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Abstract: In this study, we study the empirical Bayes estimation of the parameter of the exponential distribution. In 
the empirical Bayes procedure, we employ the non-parameter polynomial density estimator to the estimation of the 
unknown marginal probability density function, instead of estimating the unknown prior probability density function 
of the parameter. Empirical Bayes estimators are derived for the parameter of the exponential distribution under 
squared error and LINEX loss functions. We use numerical examples to compare the empirical Bayes estimators we 
obtained under squared error and LINEX loss functions and we get the result of the mean square error of the 
empirical Bayes estimator under LINEX loss is usually smaller than the estimator under squared error loss function, 
so it is more better. 
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INTRODUCTION 

 
The exponential distribution is one of the most 

important distributions in life-testing and reliability 

studies. Inference procedures for the exponential model 

have been discussed by many authors. Cohen and Helm 

(1973), Sinha and Kim (1985), Shalaby (1992), 

Basubramanian and Balakrishnan (1992), Balakrishnan 

et al. (2005), Jaheen (2004), Ng et al. (2009) and 

Schenk et al. (2011) and reference therein. 

Suppose that X be a random variable drawn from 

exponential distribution (denoted by Еxp(θ)), with 

probability density function (pdf): 

 

0,0),exp();( >>−= θθθθ xxxf          (1) 

 

where, θ  is the failure rate parameter. 

   
In this study, we will employ empirical Bayes 

method to the estimation of the parameter of 
exponential distribution. Empirical Bayes method, first 
introduced by Robbines (1964), has been widely 
explored and applied. He constructed empirical Bayes 
estimators without any parametric assumption on the 
prior density function. That is, in the empirical bayes 
procedures the prior distribution of the unknown 
parameter is assumed to be unknown. The empirical 
bayes procedure has many applications. It is widely 
used in solution of Biological, ecological and medical 

problems, in reliability theory, in insurance statistics, 
etc.  There are varies essays using empirical Bayes 
method in estimating problem, namely, Chen and Liu 
(2008) and Ren (2012). A number of papers were 
concerned with empirical Bayes estimation for specific 
families of conditional distributions (Jugde et al., 1990; 
Grabski and Sarhan, 1996; Sarhan, 1999). 
 

BAYES ESTIMATION 
 

Generally, the posterior pdf of θ given X = x is 
related to prior pdf  g(θ) of the unknown parameter θ  
and the joint conditional pdf of the observed data X 
given θ ƒ(x; θ), by: 
 

Θ∈= θ
θθ

θ ,
)(

)();(
)|(

xf

gxf
xg

g                         (2) 
where,  
Θ : The parameter space of θ 
 

 ∫Θ= θθθ dgxfxf g )();()(
  

 
is the marginal pdf of X. 

 

Let Z = Z(X) be a sufficient statistic for θ. Then the 

posterior pdf of θ depends on X only through the value 

z of the sufficient statistics Z. It means that g(θ|x) = 

g(θ|z). 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(2): 392-397, 2013 

 

393 

In Bayesian estimation, the loss function plays an 
important role and the squared error loss as the most 
common symmetric loss function is widely used due to 
its great analysis properties. And the Squared Error 

Loss Function (SELF) L(��,θ) = (��-θ)
2
, which is a 

symmetrical loss function that assigns equal losses to 
overestimation and underestimation. However, in many 
practical problems, overestimation and underestimation 
will make different consequents. For example, in the 
estimation of reliability and failure rate functions, an 
overestimate is usually much more serious than 
underestimate; in this case the use of symmetric loss 
function may be inappropriate as has been recognized 
by Basu and Ebrahimi (1991). This leads us to think 
that an asymmetrical loss function may be more 
appropriate. Varian (1975) and Zellner (1986) proposed 
an asymmetric loss function known as the LINEX 
function, which draws great attention by many 
researchers, such as Al-Aboud (2009), Pandey and Rao 
(2009) and Calabria and Pulcini (1994). The LINEX 
loss is expressed as: 
 

0,1)( ≠−∆−=∆ ∆
aaeL

a

                         (3) 
 

where, ∆ = �� − � and ��  is an estimator of θ and α is a 
constant. 

This sign and magnitude of the shape parameter a  
represents the direction and degree of symmetry 
respectively (If α>0, the overestimation is more serious 
than underestimation and viceversa). For a closed to 
zero, the LINEX loss is approximately squared error 
loss and therefore it is almost symmetric.  

The posterior expectation of the LINEX loss 
function (5) is: 
 

1))(ˆ()()]ˆ([
ˆ

−−−=− − θθθθ θ
θ

θ
θ

θ EaeEeLE
aa

        (4) 

where, Eθ (.) denotes the posterior expectation with 

respect to the posterior density of θ. The Bayes 

estimator of θ, denoted by ���� under the LINEX loss 

function is the value ��  which minimizes (4), it is: 
                

)](ln[
1ˆ θ

θθ a

BL eE
a

−−=
                                   (5) 

 
Provided that the expectation Eθ(e

–αθ
)exists and is 

finite. 
If the squared error loss function is used for each 

possible value of θ, then the Bayes estimator for θ is 

defined as the posterior mean of θ given z =  Z(X), that 

is: 
 

∫Θ=== θθθθθθ dzgzExEzBS )|()|()|()(ˆ
    (6) 

Under the LINEX loss function, the Bayes 
estimator of θ, is given by: 
 

)]|(ln[
1

)(ˆ zeE
a

z a

BL

θθ −−=
                         (7) 

 

EMPIRICAL BAYES ESTIMATION 

 
In what follows we summarize a brief discussion of 

the technique which will be adopted to construct the 
procedure. It is assumed that there are (n+1) repeated or 
(n+1) independented experiments. In each experiment, 
we observe a random variable X that has a pdf ƒ(x; θ), 
indexed by an unknown parameter θ. The parameter θ 
is assumed to be an unobservable random variable with 
the same (but unknown) prior pdf in each experiment. 
In the first experiment, a random sample with size k of 
independent failure times X1 = (X11, X12,.., X1k), is 
observed from ƒ (x;θ) with unknown parameter θ and a 
value of the sufficient statistic Z(X1) , denoted by z1, is 
calculated. In the second experiment, a random sample 
with the same size k of independent failure times X2 = 
(X21, X22,…, X2k), is observed from ƒ (x; θ) with 
unknown parameter θ and a value of the sufficient 
statistic Z(X2), denoted by z2, is calculated. The value 
of the unknown parameter θ in the second experiment 
may differ from the value in the first experiment. This 
procedure  is repeated until the nth experiment. In the 
(n + 1)

th
 experiment, a random sample with size c, 

which may differ from k, of independent failure times 
X = (X1, X2,…, Xc), is observed from ƒ(x; θ) with the 
same unknown parameter θ and a value of the sufficient 
statistic Z(X), denoted by z , is required. For 

convenience, we call information to the values ′n, k: z1, 

z2,…, zn′  obtained from the first n experiments is the 
past information, say Zf. While the information X 
obtained from the (n + 1)

th
 experiment as the current 

information, or current sample. 
In the procedure discussed here, we shall not 

estimate g (θ). Instead, we estimate the marginal pdf, 
ƒg(z), of the sufficient statistic Z. We use a 
nonparametric polynomial density method to estimate 
such function based on the sample of sufficient statistic 
z1, z2,…, zn, obtained from the past experiment. 

Definition: Martz and Lwin (1989) Let X = (X1, 

X2,…, Xc) be a random sample obtained from the pdf 

ƒ(x; θ), then a statistic Z (X) is called a sufficient 

statistic for θ if the joint pdf of X given θ can be 

factored as:  
 

)()|();( xHzfxf z θθ =  
where,  
ƒz (z|θ) : The conditional pdf of Z given θ 
H (x) : A real valued function of x 
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Theorem: In the following discussion, we always 

suppose that X = (X1, X2,…, Xc) is a random sample 

with size n which is drawn from exponential 

distribution (1), let z be a value of the statistic Z(X) 

∑ �	

��
  then ƒ(x; θ) = ƒz(z|θ) H(x), where, ƒz(z|θ) is the 

conditional pdf of Z given θ and H(x) is a real valued 

function of x. Then Under the squared error loss 

function, the Bayes estimator of θ is given as: 
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Under the LINEX loss function, the Bayes 

estimator of θ is given as: 
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Proof: Given the current sample X1, X2,…, Xc from the 

exponential distribution having the pdf(1), the joint pdf 

of X = (X1, X2,…, Xc) becomes: 

 

 0,0),exp();(
1

>>−= ∑
=

θθθθ xxxf
c

i

i
          (10) 

         

Let z (x) = ∑ �	

��
 , then the function ƒ(x; θ) can be 

written in the following form: 

 

)()|();( xHzfxf z θθ =  
 

where, H(x) = 
�(
)

����
  

and 
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Then Z(X) = ∑ �	

��
  is called a sufficient statistic. 

Using (11), the marginal pdf of Z becomes: 

 

θθθ dgzfzf g ∫Θ= )()|()(
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The first derivative of Eq. (12) with respect to z gives: 

∫
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Then we have: 
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Then, under the squared error loss function, the 

Bayes estimator of θ is given as: 
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Using (11) and (12), we derive the following 

conclusion: 
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Then, under the LINEX loss function, the Bayes 

estimator of θ is given as: 
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Remark: When the prior density function g(θ) is 

unknown, the past information Zp can be used to 

estimate the marginal pdf ƒg(z) of the sufficient 

statistics Z. The estimated pdf of ƒg (z) will be denoted 

by ƒg (z). The empirical Bayes estimator for θ can be 

calculated by substituting the estimated function ƒg(z) 

and its derivative, calculated at a value of the 

sufficient static Z obtained from the current 

experiment, into the previous formulate. That is, the 

empirical Bayes estimators of θ under the squared 

error and LINEX loss functions are given, 

respectively, by: 
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Without loss of generality, we present in what 

follows the non-parametric polynomial density 
estimator for the marginal pdf ƒg(z) when the 
observable random variable X has an exponential 
distribution with unknown failure rate θ. The 
nonparametric polynomial density estimator with 
order m (m≥0) for ƒg(z) is given as Sarhan (2003): 
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where, x0 is a specified value of the observable random 
variable X and the coefficients αi (i = 0, 1, …, m) are 
given with the form: 
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and  

)/exp( 0 jj zkxr −=                                         (20) 

 
with j = 1, 2,…, n 

 
Numerical example and conclusion: To illustrate the 

previous results, a Monte Carlo simulation study is 

presented next. The criterion of comparison is made 

possible by computing risk of mean square error loss of 

estimators. 

The simulation study, in this sample, is carried out 

according to the following scheme: 
 

• For  given values of θ = θ0 and c, generating a 

random sample with size c from the exponential 

distribution (1) and a select a value x0 of the 

generating  sample and calculating the value of the 

respective sufficient statistic z. 

• Selecting the value of (n, m, k). 

• n experiments are simulated. In each of them, a 

random sample of size k from the exponential 

distribution with θ = θ0 is generated. 

• The values of the sufficient statistics z1, z2,…, zn 

are computed using the generated data obtained in 

Step (3). The MLEs r1,r2,…,rn at the specified time 

x0 are calculated according to rj = exp(-kx0/zj), 
nj ,,2,1 K=  

• The degree m of m-NPDE ƒg(z) is specified. 

• The coefficients αi (i = 0, 1,…, m) are computed 

using r1, r2,…, rn according to Eq. (19). 

 
Table 1: Estimates (mean square error of estimates), where (n, k, m) = (10, 20, 10) 

c 5 10 15 20 25 30 35 40 45 50 

��EBS 0.5115 
0.0052 

0.5072 
0.0049 

0.5071 
0.0049 

0.5126 
0.0051 

0.5111 
0.0052 

0.5083 
0.0048 

0.5126 
0.0053 

0.5116 
0.0050 

0.5112 
0.0052 

0.5112 
0.0050 

��EBL   
(a = 1) 

0.5090 
0.0051 

0.5048 
0.0048 

0.5047 
0.0048 

0.5100 
0.0050 

0.5086 
0.0051 

0.5059 
0.0047 

0.5100 
0.0051 

0.5091 
0.0049 

0.5087 
0.0051 

0.5087 
0.0048 

EBLθ̂  
(a = 2) 

0.5065 
0.0049 

0.5023 
0.0047 

0.5022 
0.0047 

0.5076 
0.0049 

0.5061 
0.0049 

0.5034 
0.0046 

0.5076 
0.0050 

0.5066 
0.0047 

0.5062 
0.0049 

0.5063 
0.0047 

 
Table 2: Estimates (mean square error of estimates), where (n, k, m) = (10, 20, 5) 

c 5 10 15 20 25 30 35 40 45 50 

EBSθ̂
 

0.5109 
0.0053 

0.5085 
0.0054 

0.5072 
0.0048 

0.5097 
0.0053 

0.5118 
0.0051 

0.5119 
0.0053 

0.5116 
0.0055 

0.5090 
0.0051 

0.5086 
0.0052 

0.5113 
0.0053 

EBLθ̂  
(a = 1) 

0.5084 
0.0051 

0.5060 
0.0052 

0.5046 
0.0047 

0.5072 
0.0052 

0.5093 
0.0050 

0.5093 
0.0051 

0.5090 
0.0054 

0.5064 
0.0050 

0.5061 
0.0051 

0.5088 
0.0051 

EBLθ̂  
(a = 2) 

0.5059 
0.0050 

0.5035 
0.0051 

0.5022 
0.0046 

0.5047 
0.0051 

0.5067 
0.0048 

0.5068 
0.0050 

0.5065 
0.0052 

0.5039 
0.0048 

0.5036 
0.0049 

0.5063 
0.0050 

 
Table 3: Estimates (mean square error of estimates), where (n, k, m) = (5, 20, 4) 

c 5 10 15 20 25 30 35 40 45 50 

EBSθ̂
 

0.5104 
0.0056 

0.5126 
0.0056 

0.5096 
0.0049 

0.5138 
0.0057 

0.5110 
0.0054 

0.5112 
0.0055 

0.5089 
0.0050 

0.5089 
0.0057 

0.5108 
0.0056 

0.5085 
0.0052 

EBLθ̂  
(a = 1) 

0.5078 

0.0054 

0.5101 

0.0053 

0.5071 

0.0048 

0.5112 

0.0055 

0.5085 

0.0052 

0.5087 

0.0054 

0.5064 

0.0049 

0.5064 

0.0056 

0.5083 

0.0054 

0.5060 

0.0050 

EBLθ̂  
(a = 2) 

0.5053 
0.0053 

0.5075 
0.0046 

0.5046 
0.0046 

0.5087 
0.0053 

0.5059 
0.0051 

0.5062 
0.0052 

0.5039 
0.0048 

0.5039 
0.0048 

0.5057 
0.0053 

0.5035 
0.0049 
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• The m-NPDE ��g(z) is formulated, according to Eq. 

(18) and its derivative ���(�) is obtained from (18). 

• Steps (1)-(7) are repeated N = 2000 times. The 

risks under squared-error loss of the estimates are 

computed by using: 

 

∑
=

−=
N

i

i
N

ER
1

2)ˆ(
1

)ˆ( θθθ
  

 

where, ���   is the estimate at the i
th

 run. 

 

CONCLUSION 

 

Based on the results shown in Table 1-3, we 

conclude that:  

When α = 1, 2, the empirical Bayes estimators 

under LINEX loss function have smaller mean square 

error than those estimators under squared error loss, so 

in this situation we propose using empirical Bayes 

estimator under LINEX loss functions. 

Though lots of numerical experiments, we discover 

when (n, k) is given, the non-parametric polynomial 

density estimate of the marginal density function ƒg 

with a higher degree m often gives a better estimate in  

the sense of having a smaller mean square error. 
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