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Abstract: This study presents fatigue strength assessment of the trimaran platform by the spectral approach. 
Spectral fatigue calculations are based on complex stress transfer functions established through direct wave load 
analysis combined with stress response analysis. In this study, ANSYS software with 3 dimensional linear sea-
keeping code AQWA is used to compute frequency response functions of the vessel at zero forward speed. Finite 
element analysis of global trimaran structure is performed in ANSYS software utilizing hydrodynamic wave loads. 
Hot spot stress approach is used to compute stress transfer functions of the selected critical details. A MATLAB 
program, based on direct calculation procedure of spectral fatigue is developed to calculate total fatigue damage 
using wave scatter data of North Atlantic. Damage incurred during individual heading direction is also calculated 
and presented by means of polar diagrams to study its contribution towards cumulative fatigue damage. 
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INTRODUCTION 

 
Trimaran platform design has gained enormous 

attention in recent years owing to its superior seagoing 
performance. The trimaran offers significant advantages 
in terms of low resistance at high speed, excellent sea-
keeping characteristics, massive deck space and stealth 
(Blanchard and Ge, 2007). Due to its unique 
configuration and high operating speed, trimaran 
experiences severe structural loads, which include 
splitting moment, wet deck slamming and stress 
concentration in the cross deck region. These loads 
accelerate fatigue damage; hence, evaluation of fatigue 
strength is vital for trimaran design.  

The research work focusing on sea keeping aspects 
of the novel trimaran platform emerged after launching 
of RV Triton in 2000, being the world’s largest 
trimaran of that time (Pei-Yong  et  al.,  2002;  
Varyanik et al., 2002; Xiao-Ping et al., 2005; Fang and 
Too, 2006; Fang and Chen, 2008; Kang et al., 2008). 
However, very little material is available on fatigue 
strength  assessment  of  trimaran  structure (Chun-Bo 
et al., 2012). The fatigue strength of a ship structure is 
generally assessed either by simplified method or 
spectral based Method (Bai, 2003). These techniques 
are categorized based on the method used for 
determination of stress distribution. In simplified 
method, long-term stress distribution in structure is 
specified by Weibull probability distribution, whereas, 
short term stress range distribution in spectral method is 
defined by Rayleigh probability density functions for 

each short term sea state. Application of simplified 
method for trimaran is complex, since guidelines of the 
classification societies for fatigue loads, load cases and 
loading conditions are not available. Moreover, 
excessive sensitivity of the estimated fatigue damage to 
the Weibull shape parameters and selection of basic 
design SN curve confine the use of simplified approach 
to novel ship structures.  

Spectral fatigue analysis is a direct calculation 
method based on linear theory in the frequency domain 
of a stationary and ergodic but not necessarily narrow 
banded Gaussian random process with zero mean 
(Kukkanen and Mikkola, 2004).  Spectral method is 
considered as the most reliable method for fatigue life 
estimation of ship structure due to its ability to cater 
different sea states as well as their probabilities of 
occurrence. This research is focused on fatigue strength 
assessment of trimaran by spectral method.  

In this study, frequency response functions 
representing the ship response to a sinusoidal wave with 
unit amplitude for different frequencies and wave 
headings are computed using linear sea keeping code 
ANSYS AQWA utilizing 3-dimensional potential flow 
based diffraction-radiation theory. Considering hot spot 
stress approach, stress transfer functions are calculated 
by global FE analysis of the trimaran. Finally direct 
calculation procedure of spectral based fatigue is 
employed to estimate cumulative fatigue damage of the 
hot spots. The study also investigates the effect of 
Wirsching’s rain flow cycle correction factor and 
contribution of fatigue damage caused by individual 
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heading direction towards cumulative fatigue damage 
of the hot spots.   

 
LITRETURE REVIEW 

 
Spectral-based fatigue analysis is a complex and 

numerically intensive technique. Theoretical 
background and method of spectral fatigue are 
presented in detail in numerous publications (Wirsching 
and Chen et al., 1988; Sarkani, 1990; Pittaluga et al., 
1991; Wang, 2010). In spectral approach, wave loads in 
regular waves or Response Amplitude Operators 
(RAOs) and corresponding wave induced stresses in 
ship structural components are computed for a specific 
range of frequencies and headings to obtain stress 
transfer functions at the hot spots. Each transfer 
function is valid for a specified ship velocity, wave 
heading angle and loading condition.  

Wave data in terms of a wave scatter diagram and a 
wave energy spectrum are incorporated to generate 
stress-range response spectra, which is used to define 
the magnitude and frequency of occurrence of local 
stress ranges at hot spots in a probabilistic manner. 
Fatigue damage from individual sea state is calculated 
using Rayleigh's probability density function describing 
the short-term stress range distribution, spectral 
moments of various orders, S-N curve of the structural 
detail and zero crossing frequency of the response. 
Based on Palmgren-Miner linear damage accumulation 
hypothesis with occurrence probabilities of the different 
operational and environmental conditions, total or 
cumulative fatigue damage is determined by combining 
the short-term damages over all the applicable sea states 
(Siddiqui and Ahmad, 2001). The analysis procedure of 
spectral based fatigue is shown in Fig. 1.  

Mathematically, spectral-based fatigue analysis 
begins after the determination of the stress transfer 
function. Wave energy distribution Sη in short term sea 
state over various frequencies, is modeled by 
parametric Pierson-Moskowitzwave energy spectrum 
(DNV, 2010) and expressed as: 
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where,  
Hs : Significant wave height  
Tz : Zero crossing period  
ω : Wave frequency  
 
Stress energy spectrum Sσ is obtained by scaling 
Pierson-Moskowitz wave energy spectrum in the 
following manner: 
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where,  

Hσ (ω/θ) : The stress transfer function  
θ : The heading angle  
The nth spectral moment mn of the stress response 
process for a given heading is calculated as follows: 
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Effect of directional spreading can be included in 

spectral moment calculation using cosine squared 
approach ሺ2 ⁄ߨ ሻ cosଶ  to model confused short crested ߠ
sea conditions. Spreading limitation of the cosine 
squared function is generally assumed from +90 to -
90°C on either side of the selected wave heading. 
Revised spectral moment formulation after inclusion of 
wave spreading function is as follows:  
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Assuming the short-term stress response to be 

narrow-banded, then stress ranges follow the Rayleigh 
probability distribution (ABS, 2004). Using spectral 
moments of various orders, Rayleigh probability 
density function g(s) describing the short term stress-
range distribution and zero up-crossing frequency of the 
stress response f and the bandwidth parameter ߝ of 
Wirsching’s rain flow correction are calculated as 
follows: 
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where,  
s : Stress range  
m0, m2, m4 : Spectral moments  
 
Using SN curve of the form N = ASm, the short term 
fatigue damage Dij incurred in the ith sea-state is given 
by the relation: 
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where,  
f0ij : Zero-up crossing frequency of stress response 

in Hz  
T : Design life in sec  
m & A : Constants of SN curve  
pi : The probability of occurrence of individual sea 

state 
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