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Abstract: Reliable and swift spectrum sensing is a crucial technical challenge of cognitive radio. This study 
proposes a Sequential Energy Detection (SED) scheme to reduce the average required sample number and sensing 
time for spectrum sensing in low signal-to-noise ratio regime. In the scheme, the data samples are first grouped into 
data blocks and the Sequential Probability Ratio Test (SPRT) use the energies of the data blocks as the statistic 
variables. The resulting detection rule exhibits simplicity in implementation and in analysis and retains the high 
sample-efficiency of sequential probability ratio test. The detection performance in terms of Average Sample 
Number (ASN) is evaluated theoretically. Simulation results are provided to verify the theoretical analysis. 
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INTRODUCTION 

 
Cognitive Radio (CR), which enables secondary 

users to opportunistic access to the unoccupied licensed 
spectrum bands, has recently emerged as a promising 
technology to improve the spectrum utilization 
efficiency and mitigate the spectrum scarcity problem 
(Haykin, 2005; Quan et al., 2008). Spectrum sensing, as 
an essential functionality in CR communications, is 
used to exploit spectrum access opportunities for the 
secondary users and avoid harmful interference to the 
potential primary users. Several signal detection 
techniques,  such  as Energy Detection (ED) (Atapattu 
et al., 2011; Nguyen-Thanh and Insoo, 2011), matched 
filter detection (Sahai and Cabric, 2005), 
cyclostationary feature detection (Han et al., 2006), can 
be used in spectrum sensing. Matched filter is known as 
the optimal detector when the transmitted signal is 
known, however its implementation complexity is 
impractically large since it requires perfect knowledge 
of the primary users. Cyclostationary feature detection 
is more robust than energy detector, but it is 
computationally complex and it still needs some prior 
knowledge of the primary user, such as modulation 
types and symbol rates. Since CR users usually have 
limited knowledge about the primary signals, the no 
coherent ED becomes the most frequently employed 
technique for spectrum sensing. However, ED requires 
a large number of the received signal samples to 
achieve a desired level of accuracy in the low SNR 
regime (Liang et al., 2008), which decreases the 
throughput of cognitive radio system. Furthermore, ED 

suffer from the SNR wall due to the uncertainty of the 
noise, which means the secondary user cannot detect 
the presence of primary user when it received power is 
lower than some threshold even if the detection time is 
infinite (Tandra and Sahai, 2008). 

Sequential Probability Ratio Test (SPRT) requires 
the smallest Average Sample Number (ASN) to meet 
specified probabilities of false-alarm and miss-detection 
(Wald, 1945) and has drawn continued interest for 
decades. Motivated by this remarkable advantage, an 
autocorrelation based SPRT has been used in spectrum 
sensing to reduce the average required sample size 
(Chaudhari et al., 2009), however it is only suitable for 
the Orthogonal Frequency Division Multiplexing 
(OFDM) based primary signals. In Zou et al. (2009), 
another SPRT based cooperative spectrum sensing 
scheme was presented and evaluated using Gaussian 
distributed primary signal. In Xin et al. (2009), a sub-
optimal sequential detection scheme for spectrum 
sensing, namely Sequential Shifted Chi-Square Test 
(SSCT), was proved to be applicable to most of the 
primary signals. Nonetheless, when the primary signals 
are taken from a finite alphabet, for example the widely 
used Phase-Shift-Keying (PSK) signals and M-Ary 
Quadrature Amplitude Modulation (MQAM) signals, 
evaluating the probability ratio requires the 
deterministic statistical distribution of the primary 
signals. Acquiring such statistical distribution is 
practically difficult in general. For this reason, the 
existing SPRT based spectrum sensing schemes cannot 
be used in such primary signal types. 
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To overcome this drawback, this study proposes a 
Sequential Energy Detection (SED) scheme. In the 
scheme, the data samples are first grouped into data 
blocks and the Sequential Probability Ratio Test 
(SPRT) use the energies of the data blocks as the test 
statistic variables in order to avoid the deterministic 
knowledge of the primary signals. The major 
advantages of the proposed scheme are as follows. 
Firstly, the test statistics can be approximated as 
Gaussian random variables by central limit theorem 
without consideration of the statistical distribution of 
primary signals, therefore the scheme is easy to 
implement. Secondly, the detection performance of 
SED described in terms of Average Sample Number 
(ASN) function is easily evaluated by theoretical 
analysis. Lastly, the SED can achieve higher sample-
efficiency than SSCT, which can be explained by the 
conclusion that the sequential probability ratio test 
(SPRT) is optimum in the sense that the ASN function 
is less than or equal to the ASN function for any other 
sequential test. 

 
SYSTEM MODEL FOR SPECTRUM SENSING 

 
System Model: In local spectrum sensing problem, 
each secondary user conducts spectrum sensing 
independently to make a decision on the presence of 
primary user based on its own observations. Local 
spectrum sensing can be formulated as a binary 
hypothesis test problem as follows: 
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where, H0 and H1 are respectively correspondent to 
hypotheses of absence and presence of primary signals, 
x(k) represents the signal received by secondary user, 
s(k) denotes the primary user’s transmitted signal, n(k) 
is the additive white Gaussian noise (AWGN) and h(k) 
is the amplitude gain of the channel between primary 
user and secondary user. 
 
Energy Detection (ED) for spectrum sensing:  In ED 
based spectrum sensing, the average energy of the 
received signal samples is first measured and then 
compared against a predetermined threshold λ to make 
a decision about the presence of a primary signal. The 
decision rule of ED can be described as: 
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where, Y denotes the test statistic of the energy 
detection and N denotes a fixed length of the 
observation samples. Given a SNR γ and a pair of target 

probabilities of false-alarm and miss-detection denoted 
by α andβ, respectively, the required sample number is 
given by Liang et al. (2008):  
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where, Q( .) is the complementary distribution function 
of the standard Gaussian. 
 
Sequential probability ratio test for spectrum 
sensing: To reduce the number of required samples, 
SPRT conducts the Log-Likelihood ratio test for each 
received sample in a sequential manner instead of using 
a fixed sample size. That is, for K=1, 2,…, the test rules 
can be described as: 
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where, l (XK) is the Log-Likelihood ratio (LLR) of the 
received sequence XK = {x(0),x(1),…,x(K)}. Assuming 
the received signals are independent of each other, the l 
(XK) can be computed as: 
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This SPRT based spectrum sensing scheme cannot 

be used in the MPSK and MQAM modulated signals, 
because for each received signal sample it is hard to 
determine which one is its exact statistical distribution 
in the M possible distributions.  

 
SEQUENTIAL ENERGY DETECTION (SED) 

SCHEME FOR SPECTRUM SENSING 
 

In this section, we present a SED based spectrum 
sensing scheme to avoid the deterministic knowledge of 
the primary signals for SPRT. The detection procedure 
of SED can be described as follows: At each stage of 
SED, take a package of the previous L samples, 
calculate a test statistic from these L observations and 
perform a 2 -threshold test based on the aggregation of 
all the test statistics. Stop sampling if one of the 
thresholds is crossed and make a decision between H0 
and H1. Otherwise, receive the next L samples, 
calculate the additional test statistic and repeat the 
previous procedure.  

We first group the received sequence {x(k)} into 
data blocks of same size L, then use the average 
energies of the data blocks as the test statistics for SED, 
which are expressed as: 
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We focus on the complex-valued phase-shift-
keying (PSK) modulated primary signal and the 
circularly symmetric complex Gaussian noise with 
mean zero and variance 2

nσ . By central limit theorem, 
for a large number of samples N (N ≥ 20 is often 
sufficient in practice), the test statistic can be 
approximated by Gaussian distribution given by: 
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where, Nr( .) denotes real Gaussian distribution and γ  is 
the received SNR of the primary signal. According to 
the distributions of Yi, the LLR of Yi is obtained as: 
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We denote the collected K test statistics by a vector 

YK=[Y0,Y1,…YK-1]. Assuming Y0,Y1,… and YK-1 are 
independent of each other, the LLR of YK is obtained 
as: 
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Now for K=1, 2,…, the decision rules can be given 

by: 
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where, λ0 and λ1 are the 2  predetermined thresholds. 
Let α and β, respectively denote the target false-alarm 
probability and the target miss-detection probability. 
Ignoring the LLR threshold overshoots, which is a 
reasonable assumption if the number of the required test 
statistics is large, the thresholds satisfy: 
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AVERAGE SAMPLE NUMBER (ASN) FOR SED 

 
Performance of sequential detection can be 

expressed in terms of the Average Sample Number 
(ASN). The ASN is defined as the number of samples 

required on average to reach a decision at a certain level 
of accuracy (Wald and Wolfowitz, 1948). Assuming the  
average test statistic numbers (ATSN) for SED under 
the hypotheses H0 and H1 are, respectively denoted by 
E[K|H0] and E[K|H1] and using Wald’s equation, we 
obtain: 
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where, E[l(Yi) |H0] and E[l(Yi) |H1] denote the 
expectations of the LLR of Yi under hypotheses H0 and 
H1, respectively. In order to obtain them, we first take 
the expectations of (Yi - / 2)2 under the 2  hypotheses 
as follows: 
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By taking the expectations of both sides of (10) 

under hypotheses H0 and H1 respectively and using the 
results of (14) and (15), we obtain: 
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and 
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Then, substituting (16) into (12) and (17) into (13), 

respectively we obtain: 
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and 
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Assuming the priori probabilities of H0 and H1 

satisfy P(H0) = P(H1) = 0.5, the total ATSN can be 
written as: 
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According to (6), each test statistic is calculated 

from L samples therefore, the ASN is L times the length 
of ATSN, which is given by:  
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where, the last step uses the approximation L+4≈L when 
L is relatively large. It can be seen from (21) that, for 
given α, β and γ, the required ASN for SED is a 
constant that is not related to the group size L. Before 
the test procedure can be executed, we must select the 
group size L. In summary, L should satisfy the following 
2  constraints: 
 
• L should be relatively large in order to well 

approximate the test statistic Yi as a Gaussian 
random variable  

• L must be considerably smaller than the sample size 
N for ED in order to ensure that the ATSN is 
relatively large and the LLR threshold overshoots 
can be ignored, which in turn ensure the accuracy of 
the theoretical model 

 
According to these constraints, generally speaking, 

it is appropriate to select L from the region [N/100, 
N/20] in the low SNR regime. It can be seen from (21) 
that, if L satisfy the abovementioned constraints, for 
given α, β and γ, the required ASN for SED is a 
constant that is not related to the group size L. In other 
words, to reach a given detection performance at a 
certain SNR level, a large group size L will result in a 
small ATSN and vice versa, but the product of L and 
ATSN does not change. Figure 1 shows a theoretical 
comparison of the required sample numbers for SED, 
SSCT and ED. It is shown that the sample numbers 
required by SED are consistently and significantly lower 
than those required by SSCT and ED under both the 
same constraints of performance parameters: α =β = 0.1. 

 
SIMULATION RESULTS 

 
In this section, we evaluate the ASN of SED by 

computer   simulations.  In  the   simulations,  we   adopt  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Required sample numbers by SED, SSCT and ED 

under both the same constraints of performance 
parameters: α = β = 0.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Probability of the miss-detection as a function of SNR 

for ED, SSCT and SED 
 
QPSK modulated signal as the primary signal. In the 
first test example, we first obtain the miss-detection 
probabilities at different SNR levels for ED under the 
constraints that the sample number is 650 and the 
probability of false-alarm is 0.1. Then we use the just 
obtained miss-detection probabilities and Pf = 0.1 as the 
target probabilities to set the parameters of SED and 
SSCT. Figure 2 show that the practical false-alarm and 
miss-detection probabilities for SED and SSCT are close 
to the target ones.  

Figure 3 Shows that, compared with SSCT and ED, 
SED requires significantly reduced ASN under the same 
performance constraints. The inflexion points in Fig. 3 
can be explained by that the requirement of decreasing 
miss-detection probability is a dominative reason for the 
increasing of the ASNs in the lower SNR region and the 
increasing of the SNR becomes a dominative reason for 
the decreasing of the ASNs in the higher SNR region.  

In the second test example, we compare SED with 
SSCT and ED in terms of ASN and sample-efficiency 
and the false-alarm and miss-detection probabilities at 
several different SNR levels using computer 
simulations. The  fixed  sample size N for ED and all the  
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Fig. 3: Comparison of the required sample numbers for SED 

and SSCT and ED 
 
Table 1: The SED versus SSCT and ED 
SNR (dB) -5 -10 -15 -20 
α (target) 0.05 0.1 0.15 0.2 
β (target) 0.05 0.1 0.15 0.2 
L 10 20 90 300 
αSED (simu.) 0.056 0.103 0.152 0.25 
αSSCT (simu.) 0.055 0.103 0.153 0.26 
αED (simu.) 0.055 0.102 0.151 0.21 
βSED (simu.) 0.048 0.102 0.148 0.23 
βSSCT (simu.) 0.046 0.099 0.154 0.25 
βED (simu.) 0.047 0.096 0.149 0.198 
ASNSED (Theo.) 70 387 2505 16802 
ASNSED (simu.) 76 398 2568 16989 
ASNSSCT (simu.) 95 509 3154 20575 
N (for ED) 140 721 4431 28616 
ηSED 45.7% 44.8% 42.0% 40.6% 
ηSSCT 32.1% 29.4% 28.8% 28.1% 
 
values of the thresholds for ED, SSCT and SED are 
selected according to the target false-alarm probability 
and miss-detection probability pairs (α, β) = (0.05, 0.05), 
(0.1, 0.1), (0.15, 0.15) and (0.2, 0.2) corresponding to 
SNR = −5, −10, −15 and −20dB, respectively. The 
group sizes for SED are given in the second row of 
Table 1. Following the conventional terminology in 
squential detection, the sample-efficiency is defined as η 
=1−ASN/N. The third and fourth rows of Table 1 show 
that all the false-alarm probabilities and miss-detection 
probabilities obtained by Monte Carlo simulations for 
ED, SSCT and SED are close to the target ones at 
various SNR levels. All the 3 schemes achieve the 
expected detection performance at the similar degree of 
accuracy. The fifth row of Table 1 shows that the 
required ASNs of SED obtained by Monte Carlo 
simulations is less than those of SSCT and match well 
with the theoretical ASNs of SED at various SNR levels. 
The sixth row of Table 1 shows that, compared with 
energy detection, the SED can achieve about 40% ~ 
45% sample-efficiency while the SSCT can only 
achieve about 28% ~ 32% sample-efficiency when 
satisfying the same desired performance levels. It is 
demonstrated that SED outperform SSCT in terms of 
sample-efficiency. 

CONCLUSION 
 

In this study, we have proposed a SED based 
spectrum sensing scheme by combining SPRT and ED. 
We have studied the ASN of SED by theory and 
simulation. It has been found that SED significantly 
reduces the ASN and sensing time while retaining a 
comparable detection performance compared with SSCT 
and ED. The proposed scheme exhibits implementation 
simplicity due to not relying on the deterministic 
knowledge of primary user.. 
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