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Abstract: To avoid the shortages and limitations of probabilistic and non-probabilistic reliability model for 
structural reliability analysis in the case of limited samples for basic variables, a new imprecise probability model is 
proposed. Confidence interval with a given confidence is calculated on the basis of small samples by gray theory, 
which is not depending on the distribution pattern of variable. Then basic probability assignments and focal 
elements are constructed and approximation methods of structural reliability based on belief and plausibility 
functions are proposed in the situation that structure limit state function is monotonic and non-monotonic, 
respectively. The numerical examples show that the new reliability model utilizes all the information included in 
small samples and considers both aleatory and epistemic uncertainties in them, thus it can rationally measure the 
safety of the structure and the measurement can be more and more accurate with the increasing of sample size. 
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INTRODUCTION 

 
In reliability assessment of a structure, some 

factors, such as the complexity of internal mechanism, 
the limitation of people’s knowledge and errors in 
manufacturing, will produce a variety of uncertainties. 
How to handling these uncertainties is a serious 
problem associating with the confidence of reliability 
analysis results. There are three types of reliability 
model at present, which are probabilistic, fuzzy and 
non-probabilistic reliability model, respectively. 
Probabilistic reliability model is constructed on the 
basis of probability theory and has been widely used in 
reliability assessment for various structures (Park et al., 
2004; Christopher and Masoud, 2009). But in this 
model, the inherent stochastic characteristics of 
structure are considered as the only source of 
uncertainties. However, recent researches show that 
despite inherent stochastic characteristics, limitation of 
people’s knowledge is another source to produce 
uncertainties and this type of uncertainty is so called 
“epistemic uncertainty” (Oberkampf et al., 1998, 2001). 
Probability theory is effective on handling aleatory 
uncertainty, but is not applicable for epistemic 
uncertainty (Helton, 1997; George and Richard, 2001). 

On the other hand, the precondition of using 
probabilistic reliability model is there having sufficient 
information to represent the probability distribution of 
uncertain quantity. But it is hard to meet this condition  
in many occasions. Above two shortages limit the 
application of probabilistic reliability model. Fuzzy 
reliability model is constructed on the basis of 
probabilistic reliability model and avoids the 
insufficiency of hypothesis of discrete finite state 
(Utkin  and  Gurov,  1996; Giasi et al., 2003; Biondini 
et al., 2004). But fuzzy reliability model is also having 
the aid of statistical method to obtain membership 
function, which is similar with probabilistic reliability 
model. The only difference between them is that the 
former uses subjective probability and the later uses 
objective probability (Lu and Feng, 2000). However, in 
general cases, obtaining the bounds of an uncertain 
quantity are easier than the probability distribution. In 
this view, Ben-Harm, Elishakoff and other researchers 
proposed the non-probabilistic reliability model based 
on interval analysis and convex model (Ben-Haim, 
1994;  Ben-Haim  et  al.,  1996; Elishakoff, 1994; Luo 
et al., 2009). Although the model is simple in 
calculation, the results are always too conservative. 
Furthermore, the model only uses the lower and upper 
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bounds of uncertain quantities and wastes the other 
valuable information, so it was difficult to be applied in 
engineering practice. 

In engineering practices, as the limitation of 
experimental expenses and time, experimental samples 
and data are always inadequate. This makes the 
obtained information both involving aleatory and 
epistemic uncertainties. The existing data is insufficient 
to construct the probability distribution of uncertain 
quantity, but can get additional information more than 
merely an interval range. Evidence theory is the 
generalization of probability theory (Dempster, 1967; 
Shafer, 1976). Researches show that evidence theory 
has strong ability on handling both aleatory and 
epistemic uncertainties simultaneously (Helton et al., 
2004). So the motivation of this study is constructing a 
new imprecise probabilistic reliability model to 
evaluate structure reliability with insufficient 
experimental data using evidence theory and gray 
theory, in which gray theory is used to estimate the 
confidence interval of experimental data. The new 
model will consider both aleatory and epistemic 
uncertainties, so it is expected to get more reasonable 
results than the other reliability models. 

 
PROBABILISTIC RELIABILITY MODEL 

 
In reliability analyzing for an engineering structure, 

limit state equation can be constructed according to the 
designed functions and requirements. In probabilistic 
reliability model, if X = {x1, x2,…, xn} is the vector of n 
random variables for stochastic factors, then the 
structure limit state equation is: 
 

1 2( ) ( , , , ) 0nZ g g x x x= = =X L                           (1) 
 

According to the two states hypothesis in 
probabilistic reliability theory, failure surface {X|g (X) 
= 0} divides the basic variable space into two areas. If g 
(X)  0 , then the structure is in reliable state and safe 
domain is: 
  

{ | ( ) 0}s gΩ = >X X                                            (2) 
 

Otherwise the structure is in failure state and its 
failure domain is: 
 

{ | ( ) 0}f gΩ = <X X                    (3) 
 

If ƒ(X) is the joint probability density function of 
X, then the structure failure probability is:  
 

( ) ( )
f

fP P F f d
Ω

= = ∫ X X                (4) 

 
where, F is the proposition F = {Xא  .{ƒߗ
Correspondingly, the reliability is: 

1s fR P= −                        (5) 
 

Generally, probability distribution of variable xi can 
be obtained by statistic method with experimental data. 
However, if the size of experimental data is small, it is 
hard to determine the distribution pattern and 
distributed parameters for xi. And more, for a same set 
of data, sometimes different distribution patterns may 
all be fitted (Ben-Haim, 1994). But these different 
distribution patterns have different header and tail 
information, which are very important for the accuracy 
of structure reliability calculation. Choosing an ill-
suited distribution pattern will result in great error in 
reliability calculation (Ben-Haim, 1993; Elishakoff, 
1995). So in the situation of small sample data, 
conventional probabilistic reliability model faces 
enormous challenges. 

 
IMPRECIS PROBABILITY MODEL FOR 

STRUCTURAL RELIABILITY UNDER SMALL 
SAMPLES 

 
The essence of small sample data is aleatory and 

epistemic uncertainties are coexisting. To a variable xi, 
aleatory uncertainty is its inherent characteristics and 
this type of uncertainty cannot be eliminated. However, 
epistemic uncertainty is caused by inadequate data and 
knowledge and can be removed when there are enough 
data or knowledge to construct the precise probability 
distribution of xi. The root cause of the defect of 
conventional probability reliability model is that it 
ignores the epistemic uncertainties in variables when 
there are not enough samples. 

In this section, gray distance measure is used to 
estimate the gray confidence interval of small sample 
data. Then the Basic Probability Assignments (BPAs) 
are constructed and structural reliability is calculated by 
evidence reasoning.  
 
Gray confidence interval estimation: If the sample set 
of xi is A = {a1, a2, …, am}, then the interval of xi should 
be estimated with A first. Traditional methods are 
working on the basis of large sample size and the prior 
distribution of the variable xi (Chien, 1997; David, 
1997; Law, 2006). But to small sample data, the prior 
distribution is generally unknown, so the traditional 
interval estimation methods are not available. 
Confidence interval of variable xi can be estimated 
using gray theory in the following procedures: 
 
• Calculating the gray distance measure of each 

sample ai to each other sample aj with (Ke et al., 
2007): 

 
( , )

( , )
| | ( , )

j

i j
i j j

d A a
dr a a

a a d A a

ξ

ξ
∞

∞

=
− +

                   (6) 
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where, ξ is the resolution ratio. Generally ξ = 0.5 
(Deng, 1990) and: 
 

}{( , ) max | ( ) |, [1, ]j jk
d A a A k x k m

∞
= − ∈

         
(7) 

 
Take the mean value of these gray distance 
measures as the distance measure of ai (i∈ [1, m]) 
to the whole sample space: 

 

1

( , )
m

i i j
j

J dr a a m
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑                (8) 

 
Finally, normalize Ji (i∈ [1, m]) as: 

 

1

m

i i i
j

w J J
=

= ∑                 (9) 

 
where, wi is the weight of sample ai to gray 
estimate పܺ . 

• Calculate the gray estimate పܺ  with weighted 
accumulation method as: 

 

1

ˆ
m

i i i
i

x w a
=

= ∑               (10) 

 
• Calculate the gray confidence interval of xi. From 

Eq. (6), dr (a0, పܺ ) is the gray confidence. For a 
given confidence α (α[1/3 ,1] א) , by the Inequality:  

 
0 ˆ( , )idr a x α≥               (11) 

 
the confidence interval of పܺ  at confidence α  can 
be obtained as [inf (α0), sup (α0)]. 

 
Calculation of focal elements and BPAs: After get the 
interval estimation of variable xi, i.e., [inf (α0), sup 
(α0)], the data set A = {a1, a2, …, am}, inf (α0) and sup 
(α0) are arranged from small to large order as:  
 

}{ (1) (2) ( ), , , kB a a a= L              (12) 

 
where, k = m+2. The mean of above set is: 
 

(1) (2) ( )( ) /ka a a a k= + + +L                          (13) 

 
Constructing N minimum intervals Aij = [ߙത െ

∆୨,αത+∆j] (1 ݆  ܰሻ with their mid-values at ߙത, where 
∆1൏ ∆ଶ ൏…൏ ∆N. These intervals are the focal 
elements of variable xi. The probability of samples 
being included in each interval is Pj (1 ݆  ܰሻ. If 

there are M samples in the interval Aij (1 ݆  ܰሻ, 
then: 

 
/jp M N=                             (14) 

And 
( ) (1 )ij jBel A p j N= ≤ ≤              (15) 

 
Then the BPA of focal element Aij is:  
 

1

( 1)

( )                          ( 1)
( )

( ) ( )      (2 )

i

ij

ij i j

Bel A j
m A

Bel A Bel A j N−

=⎧
⎪= ⎨
⎪ − ≤ ≤⎩

       (16) 

 
Denotes the frame of discernment of X = {x1, x2, ..., 

xn} to be ΘX and its focal elements to be CP (1 P 
N୬), then pc  is a Cartesian product: 
 

1 21 2 np j j njc A A A= × ×L              (17) 
 
where, j1, j2, …, jn א[1, N]. By Dempster’s rule, BPA of 
Cp is:  
 

1 21 2( ) ( ) ( ) ( )
np j j njm c m A m A m A= × ×L      

(18) 
 
Structural reliability calculation with evidence 
theory: Let Θz be the frame of discernment in failure 
domain and Belz (F) and Plz (F) are belief and 
plausibility function of structure failure respectively, 
then: 
 

( ) ( ) ( )Z Z ZBel F P F Pl F≤ ≤                           (19) 
 

Belz (F) is the lower bound of Pƒ, Plz (F) is the 
upper bound and [Belz (F), Plz (F)] is the interval 
estimation of Pƒ. If information content about F is great 
enough, then Belz (F) will be close to Plz (F) 
indefinitely and | Belz (F)-Plz (F)| will tend to be an 
infinitesimal. So the mean of the two functions is the 
approximation of Pƒ: 
 

( ( ) ( )) / 2f Z ZP Bel F Pl F= +%                           (20) 
 

Denote Z0 = {z ݖ ൏0, zאΘz}, then according to 
evidence theory, Belz (F) and Plz (F) can be expressed 
as: 
 

1
0

1
0

( )

( ) [ ( )] ( )
i

Z X i
c f Z

Bel F Bel f Z m c
−

−

⊂

= = ∑
     

(21) 

 

1
0

1
0

( )

( ) [ ( )] ( )
i

Z X i
c f Z

Pl F Pl f Z m c
−

−

∩ ≠∅

= = ∑        (22) 
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Then structure failure probability is obtained by 
Eq. (20). If it is nessisary, structure reliability can also 
be calculated with Eq. (5). 

 If Z = g(X) is monotonic, then vertex method (Dong 
and Shah, 1987) can be used. Denote the mapping of ci 
in Z as di. From the monotonicity of g(X), the upper and 
lower bounds of di are only possible to obtain when X is 
the hypercube vertexes of ci. Denote: 
 

( ) [ , ]i i i id g c l u= =                                          (23) 
 
Then: 
 

( ) [min{ ( ) : 1, , },max{ ( ) : 1, , }]i i j jj j
d g c g v j n g v j n= = = =L L

   
(24) 

where, vj (j = 1, 2ڮ, n)
 
are the vertexes of hypercube ci. 

By Eq. (24), all di (i∈mn) in ΘZ can be calculated. Then 
  

0 sup( ) 0
( ) ( ) ( )

i i

Z i i
d Z d

Bel F m d m d
⊆ <

= =∑ ∑
              

(25) 

 

0 inf( ) 0

( ) ( ) ( )
i i

Z i i
d Z d

Pl F m d m B
∩ ≠∅ <

= =∑ ∑             (26) 

 
 If Z = g(X) is non-monotonic, then vertex method 

is unusabel because of large computational errors. In 
this case, sampling method can be used to calculate 
Belz (F) and Plz (F). Denote: 
 

1
0_ { : ( )}Z iN Bel i c g Z−= ⊂                           (27) 

 
1

0_ { : ( ) }Z iN Pl i c g Z−= ∩ ≠ ∅             (28) 
 
Then Eq. (21) and (22) can be expressed as: 
 

_
( ) ( )

Z

Z i
i N Bel

Bel F m c
⊂

= ∑              (29) 

 

_

( ) ( )
Z

Z i
i N Pl

Pl F m c
⊂

= ∑              (30) 

 
The procedure to estimate N_ Belz (F) and N_ Plz 

(F) using sampling method is as follows: 
 

Step 1: Randomly generating Ns (Ns → ∞) X in ck 
(ck ؿ Θଡ଼ and calculate Z with Eq. (1). If Z<0 hold 
for any Z, then i∈N_BelZ and i∈N_PlZ. If Z<0 hold 
for some Z and Z≥0 hold for the others, then 
i∈N_PlZ. 
Step 2: For 1 ݅  ܰ, repeate the step 1. 

 
Then Belz (F) and Plz (F) can be calculated with 

Eq. (29) and (30). 
After calculating Belz (F) and Plz (F), 

approximation of Pƒ can be obtained with Eq. (20). 

NUMERICAL EXAMPLES 
 

Example 1: The limit state equation of a structure is:  
 

1 2

3 3( ) 18 0Z g x x= = + − =X                        (31) 
 
where, x1 and x2 obey normal distribution N (1, 0.2) and 
N (3, 0.09), respectively. Randomly generate 10 
samples with the probability distribution function of 
each variable, as shown in Table 1. 

Set gray confidence 0.8α =  and gray confidence 
intervals  of x1 and x2 are obtained as (0.89, 23.47) and 
(-4.25, 22.24). Construct 11 subintervals with their mid-
values at ݔଵതതത and  ݔଶതതത, respectively and Pj = j/11 
(1j11). 

Then focal elements and BPAs of x1 and x2 are 
calculated, the results are shown in Table 2. 

As Eq. (31) is monotonic, vertex method is used in 
this example to calculate the belief and plausibility 
functions of the structure failure probability. The results 
are Belz (F) = 0 and Plz (F) = 0.0165. So from Eq. (20) 
structure  failure probability is ƒܲ෩  = 0.0083 and from 
Eq. (5) structure reliability is ܴ௦෪ = 0.9917. 
As the sample size is small, the results are imprecise. 
Increases the sample size, the results will be more 
accurate. Let m be 20, 30, 40 and 50, respectively and 
calculate the structure reliability with proposed method. 
The results are compared with that of Monte Carlo 
method with 106 samples and shown in Table 3. If the 
results of Monte Carlo method, Rs, can be taken as the 
exact value, then it can be seen from Table 3 that the 
results of proposed method is very close to the exact 
value when m increases to 50. 
 
Table 1: Experimental data of x1 and x2 

x1 ݔଵഥ
1.36
9.78 

3.380
10.24 

6.760
12.57 

8.850 
14.67 

9.370
21.75 

9.86

x2 ଶതതതݔ
-2.85
10.93 

2.980
11.25 

6.720
12.29 

8.390 
15.64 

9.570
20.08 

9.50

 
Table 2: Focal elements and BPAs of x1 and x2 
BPA Focal elements of x1 Focal elements of x2

1/11 9.78, 10.24 8.39, 9.570
1/11 9.37, 10.24 8.39, 10.93
1/11 8.85, 10.24 8.39, 11.25
1/11 8.85, 12.57 6.72, 11.25
1/11 6.67, 12.57 6.72, 12.29
1/11 6.67, 14.67 6.72, 15.64
1/11 3.38, 14.67 2.98, 15.64
1/11 1.36, 14.67 2.98, 20.08
1/11 0.89, 14.67 -2.85, 20.08
1/11 0.89, 21.75 -2.85, 22.24
1/11 0.89, 23.47 -4.25, 22.24
 
 Table 3: Results of reliability with different sample size in example 1 

m Inf (Rs) Sup (Rs) ܴ௦෪ Rs

10 0.9835 1.0000 0.9918 0.9943
20 0.9865 0.9977 0.9921 0.9943
30 0.9900 0.9979 0.9939 0.9943
40 0.9911 0.9964 0.9937 0.9943 
50 0.9931 0.9954 0.9942 0.9943 
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Fig. 1: Composite cantilever beam structure model 
 
Example 2: A composite cantilever beam with a point 
load is shown in Fig. 1 (Bae et al., 2004). To simplify 
the calculation of tip displacement of the composite 
beam, a symmetric laminated beam is used with one 
composite material and (±45) s angle plies. The tip 
displacement is obtained by the classical laminated 
plate theory (Reddy, 1997) as:  
 

3 2 2
0

3

4 ( 4 2 )
2 ( 2 )

L LT T LT L T LT T LT
Tip

L LT L T T LT

F L E G E v E E G E v
h E G E E E v

δ
⎛ ⎞− + + +

= ⋅⎜ ⎟+ +⎝ ⎠
  

(32) 
where,  
h : The height (3.83 cm) of the beam 
L : The length (50.7 cm) of the beam 
F0 : The applied load per width (360 kN)  
GLT : The shear modulus (9.38 GPa)  
vLT : The Poisson’s ratio (0.03)  
The Young’s moduli EL : Considered as uncertain 

variables    and    follow    normal    distribution  
N (143, 11.8) 

The Young’s moduli ET : Considered as uncertain 
variables    and    follow    normal    distribution  
N (33, 6.2) 

 
If the tip displacement should not exceed the limit 

state value of 5.59 cm, otherwise, the beam will fail and 
then the limit state equation of the structure is: 
 

0TipZ Limitδ= − =                            (33) 

 
and safe domain is: 
 

{ : 0}s Tip Tip Limitδ δΩ = − <                           (34) 

 
Randomly generate 20 samples by the distribution 
function of EL and ET, respectively as shown in Table 4. 

Set gray confidence 0.8α =  and gray confidence 
intervals of EL and ET are obtained as (115.26, 177.65) 
and (16.14, 48.26), respectively. Construct 22 
subintervals with their mid-values at ĒL and ĒT, 
respectively   and   Pj = j/ 22 (1 ݆  22ሻ.   Then   focal  

Table 4: Experimental data of EL and ET 
EL ܧതതത 
118.08 
138.71 
143.99 
156.12 

129.27 
139.74 
145.25 
159.29 

131.23 
140.45 
146.61 
162.54 

132.56 
140.98 
149.92 
167.37 

135.72 
143.06 
153.09 
172.47 

145.32 

ET ்ܧതതത
17.40 
28.25 
31.87 
36.41 

18.87 
28.64 
32.34 
37.11 

21.18 
29.55 
34.07 
38.85 

23.24 
30.63 
34.86 
39.69 

26.72 
31.63 
35.04 
46.14 

31.12 

 
Table 5: Results of reliability with different sample size in example 2 

m Inf (Rs) Sup (Rs) Rୱ෪ Rs 

20 0.9876 1.0000 0.9928 0.9977 
30 0.9883 0.9990 0.9937 0.9977 
40 0.9932 0.9983 0.9958 0.9977 
50 0.9963 0.9985 0.9974 0.9977 

 
elements   and  BPAs  of  EL  and  ET  are   obtained.  As 
Eq. (33) is non-monotonic, sampling method is used to 
calculate the structure reliability and the results are 
shown in Table 5. Let m be 30, 40 and 50, respectively 
and calculate the structure reliability with proposed 
method.  The  results  are  compared with that of Monte 
Carlo method with 106 samples, which is also shown in 
Table 5. It can be seen from Table 5 that with the 
increasing of m, ܴ௦෪ becomes more and more accurate 
too. 

 
CONCLUSION 

 
When sample size is too small to construct the 

probability distribution of the variable, conventional 
probabilistic reliability model is not applicable. 
Although non-probabilistic reliability model based on 
interval analysis and convex model can calculate 
structure reliability under above situation, but in this 
model only bounds of data can be used. As many 
valuable data is discarded, the results of non-
probabilistic reliability model are always too 
conservative to be applied in reality engineering 
structures. In this study, a new imprecise reliability 
model is proposed based on evidence theory and gray 
theory, which not only avoids the problem of 
constructing the distribution functions of variables, but 
also utilizes all of the experimental data. As the model 
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considers aleatory and epistemic uncertainties together, 
the results of reliability calculation can reflect the actual 
situation of structure. The numerical examples show the 
model has high precision and its precision will improve 
when sample size increases. On the other hand, the new 
model does not depend on the distribution information 
about variables. So the new model is very effective 
under small samples and is a beneficial supplement to 
conventional probabilistic and non-probabilistic 
reliability model. 
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