people

affected and so on. In algorithm, these criteria defined

as objective functions. Optimizing these objective

functions is NP-hard and this methodology our study

present can get a nearly optimal solution in practice.

Figure 1 give the spread of disease among areas (two

areas for example), we want to pick a few people

quickly to capture most cascades.

(Each layer shows an information cascade, circles
correspond to people and all people at the same vertical
column belong to the same area. Edges represent the

flow of information. The cascade starts at top-left circle
of the top layer)

ALGORITHM CAPTION

In infectious diseases outbreak, we want to select a

subset A of people in a graph G = (v, ε), which detect
outbreaks (spreading of a virus/information) quickly.

The links point to the destination of information
and the cascades grow (information spreads) in the
direction of the edges. Figure 2 presents an example of
such a graph for social network. Each of the six areas
consists of a set of posts. Connections between people
represent “hyper-links” and labels show the time
difference between the source and destination people
(e.g., person P23 linked P31 two days demonstrate that
P23 would be affected 2 days later than P31 was
affected). Outbreaks (e.g., information cascades)
initiate from a single node of the network (e.g., P11,
P12 and P31) and spread over the graph, such that the
traversal of every edge (s, t) ∈ε takes a certain amount
of time (indicated by the edge labels).

As soon as the event reaches selected node, alarm
is triggered. E.g., selecting area A6 would detect the

Fig. 1: Spread of disease between areas

Res. J. Appl. Sci., Eng. Technol., 5(2): 370-373, 2013

371

Fig. 2: Time stamped links between the posts in blog graph

cascades originating from person P11, P12 and P31,

after 6, 8 and 2 days after the start of the respective

cascades.

Depending on which nodes we select, we achieve a

certain placement score. Figure 2 illustrates several

criteria one may want to optimize. If we only want to

detect as many stories as possible, then supervising just

area A6 is best. (Supervising only area A6 captures all

cascades, but late.) However, supervising A 1 would

only miss one cascade (P31), but would detect the other

cascades immediately. In general, this placement score

is a set function R, mapping every placement A to a real

number R (A) (our reward), which we intend to

maximize.

We associate a nonnegative cost c (s) with every

node (person) s, we also associate a cost c (A) with

every placement A and require, that this cost does not

exceed a specified budget B which we can spend. And

define the cost of placement A:

() ()∑
∈

=
AS

scAc

 (1)

So, our goal is to solve the optimization problem:

() ()VAARMAX ⊂
() BActs ≤. (2)

where, B is a budget we can spend for selecting the

posts

An event i ∈ Γ from set Γ of scenarios originates

from a node s’∈ V of a network G = (v, ε), and spreads

through the network, affecting other nodes through

citations. Eventually, it reaches a monitored node s ∈ A

⊆ V (people we read) and gets detected. Depending on

the time of detection t = T (i, s) and the impact on the

network before the detection (e.g., the size of the

cascades missed), we incur penalty πi(t). Note that the

penalty function πi(t) depends on the scenario. Our goal

is to minimize the expected.

This penalty over all possible scenarios i:

() () ()()AiTiPA
i

,ππ ∑= (3)

() ()siT
As

MIN
AiTVA ,,,

∈
=⊆

 (4)

where, for a placement A ⊆ V, T (i, A) is the time until

event i is detected by one of the sensors in A and P is a

(given) probability distribution over the events. We

assume πi(t) to be monotonically non decreasing in t.

We also set T(I, Φ) = ∞ and set πi(∞) to some

maximum penalty incurred for not detecting event i. So

instead of minimizing the penalty π(A), we can

consider the scenario specific penalty reduction Ri(A) =

πi(∞) (T(i, A)) and the expected penalty reduction:

() () () () ()AARiPAR i

i

ππ −Φ== ∑
 (5)

This alternative formulation has crucial properties

(sub modular), which exhibits a diminishing returns

property that is to say reading a blog when we have

only read a few people provides more new information

than reading it after we have read many people. The

formulation expression of the properties as following:

{ }() () { }() () ()VBAARSARBRSBR ⊆⊆−∪≤−∪ (6)

Improved algorithm:

Greed algorithm: having the constant cost function

(usually c (s) = 1) and iteratively in step k, adds the

location sk which maximizes the marginal gain:

{ }() ()11

1\

maxarg
−−

−

−∪
∈

= kk

k

k ARsAR
Avs

S (7)

The algorithm stops, once it has selected B

elements, the greedy algorithm is guaranteed to find a

solution which achieves at least a constant fraction 63%

of the optimal score (Nemhauser et al., 1978).

When cost function is non-constant:

{ }() ()
()sc

ARsAR

Avs
S kk

k

k

11

1\

maxarg
−−

−

−∪

∈
=

 (8)

The reference (Jure and Reas, 2007) have proved

the algorithm perform arbitrarily worse than the optimal

solution. We can add the following steps to normal

Res. J. Appl. Sci., Eng. Technol., 5(2): 370-373, 2013

372

greed algorithm to get the new algorithm this study

demonstrated.

• Use Eq. (7) to get the people set A1

• Use Eq. (8) to get the people set A2

• Max {R(A1), R(A2)} (Krause and Guestrin, 2007)

() (){ } ()
()

()AR
BAcA

eARAR
≤

−≥
,

max
/112/1,max 21

 (9)

Assume the marginal increments δs (A) = R
(A∪{S}) - R(A(or δs (A)/c(s)) for all s ∈V\A. The key
idea is to realize that, as our node selection A grows,
the marginal increments can never increase. For
A⊆B⊆V, it holds that δs (A) ≥δs (B). So instead of re-
computing δs = δs (A) for every node after adding s’
(and hence requiring |V| - |A| evaluations of R).

We perform lazy evaluations: Initially, we mark all δs
as invalid. When finding the next location to a node, we
go through the nodes in decreasing order of their δs. If
the δs for the top node s is invalid, we re-compute it and
insert it into the existing order of the δs (e.g., by using a
priority queue). In many cases, the re-computation of δs
will lead to a new value which is not much smaller and
hence often, the top element will stay the top element
even after re-computation In this case, we found a new
node (person) to add, without having reevaluated δs for
every person.

The inverted index is the main data structure we
use in optimization algorithms. In the social networks,
we need to consider several millions of persons, which
make up the cascades. However, most outbreaks are
sparse. Hence, most nodes s do not reduce the penalty
incurred by an outbreak (i.e., Ri ({s}) = 0)). So we can
get the R(A) without having to scan the entire data set.

ALGORITHM PSEUDOCODE AND
SIMULATION RESULTS

Using data set from reference (Glance et al., 2005)

(3.5 million people, at least 3 in-links), extracting 100
datas for simulation and the MATLAB simulation
result as Fig. 3.

In Fig. 3a, the third bound shows that the unknown
optimal solution lies between our solution bottom line
and the bound (top line). Notice the discrepancy
between the lines is big, which means the bound is very
loose. On the other hand, the middle line shows the
second bound, which again tells us that the optimal
solution is somewhere between our current solution and
the bound. Notice, the gap is much smaller. This means:

• That the first bound is much tighter than the

traditional third bound.

• The proposed algorithm performs very close to the

optimum (Huo, 2005).

Figure 3b plots the running time of selecting k

people. (A represent exhaustive search, B represent the

naive greed algorithm and C is the algorithm this study

present) We see that exhaustively enumerating all

possible subsets of k elements is infeasible (the line

jumps out of the plot for k = 3). The simple greedy

algorithm scales as Ω (k |V|), since for every increment

of k we need to consider selecting all remaining |V| - k

people. The bottom line overlapping the x-axis of

Figure shows the performance of this algorithm. For

example, for selecting 200 people, greedy algorithm

runs 9.0 h, while this algorithm takes 50 sec (700 times

faster). Algorithm pseudo code as following:

Function: F (g = (v, ε), R, c B)

A ← ∅; for each s ∈ � do δs ← + ∞;

 while ∃� ∈ �\
; �/(
 ∪ ���) ≤ � do

for each ∃� ∈ �\
 do

flag s ← false;

while true do

if type = 1 then

(a) The performance of proposed algorithm

(b) run time

Fig. 3: MATLAB simulation result

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80 100

Number of people

R
ed

u
ct

io
n

 i
n
 p

o
p

u
la

ti
o
n

 a
ff

ec
te

d

3

2

1

0

100

200

300

400

0 2 4 6 8 10
Number of people selected

R
u
n

n
in

g
 t

im
e
 (

se
c
o
n

d
) A

B

C

Res. J. Appl. Sci., Eng. Technol., 5(2): 370-373, 2013

373

{ }()

arg max

\ , ss
s v A c A s B

δ∗ ←
∈ ∪ ≤

 if type = 2 then

{ }() ()

arg max

\ ,
ss

s v A c A s B c s

δ∗ ←
∈ ∪ ≤

if flags then A ← A ∪ S*; break; else δs ←R(A ∪{S})

– R(A);

flags ← ture

return A;

then: A1 = F (g = (v, ε), R, c, B, 1;

A2 = F (g = (v, ε), R, c, B, 2);

return argmax {R(A1), R(A2)};

CONCLUSION

Infectious diseases outbreak detection is one of the

important application in outbreak detection, the

researching of diseases outbreak can give us an

important indicator of some diseases, so we can do

some really preventive steps to reduction loss. In this

study, using improved greed algorithm to detect the

infectious diseases outbreak. And give multi-objective

function, transform way also be used to decrease the

number of objective function to make the algorithm

easier. The application of inverted index technology

enhances the efficient of algorithm. And the simulation

result proves to be nearly optimal solution and can give

us an ideally prediction.

ACKNOWLEDGMENT

This study is supported by the science research

project fund of Henan province (0624220069).

REFERENCES

Glance, N.S., M. Hurst, K. Nigam, M. Siegler,

R. Stockton and T. Tomokiyo, 2005. Deriving

marketing intelligence from online discussion.

Proceedings of the 11th ACM SIGKDD

International Conference on Knowledge Discovery

in Data Mining, KDD '05, NY, pp: 419-428.

Huo, H., 2005. Algorithm Design and Analysis. Xidian

University Press, Xi’an.

Jure, L. and K. Reas, 2007. Cost-effective Outbreak

Detection in Networks. MU-ML-07-111.

Krause, A. and C. Guestrin, 2007. A note on the

budgeted maximization of submodular functions.

Technical Report, CMU-CALD-05-103.

Nemhauser, G., L. Wolsey and M. Fisher, 1978. An

Analysis of the Approximations for Maximizing

Submodular Set Functions. Mathematical

Rogramming, pp: 14.

