
Research Journal of Applied Sciences, Engineering and Technology 5(3): 1048-1053, 2013  

DOI:10.19026/rjaset.5.5061   

ISSN: 2040-7459; E-ISSN: 2040-7467 

© 2013 Maxwell Scientific Publication Corp. 

Submitted: June 29, 2012                        Accepted: July 28, 2012 Published: January 21, 2013 

 

Corresponding Author: Jianting Ning, Department of Information Engineering, Yangzhou University, Yangzhou Jiangsu, 

China 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

1048 

 

Research Article 
A Dynamic Self-Healing Key Management Scheme for Wireless Sensor  

Networks Based on EBS 
 

1
Jianting Ning and 

2
Xinchun Yin 

1
Department of Information Engineering, Yangzhou University, Yangzhou Jiangsu, China 

2
State Key Laboratory for Novel Software Technology, Nanjing University, 

Nanjing Jiangsu, China 
 

Abstract: A self-healing mechanism in key management is an important means for large-scale clustering wireless 
sensor networks that enable non-revoked nodes use their private information and the received broadcast messages to 
recover the lost session keys on their own. In this study, we propose a dynamic self-healing key management 
scheme for large-scale clustering wireless sensor networks that is based on Exclusion Basis System (EBS). We use 
forward and backward key chains to form cluster session key chain for self-healing, take t-degree polynomial keys 
to replace the original keys used in EBS. The analysis shows that the proposed scheme has the properties of forward 
and backward secrecy and resisting to a collusion attack, which is suitable for resource-constrained wireless sensor 
networks. 
 
Keywords: Dynamic key management, Exclusion Basis System (EBS), self-healing, wireless sensor networks 

 
INTRODUCTION 

 
Recently, as one of the core technologies of the 

Internet of Things, Wireless Sensor Networks (WSNs) 
is attracting more and more research interests because of 
its wide applications such as military operations, 
scientific explorations and so on. Among all security 
issues in WSNs, key management is a fundamental 
security issue for wireless sensor networks.  

Staddon et al. (2002) first proposed self-healing key 
distribution schemes with revocation capability in 
WSNs in 2002 (Staddon et al., 2002). Blun Do et al. 
(2003) analyzed Staddon’s schemes and showed that an 
adversary could though just broadcast messages to 
recover the group session key which proved that 
(Staddon et al., 2002) is not safe (Blun Do et al., 2003). 
Later on many self-healing key distribution schemes 
(Liu et al., 2003) based on Staddon et al. (2002) are 
proposed, Liu et al. (2003) proposed a novel method by 
combining the personal secret key distribution scheme 
with the self-healing technique to improve the scheme in 
Staddon et al. (2002). Dutta et al. (2007) proposed a 
self-healing group key distribution scheme based on 
one-way key chain (Dutta et al., 2007). Du and He 
proposed a self-healing key distribution with revocation 
which is claimed to resist to the collusion attack (Du and 
He, 2008). Bao and Zhang found the scheme in Du and 
He (2008) is not secure against the collusion attack and 
proposed a modified scheme (Bao and Zhang, 2011). 
Eltoweissy et al. (2004) proposed a combination of 

dynamic key management scheme EBS based on 
combinatorial  optimization  methodology (Eltoweissy 
et al., 2004). Kim et al. (2006) proposed an EBS and t-
degree bivariate based polynomial group key 
management scheme (Kim et al., 2006).  

In this study, we propose a dynamic self-healing 
key management scheme for large-scale clustering 
wireless sensor networks that is based on Exclusion 
Basis System (EBS). We use forward and backward key 
chains to form cluster session key chain for self-healing, 
take t-degree polynomial keys to replace the original 
keys used in EBS. The analysis shows that the proposed 
scheme has the properties of forward and backward 
secrecy and resisting to a collusion attack, which is 
suitable for resource-constrained wireless sensor 
networks. 

 
LITRATURE REVIEW 

 
Network and adversary model: 
Network model: Research shows that cluster-style 
network topology is more suitable for large-scale 
energy-constrained wireless sensor networks. WSN 
nodes determine how clustering based on their location 
information or other criteria. We assume that the 
network nodes are divided into two categories: 
 

• Cluster head node: This scheme assumes that, 
cluster head node’ energy is sufficient to support 
the basic study requirements of each cluster and is 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(3): 1048-1053, 2013     

 

1049 

assigned by system. They are mainly as a data 
gathering point within cluster, sent data to remote 
terminal after simple data processing. In addition to 
data aggregation, such nodes will be responsible for 
key distribution, updating, sensor nodes join and 
eviction, resistance against attacks and so on. A 
small number of cluster head node exists in the 
network. 

• Sensor nodes: Compared to cluster head node, 
sensor node has less storage capacity, energy, weak 
computing power. It is responsible for sensing the 
external environment, to obtain and transfer data to 
the cluster head node belonged to after a simple 
treatment. Lots of these nodes distributed in the 
network.  
 

Adversary model:  For distributed in an open and 
hostile environment, sensor nodes face communication 
monitor, Sybil attack and so on. Among them, the 
collusion attack arising from node capturing is a direct 
threat to the security of key systems. How to resist 
collusion attack, to prevent as captured node increases, 
adversary with more key information until owns and 
explains the whole key system, is to be considered an 
important issue in WSNs key management scheme. 
 
Forward and backward key chains: In short, 
Randomly select key seeds KF0, KB0, one-way hash 
function H (.), HB (.), d numbers ��, δ�, … . , �	. Then we 
can get the corresponding forward key chain 

��, 
��, … . , 
�	. for d sessions through: 
 

 ),(...),( 21

2

1 δδ KFHKFHKF j

jjj

−

−
===

 
 

���(
��, ��) (1 ≤ � ≤ �). For session 1, the forward 

key is   
�� = �(
��, ��), the backward key seed is  


��
� = �(
��, ��)  and the backward key chain 

is   {
��
�}.  For  session  2,  the  forward  key  

is    
�� = �(
��, ��), the backward key seed is 


��
� = �(
��, ��)  and the backward key chain is 

{
��
� , 
��

�}. For session j (1 ≤ � ≤ �)  , the forward 

key is 
� = �(
���, �), the backward key seed is 


�
� = �(
���, �), then the backward key chain 

is   
�
�, 
�

�, . . . , 
�
��
， j=1, 2,… d,  where, 


� = 
�
�� = ��(
�

��) =….= ��
��(
�

�). For 

session        j,        the      cluster      session       key       is  

�
 = 
� + 
�	���, as showed in Fig. 1. 

 
Dynamic key management scheme EBS: Let n, k and 
m be positive integers, such that k>1, n>m. An 
Exclusion Basis System of dimension (n, k, m), denoted 
by EBS (n, k, m),  is   a  collection Γ  of   subsets   of   
[1, n] = {1, 2,…, n}     such     that    for   every    
integer � ∈ [1, !]   the following 2  properties hold:  

 
 
Fig. 1: The structure of forward and backward key chains 

 

• t is in at most k subsets of Γ   

• There are exactly m subsets 

 

say A1, A2,…, Am, in # such that  $%&�
' (% =

{1,2, … , !}{�}. (That is, each element t is excluded by a 

union of exactly m subsets in #). 

We take the EBS (n, k, m) described above as a 

wireless sensor network dynamic key management 

method, n is the number of nodes, k is the number of 

administrative keys and m is the number of rekeying 

messages. A set of (k + m) administrative keys is used to 

support a set of n nodes and each node is assigned a 

distinct combination of k keys. A node can be simply 

admitted to the group by assigning one of the unused set 

of    k    keys   out   of   the   total   of   C  (k + m, k), i.e., 

(
 + *)!/(-! *!), distinct combinations. Ejection of a 

compromised node can be performed by broadcasting 

replacement of the k keys that the evicted node knows 

using the m keys. 

 

NEW SCHEME FOR WSNS 

 

In this study, we present a dynamic EBS-based key 

management scheme with the property of self-healing. 

The skeleton of self-healing in this scheme is mainly 

showed in Fig. 2. 

 

System initialization: Assume that the life cycle of a 

communication is divided into d sub-sessions. And the 

cluster key in every session will be updated periodically. 

At system initialization, the system select key seeds 

KFO, KBO, on-way hash functions H(.), HB(.) and  ��(. )
 

and d numbers   ��, ��, … . , �	.  randomly. Then system 

randomly chooses numbers .�, .�, … . , ∈ �/ for each 

session, then generate the forward key chain 

 { 
��,  
��, . . .  
�	} and   the   corresponding   d   

backward   key   chains {
�
� , 
�

�, … , 
�
��}. 

(1 ≤ � ≤ �) as described above. After strict registration 

and authentication, each sensor node Na within cluster 

will be assigned its unique Ida, forward hash function 

H(.)
 
and one-way hash function H1(.) 

which used for 

updating. And each node will be allocated a key-buffer 

of length L (kb (L), …, kb (1)) and two key-slots. 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(3): 1048-1053, 2013     

 

1050 

 
 
Fig. 2: The skelecton of self-healing 
 

 
 
Fig. 3: Management of CKs 

 

Key pre-distribution: Cluster head node chooses two 
polynomials of degree t at random 0(1) = 0� + 0�1 +
⋯ + 0313 and 4(1) = 4� + 4�1 + ⋯ + 4313, which is 
based on (t + 1, n) threshold secret sharing technique. 
Then cluster head node randomly generates a number of 
k + m    polynomial     administrative      keys    

  05(1) = ∑ 0%
3
%&� 1%,  n = 1, 2,…, k + m  and distributes 

unused set of k polynomial keys out of the total of C (k 
+ m, k) to each sensor node within cluster according to a 
pre-generated   random    EBS    matrix.  Mean  while,  
the   cluster   head     node     will         broadcast 
�78 = {9|
��|
�	�;��|4	(<)|… |4;�=(<)|��| … |�;. 

Sensor node 
aN  receive and decrypt �>?  to get L,  KFO, 


�	�;��, Sd(a),..., 4;�=(<),   ��, ��, … . , �;. Then 
aN  

calculates �
 = 
� + 
�	���, (1 ≤ � ≤ 9 + 2), 

stores },...,{ 32 CKCKL+
and },{ 12 CKCK  in the key-buffer 

and key-slots, respectively. CK1 is used for the present 
cluster session key and when the timer expires, switches 
the active key to CK2 and right move CKs as showed in 
Fig. 3.                        
 
Broadcast: Assume that 7 = {7�, 7�, … . , 7@}

 
 is the 

set of all active sensor nodes for j-th session, where, p is 
the   number   of   active   user   in session j. Let  
A = {��, ��, … . , �@}

 
  be the set of all active users’ secret 

values in j-th session. In session j, cluster head node 

generates a masking key sequence {B
�, B

�, … , B
��, B

} 

where, B
% = 
�	���

% ⊕ .% (j = 1, 2,…, d; i = 1, 2,…, 

j), then broadcasts the following message: 
 

�� = {D
%(1) )(),({)}()( 21 1

1
0

1

δδ
+−+−

∪+=
jdjd KBKBi

i

j

i

j EExsGxA
 

 

E
F�GHIJK

IHK (�)}, i = 1, 2,… j, where,  L
%  is a randomly 

number to mask B
%, 

MI
N

OI
∉ A = {��, ��, … , �@}，       

and   (
%(1) = 1 − (L

%1 − A) ∏ 1 −S
5&� �5. 7% ⊂ 7 =

{7�, 7�, … , 7S Receives the j-th broadcast message Bj, 

Ni can evaluate  (
%(1) = 1  by using its secret value ti 

. 

For any revoked user, however, the (
%(1) is a random 

value.  

 

Cluster session key and self-healing key recovery: 

Assume Suppose that sensor node Na joins in the cluster  

in   session   I   and  not  revoked  in  session (1 ≤ U ≤
� n j, then it can recover the cluster session key CKj  

from the broadcast message Bj  as follows:  

 

• Na computes B
% = V

%(�	)�4%(�	) where, (
%(�	) = 1  

• Na evaluates  
�	���
% − B

% ⊕ .%  

• Na computes all the future 

 { 
�	���
% , 
�	���

%�� , … , 
�	���
�� }  through the 

one-way hash function H(.), then get 
�	��� =
 
��−�+1�−1 = ��−U
��−�+1U−1. Meanwhile, 

Na calculates the forward key 
� = ��%(KFo) by 

using the preloaded key seed KFo and one-way hash 

function  H(.). Thus, gets the cluster session key 

CKj = KFj+KBd-j+1 for j-th session;  

• 
aN  can decrypt {EF�GHIJK

NHK (�%), EF�GHIJK
NHK (�%��) 

, … , EF�GHIJK
NHK (�%)} by using the corresponding 

keys   
�	���
% , =  
�	���,

�� … , =  
�	���
��

, thus 

getting the corresponding self-healing keys  

  {�%, �%��, … . , �}. If Na has already obtained 


�	��� from Bj, he can recover all the session 

keys KBd-l+1 (j<l<j) with 
�	���  and the self-

healing keys  {�%, �%��, … . , �}. 

 

Key update: The administrative and session keys  need 

to  be  updated  periodically  or  on-demand  within 

cluster in   order  to  improve  system’s  security.  The 

cluster       head     node     broadcasts   update   packets: 

  
� = W0X(1)Y ∪ WV(1) = ((1)B + 4X(1)Y ∪ {EF�GHIJK

[ (��) 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(3): 1048-1053, 2013     

 

1051 

EF�GHIJK
K (��), … , E

F�GHIJK
IHK \�]},  where,  0X (1) ∑ 0̂X3

%&� 1% 

4X(1) = ∑ 4X̂3
%�� 1%  , 0̂X = ��(0%) 

, 4X̂ = ��(4%). Each node 

receives and decrypts the packet, calculates 0X(1) to 

replace the original f(x), thus completing the 

administrative key update. Also, each node can decrypt 

the packet and calculate to get �
 =  
� +  
�	���   

like described above. And  �
 will be put in the key-

buffer   and switches the active-key like   showed       in 

Fig. 3. 
 
 Add new sensor node: To maintain a good 
connectivity in the network, new nodes need to be added 
into network to replace dead nodes and. First system 
detects EBS matrix for all the cluster distributions and 
find out the smallest number of nodes n among whole 
clusters which meets ! ≤ �(- + *, -), then assigns one 
of the unused set of k keys to the new sensor node and 
preload its unique Id , thus admitting the new node. 

Meanwhile, the new node will stores forward hash 

function )(⋅H  and one-way hash function  ��(. )used 

for updating. And the new node will be allocated a key-
buffer of length L (kb (L),…, kb (1) and 2  key-slots. If 
all clusters meet ! ≤ �(- + *, -), then the system will 
assign a new cluster head node Hnew to form a new 
cluster, the new cluster head node Hnew will distribute 
the key to the new sensor node as described above. 
 
Node ejection: When system detects an abnormal 
sensor node

iN , response should be made by system 

immediately. According to EBS, we need to update all k 

administrative keys E%
@I

, j = 1, 2,…, k, _ ∈
{1, 2, … , - + *} that 

iN  owns. So the cluster head node 

broadcasts m data packets: 

E%
/`(E%

/K\0SK
X ], E%

Sa(0Sa)), … , E^
SbX (0Sb

X ), s = 1, 2,… m 

},,,{},,2,1{},,,{ 2121 km pppmkqqq ……−+……∈……
 

within the cluster,  0X cU Piis the new administrative key 
that is generated by using the one-way hash function 
H1(.). According to EBS matrix, since Ni has not been 

assigned by E%
/` , it cannot decrypt any data packets, thus 

unable to update the key and being ejected from the 
network. According to EBS matrix, the other nodes 

could be assigned one or more E%
/`, so they can decrypt 

data packet to get update information to form newly 
polynomial keys, thus being retained in the network. 
 

RESULT ANALYSIS 

 

Computational overhead: We build our quantitative 

analysis of the proposed scheme's performance 

according to steady-state distributions of 2-dimensional 

Markov chain. Let pL = pr {Bj is lost}, PF = Pr {Bj 

authentication fails |Bj is received} and Ps = 1-pL-                               

PF. Also, let p(I, j) denote the steady-state probability 

of state (I, j) and _d(-) the probability that there were 

exactly k empty slots. Then, we can get: 

 

)0,0()()( pppkp
k

FL ⋅+=ε
, dk ...,,0=  

 

1)(1

)(1
)0,0(

+
+−

+−
=

d

FL

FL

pp

pp
p  

 

Since the sensor nodes have relatively limited 

computing resources, so we only consider the 

computational overhead of sensor nodes. The cost of 

computing of each node include polynomial evaluate, 

sum operation and Hash operation and the 

computational overhead of polynomial operation is 

relatively small and fixed, so we mainly focus on the 

hash computation to analyze the computational 

overhead. Assume that E(NH) is the expected number of 

hash computations per updating, when there are k empty 

slots in key-buffer, we have: 

 

)1()0,0())(1)(1()(
1

0
+++−+=∑

−

=
dppppkNE

d

k

k

FLL

H

 
 

(pL + pF) d.p(o, o). Compared to the proposed scheme 

LiSP, we have the same expected number of hash 

computations after the node receives the key update 

message with Lisp. Moreover, our scheme is based on 

EBS and we take the t-degree polynomial keys to 

replace the original keys used in EBS, which makes our 

scheme more effective than LiSP against collusion 

attack. Figure 4 gives the relationship between the 

expected number of hash computations per updating and 

the length of key-buffer, which shows that we only 

execute small hash computation even if under a highly 

lose of wireless channel. 

 

Communication overhead: The overhead of 

communication between the cluster head node and the 

sensor nodes is mainly about 2 parts: the cost of init key 

Cinit and the cost of update key Cupdate. When the d sub-

sessions circle is finished or the L key-buffer is empty, 

the cluster head node needs to re-initialize, in other case 

the cluster head node only to broadcast to update   

periodically,   We  take  n  is  the  ratio  of  the key 

Cupdate, so we can get the expected communication cost 

Eef'' = !. [�

	
+ (_; + _g)	 . p(0, 0)+ ∑ (_; + _g)	��

3&�
3
. 

Figure 5 shows the relationship between the expected 

communication cost and the length of key-buffer, which 

indicates that the longer the length of the key-buffer, the 

smaller the communication overhead requires.  



 

 

Res. J. Appl. Sci. Eng. Technol., 5(3): 1048-1053, 2013     

 

1052 

 
 

Fig. 4: The relationship between the expected number of hash 

computations per updating and the length of key-buffer 

 

 
 
Fig.5: The relationship between the expected communication 

cost and the length of key-buffer 

 
Forward secrecy: Suppose that Rj is the set of the 
nodes revoked in and before session j. For the broadcast 
message: 
 

1
1

0
1

),({)}()()({ 1
+−+−

∪+==
jdjd KBKBi

i

j

i

j

i

jj EExsGxAxZB δ
 

 

E
F�GHIJK

IHK \�]} as mentioned above and a node needs to 

obtain the corresponding self-healing key � which is 

randomly  chosen and an active node’s secret to get the   

j-th  cluster session key  �
 =  
� +  
�	���. The 

corresponding self-healing key δj is encrypted by the 

corresponding backward session key  
�	���
��

, which 


�	���
�� = B

�� ⊕ .��. But for any revoked node 

7h ∈ i, cannot calculate the masking keys  B
��, 

because   (
%(1) is a random value for NR. Moreover, for 

any revoked node 7h ∈ i do not have  .��. Therefore, 

the nodes in Rj cannot get the values of the self-healing 

keys to obtain the future group session keys. Meanwhile, 

f(x), S(x) are t-degree polynomial based on (t + 1, n) 

threshold secret sharing technique which need t + 1 

points to recover. The above analysis shows that the 

proposed scheme is forward secure. 

 

Backward secrecy: Suppose that  $�� is the set of the 

nodes which join in session j + 1. For users in  $��  can 

only get the current backward session key  
�	�   

compute �
�� which is the last key in the cluster key 

chain from the broadcast ���. Thus users in $�� can 

only get the current self-healing key ���. Since one-

way hash function is irreversible, it is computationally 

infeasible for any user in $�� use  
�	� and ��� to 

compute the previous cluster key �
. Meanwhile, f(x), 

S(x) are t-degree polynomial based on (t + 1, n)  

threshold secret sharing technique which need  t + 1 

points on the polynomial f(x),  to recover. 0X(1) is the 

result of   f(x)  after one-way hash operation, since one-

way hash function is irreversible, so it is hard to recover 

the previous polynomial f(x). So nodes in  $��  can not 

get any information about the previous cluster session 

key or administrative key. The above analysis shows 

that the proposed scheme is backward secure. 

 

Resistance to a collusion attack: Suppose that i  is 

the set of the nodes revoked in and before session j1+1 

and  $a  is the set of the nodes that join from session ��. 

Assume that 7h ∈ i  colludes with 7a ∈ $a , they 

need the self-healing keys between �jK and �ja to 

recover 
�	��� = 
�	���
��

 which could be used to 

compute  �
 (�� < � < ��) .  For  the equation 

Va

K(1) = (a

K(1)Ba

K + 4K(1) from  �a , $aneeds the 

value of4K(1)  to obtain Ba

K . And 7a can get 
	�aJK

K��
  

with NR's secret  .K . Thus, NR and 7a  can get     

{
	�aJK

K�� , … , 
	�aJK

a�� }   and    {4K, … . , 4a}.     But    they 

cannot obtain  4K(1)   unless they can recover the secret 

polynomial s(x) which based on (t + 1, n)  threshold 

secret sharing technique. Therefore, they cannot recover 

the self-healing keys between  4K  and  4a . Thus they 

cannot  get  the  backward    session      keys  


�	��� = 
�	���
��

to calculate �
  without the 

corresponding self-healing keys. Therefore, the 

proposed scheme can resist to the collusion attack. 

Compared   to   Lisp,   SHELL,   LOCK,    results   from 



 

 

Res. J. Appl. Sci. Eng. Technol., 5(3): 1048-1053, 2013     

 

1053 

 
 
Fig. 6: Relationship between the number of captured nodes 

and the fraction of keys compromised (m = 5) 

 

simulation and analysis indicate that the proposed 

scheme in this study is more resilient against node 

capture and collusion attack and Fig. 6 gives the 

relationship between the number of captured nodes and 

the fraction of keys compromised. 

 

CONCLUSION 

 

We propose a dynamic key management scheme 

for wireless sensor networks with the property of self-

healing. We take t-degree polynomial keys to replace 

the original keys used in EBS, use forward and 

backward key chains and broadcast polynomial key to 

achieve self-healing, forward and backward secrecy and 

resisting to a collusion attack. Meanwhile, this scheme 

has a small calculation and communication overhead, 

which is efficient and secure for resource-constrained 

wireless sensor networks. 

 

ACKNOWLEDGMENT 

 

The authors wish to thank the helpful comments 

and suggestions from my teachers and colleagues in 

Yangzhou University. This study was supported  in part  

by National High Technology Research and 
Development Program of China (863 Program) 
(2007AA0124487), National Natural Science 
Foundation of China (60473012) and Colleges and 
Universities of Jiangsu Province Plans to Graduate 
Research and Innovation (CXLX11_1008). 
 

REFERENCES 
 
Bao, K.H. and Z.F. Zhang, 2011. Collusion Attack on a 

Self-Healing Key Distribution with Revocation in 
Wireless  Sensor  Networks.  In:  Chung,  Y. and 
M. Yung (Eds.), WISA 2010. LNCS 6513, 
Springer, Heidelberg, pp : 221-233.  

Blun Do, C., P. D’Arco and M. Listo, 2003. A flaw in a 
self-healing key distribution scheme. Proceeding of 
Information Theory Workshop, Paris, pp: 163-166.  

Du, W. and M.X. He, 2008. Self-healing Key 
Distribution with Revocation and Resistance to the 
Collusion Attack in Wireless Sensor Networks. In: 
Baek, J., F. Bao, K. Chen and X. Lai (Eds.), Prov 
Sec LNCS. Springer, Heidelberg, 5324: 345-359.  

Dutta, R., E. Chang and S. Mukhopadhyay, 2007. 
Efficient Self-healing Key Distribution with 
Revocation for Wireless Sensor Networks Using 
One Way Hash Chains. In: Katz, J. and M. Yung 
(Eds.), ACNS 2007. LNCS, Springer, Heidelberg, 
4521: 385-400.  

Eltoweissy,   M.,   H.   Heydari,     L.     Morales   and 
H. Sadborough, 2004. Combinatorial optimization 
of group key management (J): Special issue on 
network security.  J.  Netw. Syst. Manag, 12(1): 
33-50. 

Kim, J., J. Cho, S. Jung and T. Chung, 2006. An 
energy-efficient dynamic key management in 
wireless sensor networks (A). Proceedings of the 
8th International Conference on Advanced 
Communication Technology (C). Phoenix Park, 
Korea, pp: 2148 - 2153. 

Liu, D., P. Ning and K. Sun, 2003. Efficient self-
healing key distribution with revocation capability. 
Proceeding of the 10th ACM CCS, pp: 27-31.  

Staddon,  J.,   S.   Miner,   M.   Franklin,  D. Balfanz, 
M. Malkin and D. Dean, 2002. Self-healing key 
distribution with revocation. Proceeding of IEEE 
Symposium on Security and Privacy, pp: 241-257.  

 

 


