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Research Article 
First-Order Reactant in Homogeneous Turbulence Prior to the Ultimate Phase of Decay 

for Four-Point Correlation in Presence of Dust Particle 
 

M.A. Bkar PK, M.A.K. Azad and M.S. Alam Sarker 
Department of Applied Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh 

 

Abstract: In this study, following Deissler’s approach the decay in homogeneous turbulence at times preceding to 
the ultimate phase for the concentration fluctuation of a dilute contaminant undergoing a first-order chemical 
reaction for the case of four-point correlation in presence of dust particle is studied. Two, three and four-point 
correlation equations have been obtained and the correlation equations are converted to spectral form by their 
Fourier-transforms. The terms containing quintuple correlations are neglected in comparison to the third and fourth 
order correlation terms. Finally, integrating the energy spectrum over all wave numbers, the energy decay of 
homogeneous dusty fluid turbulent flow for the concentration fluctuations ahead of the ultimate phase for four-point 
correlation has been obtained and is shown graphically. 
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INTRODUCTION 

 
In recent year, the motion of dusty viscous fluids in 

a rotating system has developed rapidly. The motion of 
dusty fluid occurs in the movement of dust-laden air, in 
problems of fluidization, in the use of dust in a gas 
cooling system and in the sedimentation problem of 
tidal rivers. The behavior of dust particles in a turbulent 
flow depends on the concentrations of the particles and 
the size of the particles with respect to the scale of 
turbulent fluid.  

Deissler (1958, 1960) developed a theory ‘on the 

decay of homogeneous turbulence before the final 

period.’ Using Deissler’s theory, Kumar and Patel 

(1974) studied the first-order reactant in homogeneous 

turbulence before the final period of decay. Kumar and 

Patel (1975) extended their problem for the case of 

multi-point and multi-time concentration correlation. 

Loeffler and Deissler (1961) studied the decay of 

temperature fluctuations in homogeneous turbulence 

before the final period. Batchelor (1953) studied the 

theory of homogeneous turbulence. Chandrasekhar 

(1951) obtained the invariant theory of isotropic 

turbulence in magneto-hydrodynamics. Sarker and 

Kishore (1991) studied the decay of MHD turbulence 

before the final period. Sarker and Islam (2001) 

obtained the decay of MHD turbulence before the final 

period for the case of multi-point and multi-time. Islam 

and Sarker (2001) also obtained the first order reactant 

in MHD turbulence before the final period of decay for 

the case of multi-point and multi-time. Aziz et al. 

(2009) studied the first order reactant in MHD 

turbulence before the final period of decay for the case 

of multi-point and multi-time in a rotating system. Aziz 

et al. (2010) also extended their previous problem in 

presence of dust particle. Corrsin (1951) obtained on 

the spectrum of isotropic temperature fluctuations in 

isotropic turbulence. Azad et al. (2011) studied the 

statistical theory of certain distribution functions in 

MHD turbulent flow for velocity and concentration 

undergoing a first order reaction in a rotating system. It 

is noted that in all above cases, the researcher had 

considered three-point correlations and through their 

study they obtained the energy decay law ahead of the 

ultimate phase. 

By analyzing the above theories we have studied 

the first-order reactant in homogeneous fluid turbulence 

prior to the ultimate phase of decay for four-point 

correlation in presence of dust particle. Through this 

study we would like to find the decay law of first order 

reactant in homogeneous fluid turbulence in presence of 

dust particle. Presently we shall try to show in this 

study the chemical reaction rate R = 0 causes the 

concentration fluctuation of decay in presence of dust 

particle is more rapidly than for the reaction rate 0≠R  

in the absence of dust particle f = 0. The comparison 

between the effects of the chemical reaction in the 

homogeneous fluid turbulence and the dust particles are 

graphically discussed. It is observed that the chemical 

reaction rate increases than the concentration 

fluctuation to decay more decreases and vice versa. 
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MATERIALS AND METHODS 
 

Basic equation: The differential equation governing the 
concentration of a dilute contaminant undergoing a 
first-order chemical reaction in homogeneous dusty 
fluid turbulence could be written as: 
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where,  
ui (� �) = A random function of position and time at a 

point p  
uk (��, t) = The turbulent velocity  
R = The constant reaction rate  
D = The diffusivity  
t = The time  
ƒ = kN/p, dimension of frequency N, Constant 

number density of dust particle 
ms = (4/3)�Rs

3
 ps is the mass of single spherical 

dust particle of radius Rs  
ps = The constant density of the material in dust 

particle 
ui = The turbulent velocity component  
vi = The dust particle velocity component  
xk = The space coordinate and repeated subscript 

in a term indicates a summation of terms, 
with the subscripts successively taking on 
the values 1, 2 and 3. 

  
Two-point correlation and spectral equations: Under 
the restrictions that the turbulence and the concentration 
fields are homogeneous, the local mass transfer has no 
effect on the velocity field; the reaction rate and the 
diffusivity are constant. The differential equation of a 
dilute contaminant undergoing a first-order chemical 
reaction in homogeneous system could be written as: 
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Subtracting the mean of (2) from Eq. (2), we 

obtain:  
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where, X(��, t) is the fluctuation of concentration about 
the mean at a point p(��) and time t. The two-point 
correlation for the fluctuating concentration can be 
written, as: 
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where, X′j is the fluctuating concentration at the  point  
p′ (��) and the point p′ is at point a distance r from the 
point p. The symbol 〈 〉  is the ensemble average.  
Putting the Fourier transforms: 
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into Eq. (4), one obtains: 
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Three-point correlation and spectral equations: 
Taking the Navier-Stokes equations for a first-order 
chemical reaction in homogeneous dusty fluid 
turbulence at p is: 
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and the fluctuation equations at p′&p′′one can find the 
three-point correlation Equation as:  
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Using the transformations: 
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In order to convert Eq. (9) to spectral form, using 

six-dimensional Fourier transforms (Kumar and Patel, 

1974) and:  
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one can write Eq. (9) in the form: 
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 where, ),ˆ,ˆ( tKKi
′µ  = L ),ˆ,ˆ( tKKj

′β   and 1-L = Q ,with L 

and Q arbitrary constants. If the momentum Eq. (3) at p 

is multiplied by X′X′′  and divergence of the time 

averages is taken, the resulting equation will be: 
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In Fourier space it can be written as: 
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Substituting this into Eq. (10), we obtain: 
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Four-point correlation and spectral equations: 

Again by taking the Navier-Stokes equations at p and p′ 
and the concentration equations at p′′p′′′  and following 
the same procedure as before, one can get the four-point 

correlations as: 
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In order to convert Eq. (14) to spectral form, using 

the transformations: 
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and nine-dimensional Fourier transforms (Kumar and 

Patel, 1974) and: 
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where,  
ij (��, � ′
 , �� ′′′, t) = M gij(��, � ′
 , �� ′′′, t)   and  
1-M = S, with M and S are an arbitrary constants. 

Following the same procedure as was used in obtaining 

(12), we get:  
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Equation (15) and (16) are the spectral equations 

corresponding to the four-point correlations. To get a 

better picture of the of the first-order reactant of 

homogeneous dusty fluid turbulence decay system from 

its initial period to its final period, four-point 

correlations are to be considered. The same ideology 

could be applied to the concentration phenomenon. 

Here, we neglect the quintuple correlations since the 

decay faster than the lower-order correlations. As 

pointed out by Deissler (1958, 1960) when the 

quintuple correlations are neglected, the corresponding 

pressure-force terms which are related to them are also 

neglected. Under these assumptions, Eq. (15) and (16) 

give the solution as: 
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Substituting this in to Eq. (13), we obtains: 
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Now, the solution of Eq. (19) is:  
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In analogy with the turbulent energy spectrum 

function, the quantity G, in Eq. (23) can be called 

concentration energy spectrum function and W, the 

energy transfer function, is responsible for the transfer 

of concentration from one wave number to another. In 

order to find solution completely and following 

Deissler (1958, 1960) we assume that: 
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It is very interesting that: 
 

∫
∞

∞−

W dk = 0                                                      (26) 

 
This indicates that the expression for W satisfies 

the condition of continuity and homogeneity. Physically 
it was to be expected, since W is the measure of transfer 
of energy and the total energy transformed to all wave 
numbers is to be zero, which is what Eq. (26) gives. 
The linear Eq. (23) can be solved to give:  
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where, J (k) 
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can be obtained as (Corrsin, 1951). 
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In a turbulent phenomenon, such as turbulent 

kinetic energy, we associate the so-called concentration 

energy with the fluctuating concentration, defined by 

the relation: 

 

∫
∞

∞−

=′ dktkGXX ),(
2

1                               (29) 

  

The substitution of Eq. (28) and subsequent 

integration with respect to k leads to the result: 
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This is the decay law of first order reactant in 

homogeneous turbulence in presence of dust particle, 

where, 

 

2

1

2

7

2

3

0

2 πD

N
A =

,
6

10

D

R
B

ξ
= , ,cdC = ,1 ceD =  

 

)( 1111 vwtpspqnklkgjghfcE ′−++−−+′=  

 

),( 11 thmkgifcF ′−−′= 1prfcG ′=  

 

)1(2

15
2/72/158

1

ss NND
c

+
=

πξ

 

 

++
+−

+=
ss

ss

N

f

N

NN
d

2

2

2

8

63

64

)82411(35

32

105

 
 

2

1

2

7

33

3

3

)1(

5910.41

256

1808

64

693

s

S

s

N

Nff

N

f

+

+−

 
 

2

1

2

1

222

1

3

)1(

),2(
2

π

εε

s

s

N

NID
fe

+

−
=   

 

)1(

12311.37

2

9

8

2

1

1

s

s

ND

N
f

+

=′

ε

πξ , g = 

sN2

105

 

 

h = 

2

15

2

9

1

3

1
2

1
)1(

1052052.290.756

3

1

sN+

×
−−−−

− ε
εε

 
 

 )],)21[(
)1(

118.1 2
2

1

2

9

11 εεε s
s NI

D

N
i +×

+
=

 
 

2

1

1

1

12

3

1

1 561804.3100767.4101808.3(
163 −−−− +×−×= εε
ε

j   

 

 
5

1

24

1

23

1 104148.5101786.1102386.2
−−− ×−×+×− εεε    

 

...)101561.3

7048.81002576.2

8

1

4

7

1

6

1

3

−×+

×−×+
−

−−

ε

εε
 

 

1

2

1

)126(135

εs
ss

N

NN
k

−−
= , 

1

1
6

55

2

1

ε
−−=l

 

 

2

15

15

2

11

1

3

)1(2

163103510.2

sN+

××
−

− ε  

 

m = 2

11

14469.7 ε  
 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(2): 585-595, 2013 

 

592 

)],)21[(
)1( 22

2

1

εεs
s NI

D

N
+

+
×

−

 
 

 n = 1

1

2

2

1

103230.50261.2(
163 −−×+ ε
ε

 

 
3

1

12

1

1 105063.3103782.1
−−− ×+×+ εε  

 

 
5

1

14

1

1
57710.2107676.8

−−−− +×+ εε  
 

...)109690.22538.12347.5
8

1

7

1

6

1 +×+++ −−− εεε  

 

p = 2

1

2
)102011(396

−−− εsss NNN  

 

q = 2

15

2

13

1

4 )1(100532.31
−

− +×−− sNε  

 

D

N
ttr s

2

1

2

1

1
2

13

11

)1(
)(0638.1

−
+

−= ε
 

 

],)21[(
22 εεsNI +×

 
 

S = ( 2504.813
1

1

−ε  
 

2111 100509.8106243.2 −−−− ×+×+ εε   

 
5

1

4

1

3

1 108789.17856.63780.2
−−− ×++×+ εεε  

 
7

1

26

1

1
103370.1100688.5

−− ×+×+ εε  
 

...)104583.3
8

1

2 +×+ −ε  

 

2

1

2

11

1

2
)1(4219.1 ss NNt +−=′ ε  

 

u = ({ 3101886.3 −×− 2

1

0

2 )(104443.1 tt −×+
 

 

)}],)21[()1( 222

1

2

1

εεss NIND ++×
−

 
 

v = 2

15

1
2

1

2 )21(108102.1
−+× εSN  

 

w =
1

1

1
60195.1102653.2(

−− +× ε  
 

3

1

21 103941.4106664.8
−−− ×+×− εε   

 
5

1

24

1

2
107405.8101293.1

−− ×+×− εε  
 

7

1

46

1

3
103013.1106001.2

−− ×+×− εε  
 

...)108822.3
8

1

4 +×− −ε   

 






+

−
+

++
=

)21(16

)67(5

16

9

)21)(1(2 2/51

s

ss

sS
N

NN

NN
R

π

 

 

2/112/21

2/5

11

)1(2

)21(

)21(32

105

s

ss

s

s

N

NNf

N

Nf

+

+
+

+
−

 
 

∑
∞

= ++

+
×

0
2

]
)1(2)12(!

)92...(5.3.1

n
n

s

n

s NNn

n
)21(21 sN+=ε
 

 

)/(2 DQfR = )/(3 DSfR =   

 

f = constant number density dust particle and 

 

∫
∞ −

=−
0

2214

2

22

)]()exp([

)exp(
],[

dkE
I

i βεβεε

αε
βεαε  

 

RESULTS AND DISCUSSION 

 

The first term of Eq. (30) corresponds to the 

concentration energy for two-point concentration; the 

second term represents first order reactant in 

homogeneous fluid turbulence in presence of dust 

particle for three-point correlation. The expression 

)](exp[ 02 ttR −
 
represents the dusty fluid turbulence for 

three-point correlation; the expression )](exp[ 03 ttR −  

and the remainder are due to fluid turbulence in 

presence of dust particle for four-point correlation. In 

Eq. (30) we obtained the decay law of first order 

reactant in homogeneous dusty fluid turbulence for 

four-point correlation after neglecting quintuple 

correlation terms. The equation contains the terms 
2/3

0 )( −− tt , 5

0 )(
−− tt , 2/15

0 )( −− tt . Thus, the terms 

associated with the higher-order correlation die out 

faster than those associated with the lower-order ones. 

Therefore, the assumption that the higher-order 

correlations can be neglected in comparison with lower-

order correlations seems to be valid in our case. If the 

fluid is clean )0.,.( =fei the Eq. (30) becomes:                            
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Fig. 1: Comparison between Eq. (30) and (31) if R = 0.25 

 

 
Fig. 2: Comparison between Eq. (30) and (31) if R = 0.5 
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Fig. 3: Comparison between Eq. (30) and (31) if R = 0 
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this is obtained by Kumar and Patel (1974). Here A, B, 

C, D1, E, F, G are constants which can be determined. 

With R = 0 and the contaminant replaced by the 

temperature, the results show complete argument with 

the result obtained by Loeffler and Deissler (1961) for 

the decay of temperature fluctuation in homogeneous 

turbulence before the final period up to three-point 

correlations. For large times, the last terms become 

negligible and give the-3/2 power decay law for the 

final period. In figures, Eq. (30) represented by the 

curves y1, y2, y3 and (31) by y4, y5 and y6, 

respectively. For 25.02 =R  and 25.03 =R , the 

comparison between the Eq. (30) and (31) are shown in  

Fig. 1, 2 and 3 corresponding to the values R = 0.025, 

0.5 and 0, respectively, the energy decays rapidly in 

presence of dust particle of homogeneous fluid 

turbulence than clean fluid which indicates in the 

figures clearly. 

 
CONCLUSION 

 

From the figures and discussions, this study shows 

that the terms associated with the higher-order 

correlations die out faster than those associated with the 

lower-order ones and if the chemical reaction rate 

increases than the concentration fluctuation to decay 

more decreases and vice versa. At the chemical reaction 

rate R = 0 of homogeneous fluid turbulence in presence 

of dust particle causes the concentration fluctuation of 

decay more rapidly than they would for the chemical 

reaction rate 0≠R  and f = 0. Also we conclude that 

due to the effect of homogeneous turbulence in the flow 

field of the first order chemical reaction for four-point 

correlation in presence of dust particle prior to the 

ultimate phase of decay, the turbulent energy decays 

more rapidly than the energy decay for the first order 

reactant in homogeneous turbulence before the final 

period. 
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