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Abstract: In this study, an EEG signal classification framework was proposed. The framework contained three 
feature extraction methods refer to optimization strategy. Firstly, we selected optimal electrodes based on the single 
electrode classification performance and combined all the optimal electrodes’ data as the feature. Then, we 
discussed the contribution of each time span of EEG signals for each electrode and joined all the optimal time spans’ 
data together to be used for classifying. In addition, we further selected useful information from original data based 
on genetic algorithm. Finally, the performances were evaluated by Bayes and SVM classifiers on BCI 2003 
Competition data set Ia. And the accuracy of genetic algorithm has reached 91.81%. The experimental results show 
that our methods offer the better performance for reliable classification of the EEG signal. 
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INTRODUCTION 

 
The state of mind of a person is supported by the 

brain activity. EEG is one of the brain imaging and 
recording techniques that can be used to investigate 
human brain's activity. Recently, EEG based Brain 
Computer Interface (BCI) has been an area of 
significant research activity with a variety of techniques 
being used to recognize and interpret brain events as a 
form of interface to a computer or other device, rather 
than for medical diagnosis or neuroscience research. 
Such a technique will open up new ways of controlling 
robots or making robots behave more like human 
beings.  

BCI technology originated from the United States. 
Many researchers had been realized the function that 
using EEG to control external devices. For instance and 
rew Schwartz team in Pittsburgh University alleged that 
the monkey trained can feed itself to eat zucchini with 
the mechanical arm controlled by BCI system (Santucci 
et al., 2005). In the 90s, Niels Birbaurmer and others 
analyzed the brain signal of the paralyzed and enabled 
them to move the computer cursor (Just Short of 
Telepathy, 2003). As a team leader, Hunter Peckham 
with his member classified the patients’ thinking up and 
down through studying beta waves extracted from 
limbs patients’ EEG signal and thereby restored part of 
the hand movement function (Cane and Alan, 2005). 
Recently, researchers from Zhejiang University finished 

with the experiment that using monkey brain to control 
manipulator. This result synchronized with the 
advanced level of the international BCI field. Its 
significance was that the nerve signals produced by five 
fingers movement were precise. A few days ago, the 
Chinese University of Hong Kong had successfully 
developed a BCI system, which could translate brain 
waves to traditional Chinese characters. It enabled the 
patient who was paralyzed and unable to have the 
opportunity to communicate with the world. 

The effective application of BCI technology is 
based on the accurate classification of EEG signal. 
Taking the BCI competition 2003 data set Ia for 
example, the winner (Mensh et al., 2004) achieved 
88.7% using gamma band power combned with SCPs. 
Shiliang and Changshui (2005) improved the 
classification performance to 90.44% by combing SCP 
with the spectral centroid (Shiliang and Changshui, 
2005). In the same year, Wang et al. increased the 
classification accuracy by 1.07% than Sun and Zhang 
using SCPs and beta band specific energy as feature 
vectors (Baojun et al., 2005). In addition, Wu et al. 
(2008) proposed a novel method based on WPD in 
2008 and obtained 90.8% accuracy rate by selecting the 
energy of special sub-bands and corresponding 
coefficients of WPD as features. 

In this study, we improved the classification 
accuracy by three kinds of methods. The first one was 
optimal    electrode    recombination,   the   second   was  
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Fig. 1: The distribution diagram of the six electrodes in scalp 

potentials (Wu et al., 2008) 

 

optimal time series recombination and the last one was 

based on genetic algorithm combined with Bayes and 

SVM  classifier.  The  experimental  results showed that 

the methods can enhance or optimize the classification 

accuracy. 

 

The data set description: The data set used in the 

experiment is the BCI competition 2003 data set Ia 

(Mensh et al., 2004). Six healthy subjects (evenly 

divided between male and female) participated in the 

experiment. The subjects’ age was between 22 and 35 

years old. The signals acquired were their Slow Cortical 

Potentials (SCPs). The task of the subjects was to move 

a cursor up and down through imagination. They take 

central parietal region electrode called CZ as the 

reference electrode to collect corresponding EEG 

signals from 6 recording electrodes and set the 

sampling rate 256 Hz. According to international 10-20 

standard, the distribution of the electrodes in the scalp 

surface was shown in Fig. 1 as follows. The acquisition 

process included three stages: rest stage (1s), prompting 

imagination stage (1.5s) and feedback stage (3.5s). In 

the prompting imagination stage, it appeared a cursor 

instruction that was up or down in the center of the 

screen. The cursor didn’t disappear until the end of the 

feedback stage. The data used for analyzing in the 

experiment was the Slow Cortical Potential (SCP) 

recorded in the feedback stage. Defining the average 

voltage of the 2 mastoid electrode (A1, A2) within the 

last 0.5s of the prompting imagine stage as the cortex 

negative potential, then the voltage amplitude of the 

reference electrode CZ became positive. The cortex 

negative potential was also slow cortex potential and it 

related to brain activities when people were in the state 

of alert, expectations or preparation. 

 

The framework of the EEG signal classification: 

Study found that different motor imagery activated 

different brain regions. For example, Leonardo found 

that when subjects imaged that his fingers touched his 

thumb, the main movement area was activated 

(Cicinelli et al., 2006; Leonardo et al., 1995; Gerardin 

et al., 2000; Lotze et al., 1999). Researches also 

proposed that the motor imagery of fingers, toes and 

tongue activated the specific body area of the main 

movement  area  (Nair  et al., 2003).  We  supposed  

that    signals    collected    from    different    electrodes 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: The framework of the EEG signal classification 

 
would represent the state of different brain regions. In 
view of this, we proposed optimal electrodes 
recombination strategy. Given the EEG signal was time-
locked, we inferred that the whole time span of every 
electrode contains two aspects of information 
components (positive information components related to 
stimulus and negative information components). We 
also supposed that the positive information components 
were conducive to classification, while the negative 
information components reduced the accuracy of 
classification and discrimination. Therefore, in order to 
improve the accuracy, optimal time spans recombination 
was used by reducing the negative information 
components. It was known that the two methods 
mentioned above were artificial selection. Maybe there 
was negative information in the optimal part or there 
was positive one in the non-optimal part. It was 
appropriate to select features automatic based on genetic 
algorithm. In order to clearly describe the three heuristic 
feature extraction and classification methods, we 
proposed the framework of the EEG signal classification 
as shown in Fig. 2. The details of the three methods and 
the corresponding experiments were described in the 
next two sections. 

 

CLASSIFICATION ENHANCEMENT METHODS 
 

In this section, we introduce three classification 
enhancement methods respectively. 
 
Method 1: Optimal electrodes recombination: The 
EEG signals classification method based on optimal 
electrodes is shown in Fig. 3. There are two stages in 
this method:  
 

• The first stage: Determining the electrode area of 
the original EEG signals (obtaining optimal 
electrode area and non-optimal electrode area)  

• The second stage: Classifying the EEG signals 
based on the optimal electrodes recombination with 
the corresponding classifiers 

 
Algorithm 1: Optimal single electrode selection scheme 

is as follows: 

EEG 
signal 

Optimal 

electrodes 

Optimal 

time spans 

Genetic 

algorithm 

Classification 

performance 1 

Classification 

performance 2 

Classification 

performance 3 
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Fig. 3: The diagram of EEG classification based on optimal 

electrodes recombination 

 

 
 
Fig. 4: The diagram of EEG classification based on optimal 

time spans recombination 

 

• Firstly,  we  use  the  single  electrode (N1, N2…Ni, 
i = {1, 2… 6}) as the feature to classify two kinds 
of EEG signals. The Bayes classifier is chosen. The 
classification results are R1, R2… Ri, i= {1, 2… 6}, 
according to these results, 6 electrodes are 
distributed into 2 areas (C1 and C2). The electrodes 

which classification performances are more than 
60% are distributed into C1 area, while other 
electrodes which classification performances are 
less than 60% are distributed into C2 area. 

• Secondly, we select electrodes to restructure EEG 
signals from optimal electrodes data set C1 and C2. 

• Finally, we choose two classifiers (SVM and 
Bayes) to compare the classification performances 
based on two type’s electrodes. 

 
Method 2: Optimal time spans recombination: The 
EEG signals classification method based on time spans 
recombination is shown in Fig. 4. There are three stages 
in this method:  
 

• The first stage: Determining the sub-time spans of 

the original EEG signals  

• The second stage: Determining the time spans area 

of the sub-time spans (obtaining optimal time spans 

area and non-optimal time spans area)  

• The third stage: Classifying the EEG signals based 

on the optimal time spans recombination with the 

corresponding classifiers  
 

Suppose the EEG signals are decomposed into sub-
bands according to different time span and electrodes. 
Nij Represents the EEG data in the j

th
 time span of the i

th
 

electrode. Then the single feature X can be written as 
follows: 

 

i j ij

i j

X Nα β=UU ; {1,...,6}, {1,...,7}i j∈ ∈  

 

1

0

th

i

i electrode EEG signals

otherwise
α


= 


 

 

1

0

th

j

j time span EEG signals

otherwise
β


= 


 

 
Algorithm 2: Optimal time spans EEG signals feature 

extraction and selection scheme is as follows: 

 
• Firstly, we define 500 ms as the unit of each time 

span. As the EEG signals lasting 3500 ms, there are 
7 time sub-spans for each electrode. We choose Nij 
as an initial signal feature to specifically investigate 
the contribution of each sub-time series extracted 
from an EEG signal. When the time sub-span EEG 
classification result is more than 70%, we put this 
time span into optimal time span area (S1). In 
contrary, we put it into non-optimal time span area 
(S2). 

• Secondly, our model joins m (1≤m≤6*7) EEG 
spans from optimal time sub-span area (S1) and the 
new EEG signals combination (X) is produced. 

• Finally, we choose 2 classifiers (SVM and Bayes) 
to classify EEG signal features based on X. 
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Fig. 5: EEG signal feature extraction scheme based on genetic algorithm 

 
Method 3: EEG classification based on genetic 
algorithm:  Though the methods mentioned above can 
give us a heuristic information search, they are not self-
adaptive algorithms. So we propose the EEG signal 
classification method based on the genetic algorithm in 
this section. We select the optimal time-point and 
recombine them and then evaluate the results by 
calculating the self-fitness function. Finally, we can get 
the ideal result. Figure 5 shows the EEG signal feature 
extraction scheme based on genetic algorithm. The 
details of the genetic algorithm are described in 
Algorithm 3. 
 

Algorithm 3: Genetic algorithm optimization EEG 

signals feature extraction and selection scheme is as 

follows: 

 
• Importing the EEG data in MATLAB and getting 

the data for training and testing 

• Initializing the algorithm parameters, including 
population size (popsize), generation number 
(generation), length of individual chromosome 
(chromlength), crossover Probability (Pc), mutation 
Probability in the earlier stage (Pm1) and Mutation 
Probability in the later stage (Pm2) 

• Poporiginal: According to population size and the 

length of the chromosome, creating initial 

population (poporiginal) randomly 

• Pop←poporiginal: Setting the initial population 

(poporiginal) as current population (pop)  

• for i =1: Generation 

• Objvalue: According to fitness function (gas core), 

computing every individual’s fitness function value 

and generating a fitness vector (objvalue) 

• Pop1: Using roulette operator to select individual 

from current population (pop) to be parent and 

getting parent generation (pop1) 

• Pop2: Using uniformity crossover operator, 

according to crossover Probability (Pc), getting the 

children generation (pop2) by crossing individuals 

in pop1 

• Newpop: Using uniformity mutation operator, 

selecting corresponding mutation probability 

according to current generation and getting the 

children generation (newpop) by mutating 

individuals in pop2 

• Outputting the best individual offspring of the 

current population 
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• Pop←newpop: Setting the current population as 

the current children population 

• End for 

• Outputting the best population and the best 

individual 

 

At last, the encoding methods, genetic operator and 

self-fitness function are determined as follows: 

 

• Encoding methods: We set the initial feature 

vector X = [x1, x2… xD]
T
, each component 

represents a feature, D is the dimension of X. We 

choose binary vector to represent an individual: 

 

1 2[ , ,..., ], {0,1}, 1,2,...,D iS s s s s i D= ∈ =  

 

Each data in S is a sub-time sequence, when this 

sub-time sequence is chosen, we set si = 1, 

otherwise we set si = 0 

• Population size: Popsize = 100 

• Generation number: Generation = 50 

• Crossover probability: Pc = 0.6 

• Mutation probability: Pm1 = 0.08, Pm2 = 0.001 

• Self-fitness function: The process of the 

classification of the EEG signal recombined is used 

as the fitness function and then the Bayes classifier 

is selected; the results of EEG signal classification 

are regarded as the fitness function value and the 

fitness function value can reflect the different 

classification performance 
 

EXPERIMENTS 
 

According to the three kinds of feature extraction 

methods, we analyze the EEG signal classification 

results in this section. The part I is based on the optimal 

electrodes recombination. And the part II discusses the 

performance of the optimal time spans recombination. 

At last, we compare the genetic algorithm with the first 

two methods in part III. In this study, Bayed and SVM 

classifiers are used in our experiment. Bayes classifier is 

a Naive Bayes classifier created by a NaiveBayes class 

object in MATLAB. We also make use of SVM 

classifier with the Libsvm toolbox provided by Zhiren 

Lin, TaiWan and the kernel function we chose is 

sigmoid. 

 

Evaluate the EEG signal classification method based 

on optimal electrodes combination: According to the 

first step of algorithm 1, 6 electrodes are divided into 

optimal electrodes and non-optimal electrodes. It is 

shown in the Table 1. 

According to the above conclusion, we design the 

experiment to compare the optimal electrodes 

combination classification with non-optimal electrodes 

combination classification. Firstly, we respectively use 

optimal    electrodes    combination    and    non-optimal 

Table 1: The difference of optimal electrodes and non-optimal 

electrodes 

Optimal electrodes A1, A2 

Non-optimal electrodes F3, F4, P3, P4 

 
Table 2: EEG classification performance based on electrode selection 

EEG signal 

feature 

Optimal 

electrodes 

Non-optimal 

electrodes All  electrodes 

Electrodes A1, A2 F3, F4, P3, P4 A1, A2, F3, F4, P3, P4 
Bayes (%)  89.08 47.78 86.69 

SVM (%) 85.66 44.02 84.64 

 
Table 3: The difference of optimal time span and non-optimal time 

span 

Time span (ms) Optimal time spans electrode name 

0-500 - 

500-1000 A1, A2 
1000-1500 A1, A2 

1500-2000 A1, A2 

2000-2500 A2 
2500-3000 - 

3000-3500 - 

 

electrodes combination as EEG signal feature and the 

process of the electrodes combination is shown in Part 1. 

Then, we choose SVM and Bayes to classify. Finally, 

we compare these EEG classification results based on 

optimal electrodes combination and non-optimal 

electrodes  combination. The  results  are shown in 

Table 2. Firstly, regardless of which classification 

method is chosen, we can find that the EEG 

classification results based on optimal electrodes 

combination are better than all electrodes as EEG signal 

feature and data from non-optimal electrodes give a 

much lower performance. Secondly, no matter which 

electrodes combination is used as EEG signal feature, 

the Bayes classification accuracy rates are relatively 

higher. Therefore, the Bayes classifier has a good 

classification result in this BCI classification based on 

electrode combination. 

  

Evaluation the EEG signal classification method 

based on optimal time span combination: We divide 

the each single electrode into 7 time sub-spans in order 

to improve the EEG signal classification based on the 

time spans combination. According to the first step of 

algorithm 2, we can get the optimal time span electrode 

names in Table 3 and non-optimal time span electrode 

names are surplus electrodes.  

We get the above conclusion by marking each time 

span of every electrode according to its single 

classification results. Such as A1 has optimal time spans 

in 500-1000, 1000-1500 and 1500-2000 ms and A2 is an 

optimal electrode in 500-1000, 1000-1500, 1500-2000 

and 2000-2500 ms, respectively.  

According to the EEG classification performance, 

on one hand, comparing with the results of the EEG 

signal classification based on optimal electrodes 

combination, we find that the EEG signal classification 

based  on  optimal time spans performance is better. The 
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Table 4: EEG classification performance based on time span selection 

EEG signal feature Classification method Acc (%) 

Optimal time span signals Bayes 89.76 

SVM 86.34 

Non-optimal time span signals Bayes 74.06 

SVM 70.99 

 
Table 5: EEG classification performance based on genetic algorithm 

Classification method Classification performance 

Bayes 90.10 

SVM 91.81 

 

possible reason is that the EEG features based on time 

spans   combination   relate   to   the   task   or   own  the 

advantage of EEG signal classification. Hence, selecting 

EEG based on time spans can greatly improve the 

performance of classification through reduction and 

recombination of EEG. On the other hand, Bayes 

classifier has good classification results in the algorithm 

1; similarly, Bayes classifier has good and stable 

classification result in the algorithm 2. The results are 

shown as Table 4. 

  

Evaluation the EEG signal classification method 

based on genetic algorithm: According to the 

algorithm 3, we propose the EEG signal classification 

method based on the genetic algorithm using Bayes and 

SVM as classifier. In the process, the results of EEG 

signal classification are taken as the fitness function 

value. Comparing with the two methods above, we can 

safely draw a conclusion that the feature extract by 

achieving the process of the automation selection by 

genetic algorithm is better to represent the content of the 

brain electrical signals. The results based on genetic 

algorithm are shown as Table 5. The accuracy of genetic 

algorithm has reached 91.81%. 

 

CONCLUSION 

 

In this study, three Heuristic methods are proposed 

to improve the classification accuracy of the EEG signal 

collected by a BCI system in 2003. Though the result is 

indeed increased, the speed of the computing is a bit 

slow. So in the future, we will combine parallel 

computing to improve the speed of recombination. 

Moreover, we will use the classification methods in 

some new data sets to validate the performance of the 

algorithm. Meanwhile, we will compare with a variety 

of feature extraction methods by using the methods in 

public EEG data sets. 
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