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Abstract: In real-world problems, the data sets are typically imbalanced. Imbalance has a serious impact on the 
performance of classifiers. SMOTE is a typical over-sampling technique which can effectively balance the 
imbalanced data. However, it brings noise and other problems affecting the classification accuracy. To solve this 
problem, this study introduces the classification performance of support vector machine and presents an approach 
based on active learning SMOTE to classify the imbalanced data. Experimental results show that the proposed 
method has higher Area under the ROC Curve, F-measure and G-mean values than many existing class imbalance 
learning methods. 
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INTRODUCTION 

 
For classification problem, the training data will 

significantly influence the classification accuracy (Yen 
and Lee, 2009). However, the data in real-world 
applications often are imbalanced class distribution, 
that is, most of the data are in majority class and little 
data are in minority class. The level of imbalance, 
namely the ratio of size of the majority class to minority 
class, can be as huge as 106 (Wu et al., 2008). In this 
case, if all the data are used to be the training data, the 
classifier tends to predict that most of the incoming data 
belongs to the majority class. Hence, it is important to 
select the suitable training data for classification in the 
imbalanced class distribution problem. 

Imbalanced data sets are very common in real-world, 
such as medical diagnosis, oil blowout detection, 
financial fraud detection, network intrusion detection, 
spam detection, text classification, etc. They have a 
common characteristic that the minority class 
information is a focus. Traditional machine learning 
methods are mostly based on balanced data sets and 
lead to a high overall accuracy. Unfortunately, such a 
strategy is not useful for identifying the class of 
interest. These classifiers generally perform poorly for 
class imbalance problem and often achieve low 
accuracy on the minority class. Further, the cost of 
misclassifying the minority class is usually much higher 
than the cost of other misclassifications. It may be 
much more costly, for example, to fail to identify a case 
of financial fraud which leads to lose a significant 
amount of money than to misclassify an innocent case 
as fraud. 

Currently, solutions to the imbalanced data 
classification problem generally fall into 1 of 2 

categories (He and Garcia, 2009). First, re-sampling is a 
common method, including random re-sample, over-
sampling and under-sampling. Second, algorithmic 
solutions have been proposed, including integrated 
approach, cost-sensitive learning, feature selection and 
single-class learning and so on. Each of these categories 
of solutions has advantages and disadvantages. For 
example, re-sampling techniques have the advantage 
that they can be used with any base learner, such as 
support vector machine, C4.5, Naïve bayes classifier 
etc., to address the class imbalance problem. Under-
sampling techniques result in a smaller training dataset 
and allow classifier construction to proceed more 
rapidly. SMOTE (Chawla et al., 2002) is an intelligent 
over-sampling method. Due to synthetic samples, 
SMOTE method avoids over-fitting largely and 
achieves a good performance in the imbalanced data 
classification problem. However, SMOTE brings new 
noise and other problems. Cost-sensitive learning deals 
with class imbalance by incurring different costs for the 
2 classes and is considered as an important class of 
methods to handle class imbalance. The difficulty with 
cost-sensitive classification is that costs of 
misclassification are often unknown. 

Active learning is a kind of learning strategies 
which actively selects the best samples to learn. It can 
select more valuable samples and abandon the samples 
which have less information, so as to improve the 
classification performance. However, it causes 
classifier skewing for class imbalance distribution when 
only used active learning.  

Although the existing imbalance-learning methods 
applied for normal SVMs can solve the problem of 
class imbalance, they can still suffer from the problem 
of outliers and noise. This study introduces the 
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classification performance of support vector machine 
and presents an approach based on active learning 
SMOTE to classify the imbalanced data.  

 
LITERATURE REVIEW 

 
Since many real applications have the imbalanced 

class distribution problem, class imbalance learning has 
recently received considerable attention in machine 
learning as current algorithms do not provide 
satisfactory classification performance. Standard 
algorithms are overwhelmed by majority examples 
while minority examples contribute very little. A 
number of improved algorithms have been proposed in 
the literature, where considerations have been made at 
the data level and algorithm level. 
 
Sampling technology: At the data level, proposed 
methods mainly include re-sampling. Sampling is 1 of 
techniques for adjusting the size of a training dataset 
(Diamantini and Potena, 2009). In general, it can be 
distinguished  into  over-sampling  approach  (Chawla 
et al., 2002; Japkowicz, 2001) and under-sampling 
approach (Chyi, 2003; Zhang and Mani, 2003). The 
over-sampling approach increases the number of 
minority class samples to reduce the degree of 
imbalanced distribution. In addition, it is efficient in 
term of time complexity when handling a large volume 
of data. Under-sampling uses only a part of major 
category data, so the sample may not represent the 
characteristics of the whole major category. 

SMOTE (Chawla et al., 2002) added new synthetic 
minority class examples by randomly interpolating 
pairs of closest neighbors in the minority class. SMOTE 
boost algorithm (Chawla et al., 2003) combines 
SMOTE technique and the standard boosting 
procedure. It utilizes SMOTE for improving the 
accuracy over the minority classes and utilizes boosting 
to not sacrifice accuracy over the entire data set. Instead 
of changing the distribution of training data by updating 
the weights associated with each example, SMOTE 
boost alters the distribution by adding new minority-
class examples using the SMOTE algorithm. 

Jo and Japkowicz (2004) present a cluster-based 
over-sampling technique. The technique first clusters 
the minority samples and the majority samples 
independently and performs random over-sampling 
with replacement separately for each cluster. After 
clustering, each of the clusters of majority class 
samples, except for the largest 1, are randomly over-
sampled until they have the same number of samples as 
the largest majority class cluster. The samples in each 
minority class cluster are then over-sampled with 

replacement until each minority class cluster has 
corresponding samples. 

Stefanowski and Wilk (2007) propose an effective 
approach for selectively filtering the majority class 
while strengthening relevant minority class examples. 

Yen and Lee (2009) propose a cluster-based under-
sampling approach for selecting the representative data 
as training data to improve the classification accuracy 
for minority class and investigate the effect of under-
sampling methods in the imbalanced class distribution 
environment. The experimental results show that our 
cluster-based under-sampling approaches outperform 
the other under-sampling techniques in the previous 
studies. 
 
Modified algorithmic solutions: At the algorithmic 
level, developed methods mainly include cost-sensitive 
learning (Drummond and Holte, 2003; Elkan, 2001) 
and modified algorithms. Cost-sensitive learning 
approach assumes the misclassification costs are known 
in a classification problem. A cost-sensitive classifier 
tries to learn more characteristics of samples with the 
minority class by setting a high cost to the 
misclassification of a minority class sample. However, 
misclassification costs are often unknown and a cost-
sensitive classifier may result in over fitting training. 
Reported works in cost-sensitive learning fall into 3 
main categories: weighting the data space, making a 
specific classifier learning algorithm cost sensitive and 
using Bayes risk theory to assign each sample to its 
lowest risk class. 

Sun et al. (2007) investigate cost-sensitive boosting 
algorithms for advancing the classification of 
imbalanced data and propose 3 cost-sensitive boosting 
algorithms by introducing cost items into the learning 
framework of Ada boost.  

In term of modified algorithms, several specific 
attempts using SVMs have been made at improving 
their class prediction accuracy in the case of class 
imbalances (Wang and Japkowicz, 2010; Akbani et al., 
2004). The results obtained with such methods show 
that SVMs have the particular advantage of being able 
to solve the problem of skewed vector spaces, without 
introducing noise.  

In addition, Wang and Japkowicz (2010) combine 
modifying the data distribution approach and modifying 
the classifier approach in class imbalance problem and 
use support vector machines with soft margins as the 
base classifier to solve the skewed vector spaces 
problem. 

 
THE PROPOSED ALGORITHM BASED ON 

ACTIVE LEARNING AND SMOTE 
 

SMOTE (Synthetic Minority Oversampling 
Technique, SMOTE) algorithm is a kind of typical 
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over-sampling method proposed by Chawla et al. 
(2002). SMOTE add some new and artificial minority 
samples by extrapolating between pre-existing minority 
instances rather than simply sampling with 
replacement. The newly created samples cause the 
minority regions of the feature-space to be more 
substantial and more general. SMOTE first finds the k 
nearest neighbors of the minority class for each 
minority sample. The artificial samples are then 
generated in the direction of some or all of the nearest 
neighbors, depending on the amount of over-sampling 
desired. SMOTE technique causes a classifier to learn a 
larger and more general decision region in the feature-
space. 

In this study, the SMOTE method is adapted for 
advancing the classification of imbalanced data. The 
proposed method is developed by introducing Support 
Vector Machine (SVM) into the learning framework of 
SMOTE for class-imbalance learning. The proposed 
algorithm first uses the most efficient equalization to 
the imbalanced data sets and then uses the SVM 
algorithm to process the imbalanced data classification. 
Based on description above, the proposed algorithm is 
described as follows: 
 
Step 1: Suppose the training set is A, the total of 

samples is n. Divide A into e portions randomly, 
labeled as Bi (i = 1, 2,…, e) 

Step 2: Extract the minority class sample set C from the 
first training set B1 and the minority class 
number is m1 

Step 3: Use SMOTE method to oversample according 
to the proportion of majority class samples to 
minority class samples (n/e - m) /m and obtain 
synthetic sample set D 

Step 4: Merge the synthetic samples D to B1, get a new 
training set F 

Step 5: Take SVM classification on F and get the first 
separate hyperplane l1 

Step 6: Repeat for the rest e-1 datasets 
Step 6.1: According to the distance formula 

d=|w*x+b|, find the nearest sample set E to 
hyperplane in training set Bi (i = 1, 2,…, e) 

Step 6.2: Extract the number of minority class samples 
mi and minority class sample set P from the 
training set Bi 

Step 6.3: Extract mi samples from the former majority 
class samples in E and get majority class 
sample set G 

Step 6.4:  Merge P and G to the training set F of step 5 
Step 6.5: Classify data set F using SVM and get the ith 

separate hyperplane 
Until i = e 

Table 1: Data sets 
Data set Total samples Nma Nmi Target Ratio 
Cmc 1473 1140 333 class 2 3.4 
Haberman 306 225 81 class 2 2.8 
Abalone 4177 3786 391 class 7 9.7 
Housing 506 400 106 [20,23] 3.8 
Pima 768 500 268 class 1 1.9 
Satimage 6435 5809 626 class 4 9.3 
 
Table 2: Confusion matrix 

 Predicted positive class 
Predict 
negative class 

Actual positive class TP (True Positives) FN (False 
Negatives) 

Actual negative class FP (False Positives) TN (True 
Negatives) 

 
EXPERIMENTAL EVALUATION METRICS 

 
In this section, we list data sets in our experiments, 

and present some performance evaluation metrics: 
 

Data sets: We experimented on six different datasets 
from UCI machine learning repository 
(http://archive.ics.uci.edu/ml/). These datasets are 
summarized in Table 1. These datasets vary extensively 
in their sizes and class proportions. Nma and Nmi 
represent the sample number of majority class and the 
sample number of minority class, respectively. The 
class proportion is the ratios of Nma to Nmi as shown in 
Table 1. In this experiment, we take the minority class 
as the target class, all the other categories as majority 
class. 
  
Performance evaluation metrics: Evaluation metrics 
play a crucial role in both assessing the classification 
performance and guiding the classifier modeling. The 
traditional evaluation standard uses accuracy for these 
purposes. However, for classification with the class 
imbalance problem, accuracy is no longer a proper 
measure since the minority class has very little impact 
on  accuracy  as compared to the majority class (Joshi 
et al., 2001). For example, in a problem where a 
minority class is represented by only 1% of the training 
data, a simple strategy can be to predict the majority 
class label for every example. It can achieve a high 
accuracy of 99%. However, this measurement is 
meaningless to some applications where the learning 
concern is the identification of the rare cases. 

Therefore, some evaluation standards are put 
forward to the classification with the class imbalance 
problem, including ROC (Receiver Operating 
Characteristic Curve), F-measure and G-mean 
(Fawcett, 2003). Here for a binary classification 
problem, we usually take minority class as positive 
class for high identification importance and take the 
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other as the negative class. Samples can be categorized 
into 4 groups after a classification process as denoted in 
the confusion matrix presented in Table 2. 

Several measures can be derived using the 
confusion matrix: 
 

True Positive Rate: TPR  = 
ା

 

False Positive Rate: FPR  = 
ା 

 

True Negative Rate: TNR  = 
ା 

 

False Negative Rate: FNR  = 
ା

 
 
for different evaluation criteria, several measures are 
devised, including recall, precision, F-meansure, G-
mean and ROC. 
  
Recall: In information retrieval, True Positive Rate is 
defined as recall denoting the percentage of retrieved 
objects that are relevant: 
  

TPR
FNTP

TPRecall =
+

=
                                               (1) 

 
Precision: Precision is defined as the percentage of 
relevant objects that are identified for retrieval: 
 

FPTP
TPPrecision
+

=                              (2) 

 
F-meansure: F-measure is suggested in Lewis and 
Gale (1998) to integrate these 2 measures as an 
average: 
 

RecallPrecisionRecallPrecision
RecallPrecisionmeasureF

/1/1
22
+

=
+
××

=−     (3) 

 
A high F-measure value ensures that both recall 

and precision are reasonably high from Eq. (3). 
 
G-mean: When the performance of both classes is 
concerned, both True Positive Rate (TPR) and True 
Negative Rate (TNR) are expected to be high 
simultaneously. G-mean is defined as: 
 

TNRTPRmeanG ×=−                             (4) 
 

G-mean measures the balanced performance of a 
learning algorithm between these two classes. 
 
ROC curve and AUC: (Fawcett, 2003). Some 
classifiers, such as Bayesian network inference or some 
neural networks, assign a probabilistic score to its 
prediction. Class prediction can be changed by varying 

the score threshold. Each threshold value generates a 
pair of measurements of (FPR, TPR). By linking these 
measurements with the False Positive Rate (FPR) on 
the X-axis and the True Positive Rate (TPR) on the Y-
axis, a ROC graph is plotted. ROC curves can be 
thought of as representing the family of best decision 
boundaries for relative costs of TP and FP. The ideal 
point on the ROC curve would be (0, 1), that is all 
positive examples are classified correctly and no 
negative examples are misclassified as positive. 

A ROC graph depicts relative trade-offs between 
benefits (true positives) and costs (false positives) 
across a range of thresholds of a classification model. A 
ROC curve gives a good summary of the performance 
of a classification model. To compare several 
classification models by comparing ROC curves, it is 
hard to claim a winner unless 1 curve clearly dominates 
the others over the entire space. The Area Under a ROC 
Curve (AUC) provides a single measure of a classifier’s 
performance for evaluating which model is better on 
average. It integrates performance of the classification 
method over all possible values of FPR and is proved to 
be a reliable performance measure for imbalanced and 
cost-sensitive problems (Lewis and Gale, 1998). 

 
EXPERIMENTAL RESULTS AND ANALYSIS 

 
In order to verify the effectiveness of our proposed 

method, we compared it to random under-sampling, 
Adaboost algorithm, SMOTE algorithm and Active 
Learning SVM algorithm (ALSVM). Based on 
MATLAB 7.0, we tested these methods on 6 UCI 
datasets. Information about these datasets is 
summarized in Table 1. 

For every dataset, we perform a tenfold stratified 
cross validation. Within each fold, the classification 
method is repeated 10 times considering that the 
sampling of subsets introduces randomness. The AUC, 
F-measure and G-mean of this cross-validation process 
are averaged from these 10 runs. The whole cross-
validation process is repeated for 5 times and the final 
values from this method are the averages of these five 
cross-validation runs. 

First, we developed these classifiers on the 
imbalanced datasets and evaluated their performance by 
using F-measure values. The average F-measure values 
of the compared methods are summarized in Table 3. 
From these results, we can clearly observe that for all 
the datasets, the proposed algorithm yielded the highest 
results on F-measure values.  

Generally, under and Adaboost methods are not 
performing well with F-measure. Their corresponding 
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Table 3: F-measure values of the compared methods 
F-measure Cmc Haberman Abalone Housing Pima Satimage Avg.
Under 0.4307 0.4397 0.3473 0.5240 0.5902 0.5477 0.480
Adaboost 0.3808 0.3806 0.2363 0.4695 0.5873 0.6276 0.447
SMOTE 0.4568 0.4509 0.3780 0.5306 0.6032 0.6159 0.506
ALSVM 0.5190 0.5697 0.5847 0.5455 0.5971 0.5468 0.560
Proposed algorithm 0.5490 0.6229 0.5946 0.5500 0.6173 0.6415 0.596
 
Table 4: G-mean values of the compared methods 
G-mean Cmc Haberman Abalone Housing Pima Satimage Avg.
Under 0.6240 0.5337 0.7689 0.7024 0.6534 0.8307 0.686
Adaboost 0.5469 0.5184 0.3952 0.6156 0.6458 0.7524 0.579
SMOTE 0.6540 0.5687 0.7493 0.7104 0.6645 0.8475 0.699
ALSVM 0.6991 0.6897 0.8160 0.6908 0.6042 0.5531 0.675
Proposed algorithm 0.7295 0.7566 0.8854 0.7416 0.6353 0.7741 0.754
 
Table 5: AUC values of the compared methods 
AUC Cmc Haberman Abalone Housing Pima Satimage Avg.
Under 0.6770 0.6312 0.8330 0.8057 0.7299 0.9322 0.768
Adaboost 0.4961 0.5952 0.8187 0.8046 0.7450 0.9537 0.736
SMOTE 0.6807 0.6352 0.8371 0.8154 0.7554 0.9436 0.778
ALSVM 0.7546 0.6486 0.9642 0.8341 0.5574 0.9177 0.780
Proposed algorithm 0.9016 0.7371 0.9785 0.8682 0.7222 0.9386 0.858
 
average F-measures on six datasets are 0.480 and 
0.447, respectively. They are lower than those of 
SMOTE, ALSVM and our proposed algorithm.  

Next, we evaluated their performance by using G-
mean values. The average G-mean values of the 
compared methods are summarized in Table 4. From 
these results, SMOTE and our proposed method 
obtained better performance. For Pima and sati mage 
datasets, SMOTE method yielded the highest results, 
while for other datasets, cmc, haberman, abalone and 
housing, our proposed algorithm yielded the highest 
results.  

Shown as Table 4, Adaboost method is not 
performing well with G-mean. Its average G-mean is 
lower than the other compared methods. ALSVM is 
comparable to or slightly lower than those of under and 
SMOTE and they are lower than that of our proposed 
method. 

Then, we evaluated their performance by using 
AUC values. The average AUC values of the compared 
methods are summarized in Table 5. The results show 
Adaboost method has the highest AUC on sati mage 
among these compared methods, while SMOTE method 
has the highest AUC on Pima. Except 2 datasets above, 
our proposed method has higher AUC on the other 
datasets, including cmc, haberman, abalone and 
housing.  

Similarly, Adaboost method is not performing well 
with AUC from the results shown as Table 5. Its 
average AUC is only 0.736 and is slightly lower than 
those of Under, SMOTE and ALSVM. Our proposed 
method attains the highest average AUC among these 
compared methods. 

CONCLUSION 
 

Classification is an important task of Knowledge 
Discovery in Databases (KDD) and data mining. 
However, reports from both academia and industry 
indicate that imbalanced class distribution of a data set 
has posed a serious difficulty to most classifier learning 
algorithms, which assume a relatively balanced 
distribution. In this study, the SMOTE method is 
adapted for advancing the classification of imbalanced 
data. Our proposed method is developed by introducing 
SVM into the learning framework of SMOTE for class-
imbalance learning. The proposed method uses active 
learning SMOTE to classify the imbalanced data. 
Experiment results show that the proposed method has 
higher F-measure, G-mean and AUC than almost all 
other compared methods, including Under, Adaboost, 
SMOTE and ALSVM. 
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